2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
27 * - Platform conveys its decision back to OS
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
44 #include <acpi/cppc_acpi.h>
46 * Lock to provide mutually exclusive access to the PCC
47 * channel. e.g. When the remote updates the shared region
48 * with new data, the reader needs to be protected from
49 * other CPUs activity on the same channel.
51 static DEFINE_SPINLOCK(pcc_lock
);
54 * The cpc_desc structure contains the ACPI register details
55 * as described in the per CPU _CPC tables. The details
56 * include the type of register (e.g. PCC, System IO, FFH etc.)
57 * and destination addresses which lets us READ/WRITE CPU performance
58 * information using the appropriate I/O methods.
60 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
62 /* This layer handles all the PCC specifics for CPPC. */
63 static struct mbox_chan
*pcc_channel
;
64 static void __iomem
*pcc_comm_addr
;
65 static u64 comm_base_addr
;
66 static int pcc_subspace_idx
= -1;
67 static bool pcc_channel_acquired
;
68 static ktime_t deadline
;
69 static unsigned int pcc_mpar
, pcc_mrtt
;
71 /* pcc mapped address + header size + offset within PCC subspace */
72 #define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))
75 * Arbitrary Retries in case the remote processor is slow to respond
76 * to PCC commands. Keeping it high enough to cover emulators where
77 * the processors run painfully slow.
79 #define NUM_RETRIES 500
81 static int check_pcc_chan(void)
84 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
= pcc_comm_addr
;
85 ktime_t next_deadline
= ktime_add(ktime_get(), deadline
);
87 /* Retry in case the remote processor was too slow to catch up. */
88 while (!ktime_after(ktime_get(), next_deadline
)) {
90 * Per spec, prior to boot the PCC space wil be initialized by
91 * platform and should have set the command completion bit when
92 * PCC can be used by OSPM
94 if (readw_relaxed(&generic_comm_base
->status
) & PCC_CMD_COMPLETE
) {
99 * Reducing the bus traffic in case this loop takes longer than
108 static int send_pcc_cmd(u16 cmd
)
111 struct acpi_pcct_shared_memory
*generic_comm_base
=
112 (struct acpi_pcct_shared_memory
*) pcc_comm_addr
;
113 static ktime_t last_cmd_cmpl_time
, last_mpar_reset
;
114 static int mpar_count
;
115 unsigned int time_delta
;
118 * For CMD_WRITE we know for a fact the caller should have checked
119 * the channel before writing to PCC space
121 if (cmd
== CMD_READ
) {
122 ret
= check_pcc_chan();
128 * Handle the Minimum Request Turnaround Time(MRTT)
129 * "The minimum amount of time that OSPM must wait after the completion
130 * of a command before issuing the next command, in microseconds"
133 time_delta
= ktime_us_delta(ktime_get(), last_cmd_cmpl_time
);
134 if (pcc_mrtt
> time_delta
)
135 udelay(pcc_mrtt
- time_delta
);
139 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
140 * "The maximum number of periodic requests that the subspace channel can
141 * support, reported in commands per minute. 0 indicates no limitation."
143 * This parameter should be ideally zero or large enough so that it can
144 * handle maximum number of requests that all the cores in the system can
145 * collectively generate. If it is not, we will follow the spec and just
146 * not send the request to the platform after hitting the MPAR limit in
150 if (mpar_count
== 0) {
151 time_delta
= ktime_ms_delta(ktime_get(), last_mpar_reset
);
152 if (time_delta
< 60 * MSEC_PER_SEC
) {
153 pr_debug("PCC cmd not sent due to MPAR limit");
156 last_mpar_reset
= ktime_get();
157 mpar_count
= pcc_mpar
;
162 /* Write to the shared comm region. */
163 writew_relaxed(cmd
, &generic_comm_base
->command
);
165 /* Flip CMD COMPLETE bit */
166 writew_relaxed(0, &generic_comm_base
->status
);
169 ret
= mbox_send_message(pcc_channel
, &cmd
);
171 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
177 * For READs we need to ensure the cmd completed to ensure
178 * the ensuing read()s can proceed. For WRITEs we dont care
179 * because the actual write()s are done before coming here
180 * and the next READ or WRITE will check if the channel
181 * is busy/free at the entry of this call.
183 * If Minimum Request Turnaround Time is non-zero, we need
184 * to record the completion time of both READ and WRITE
185 * command for proper handling of MRTT, so we need to check
186 * for pcc_mrtt in addition to CMD_READ
188 if (cmd
== CMD_READ
|| pcc_mrtt
) {
189 ret
= check_pcc_chan();
191 last_cmd_cmpl_time
= ktime_get();
194 mbox_client_txdone(pcc_channel
, ret
);
198 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
201 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
204 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
208 struct mbox_client cppc_mbox_cl
= {
209 .tx_done
= cppc_chan_tx_done
,
210 .knows_txdone
= true,
213 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
215 int result
= -EFAULT
;
216 acpi_status status
= AE_OK
;
217 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
218 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
219 struct acpi_buffer state
= {0, NULL
};
220 union acpi_object
*psd
= NULL
;
221 struct acpi_psd_package
*pdomain
;
223 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
, &buffer
,
225 if (ACPI_FAILURE(status
))
228 psd
= buffer
.pointer
;
229 if (!psd
|| psd
->package
.count
!= 1) {
230 pr_debug("Invalid _PSD data\n");
234 pdomain
= &(cpc_ptr
->domain_info
);
236 state
.length
= sizeof(struct acpi_psd_package
);
237 state
.pointer
= pdomain
;
239 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
241 if (ACPI_FAILURE(status
)) {
242 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
246 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
247 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
251 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
252 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
256 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
257 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
258 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
259 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
265 kfree(buffer
.pointer
);
270 * acpi_get_psd_map - Map the CPUs in a common freq domain.
271 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
273 * Return: 0 for success or negative value for err.
275 int acpi_get_psd_map(struct cpudata
**all_cpu_data
)
280 cpumask_var_t covered_cpus
;
281 struct cpudata
*pr
, *match_pr
;
282 struct acpi_psd_package
*pdomain
;
283 struct acpi_psd_package
*match_pdomain
;
284 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
286 if (!zalloc_cpumask_var(&covered_cpus
, GFP_KERNEL
))
290 * Now that we have _PSD data from all CPUs, lets setup P-state
293 for_each_possible_cpu(i
) {
294 pr
= all_cpu_data
[i
];
298 if (cpumask_test_cpu(i
, covered_cpus
))
301 cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
305 pdomain
= &(cpc_ptr
->domain_info
);
306 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
307 cpumask_set_cpu(i
, covered_cpus
);
308 if (pdomain
->num_processors
<= 1)
311 /* Validate the Domain info */
312 count_target
= pdomain
->num_processors
;
313 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
314 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
315 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
316 pr
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
317 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
318 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
320 for_each_possible_cpu(j
) {
324 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
328 match_pdomain
= &(match_cpc_ptr
->domain_info
);
329 if (match_pdomain
->domain
!= pdomain
->domain
)
332 /* Here i and j are in the same domain */
333 if (match_pdomain
->num_processors
!= count_target
) {
338 if (pdomain
->coord_type
!= match_pdomain
->coord_type
) {
343 cpumask_set_cpu(j
, covered_cpus
);
344 cpumask_set_cpu(j
, pr
->shared_cpu_map
);
347 for_each_possible_cpu(j
) {
351 match_pr
= all_cpu_data
[j
];
355 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
359 match_pdomain
= &(match_cpc_ptr
->domain_info
);
360 if (match_pdomain
->domain
!= pdomain
->domain
)
363 match_pr
->shared_type
= pr
->shared_type
;
364 cpumask_copy(match_pr
->shared_cpu_map
,
370 for_each_possible_cpu(i
) {
371 pr
= all_cpu_data
[i
];
375 /* Assume no coordination on any error parsing domain info */
377 cpumask_clear(pr
->shared_cpu_map
);
378 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
379 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
383 free_cpumask_var(covered_cpus
);
386 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
388 static int register_pcc_channel(int pcc_subspace_idx
)
390 struct acpi_pcct_hw_reduced
*cppc_ss
;
394 if (pcc_subspace_idx
>= 0) {
395 pcc_channel
= pcc_mbox_request_channel(&cppc_mbox_cl
,
398 if (IS_ERR(pcc_channel
)) {
399 pr_err("Failed to find PCC communication channel\n");
404 * The PCC mailbox controller driver should
405 * have parsed the PCCT (global table of all
406 * PCC channels) and stored pointers to the
407 * subspace communication region in con_priv.
409 cppc_ss
= pcc_channel
->con_priv
;
412 pr_err("No PCC subspace found for CPPC\n");
417 * This is the shared communication region
418 * for the OS and Platform to communicate over.
420 comm_base_addr
= cppc_ss
->base_address
;
421 len
= cppc_ss
->length
;
424 * cppc_ss->latency is just a Nominal value. In reality
425 * the remote processor could be much slower to reply.
426 * So add an arbitrary amount of wait on top of Nominal.
428 usecs_lat
= NUM_RETRIES
* cppc_ss
->latency
;
429 deadline
= ns_to_ktime(usecs_lat
* NSEC_PER_USEC
);
430 pcc_mrtt
= cppc_ss
->min_turnaround_time
;
431 pcc_mpar
= cppc_ss
->max_access_rate
;
433 pcc_comm_addr
= acpi_os_ioremap(comm_base_addr
, len
);
434 if (!pcc_comm_addr
) {
435 pr_err("Failed to ioremap PCC comm region mem\n");
439 /* Set flag so that we dont come here for each CPU. */
440 pcc_channel_acquired
= true;
447 * An example CPC table looks like the following.
449 * Name(_CPC, Package()
455 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
456 * // Highest Performance
457 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
458 * // Nominal Performance
459 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
460 * // Lowest Nonlinear Performance
461 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
462 * // Lowest Performance
463 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
464 * // Guaranteed Performance Register
465 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
466 * // Desired Performance Register
467 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
473 * Each Register() encodes how to access that specific register.
474 * e.g. a sample PCC entry has the following encoding:
478 * AddressSpaceKeyword
482 * //RegisterBitOffset
486 * //AccessSize (subspace ID)
493 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
494 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
496 * Return: 0 for success or negative value for err.
498 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
500 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
501 union acpi_object
*out_obj
, *cpc_obj
;
502 struct cpc_desc
*cpc_ptr
;
503 struct cpc_reg
*gas_t
;
504 acpi_handle handle
= pr
->handle
;
505 unsigned int num_ent
, i
, cpc_rev
;
509 /* Parse the ACPI _CPC table for this cpu. */
510 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
512 if (ACPI_FAILURE(status
)) {
517 out_obj
= (union acpi_object
*) output
.pointer
;
519 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
525 /* First entry is NumEntries. */
526 cpc_obj
= &out_obj
->package
.elements
[0];
527 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
528 num_ent
= cpc_obj
->integer
.value
;
530 pr_debug("Unexpected entry type(%d) for NumEntries\n",
535 /* Only support CPPCv2. Bail otherwise. */
536 if (num_ent
!= CPPC_NUM_ENT
) {
537 pr_debug("Firmware exports %d entries. Expected: %d\n",
538 num_ent
, CPPC_NUM_ENT
);
542 /* Second entry should be revision. */
543 cpc_obj
= &out_obj
->package
.elements
[1];
544 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
545 cpc_rev
= cpc_obj
->integer
.value
;
547 pr_debug("Unexpected entry type(%d) for Revision\n",
552 if (cpc_rev
!= CPPC_REV
) {
553 pr_debug("Firmware exports revision:%d. Expected:%d\n",
558 /* Iterate through remaining entries in _CPC */
559 for (i
= 2; i
< num_ent
; i
++) {
560 cpc_obj
= &out_obj
->package
.elements
[i
];
562 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
563 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
564 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
565 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
566 gas_t
= (struct cpc_reg
*)
567 cpc_obj
->buffer
.pointer
;
570 * The PCC Subspace index is encoded inside
571 * the CPC table entries. The same PCC index
572 * will be used for all the PCC entries,
573 * so extract it only once.
575 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
576 if (pcc_subspace_idx
< 0)
577 pcc_subspace_idx
= gas_t
->access_width
;
578 else if (pcc_subspace_idx
!= gas_t
->access_width
) {
579 pr_debug("Mismatched PCC ids.\n");
582 } else if (gas_t
->space_id
!= ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
583 /* Support only PCC and SYS MEM type regs */
584 pr_debug("Unsupported register type: %d\n", gas_t
->space_id
);
588 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
589 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
591 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i
, pr
->id
);
595 /* Store CPU Logical ID */
596 cpc_ptr
->cpu_id
= pr
->id
;
598 /* Plug it into this CPUs CPC descriptor. */
599 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
601 /* Parse PSD data for this CPU */
602 ret
= acpi_get_psd(cpc_ptr
, handle
);
606 /* Register PCC channel once for all CPUs. */
607 if (!pcc_channel_acquired
) {
608 ret
= register_pcc_channel(pcc_subspace_idx
);
613 /* Everything looks okay */
614 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
616 kfree(output
.pointer
);
623 kfree(output
.pointer
);
626 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
629 * acpi_cppc_processor_exit - Cleanup CPC structs.
630 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
634 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
636 struct cpc_desc
*cpc_ptr
;
637 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
640 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
643 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
644 * as fast as possible. We have already mapped the PCC subspace during init, so
645 * we can directly write to it.
648 static int cpc_read(struct cpc_reg
*reg
, u64
*val
)
653 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
654 void __iomem
*vaddr
= GET_PCC_VADDR(reg
->address
);
656 switch (reg
->bit_width
) {
658 *val
= readb_relaxed(vaddr
);
661 *val
= readw_relaxed(vaddr
);
664 *val
= readl_relaxed(vaddr
);
667 *val
= readq_relaxed(vaddr
);
670 pr_debug("Error: Cannot read %u bit width from PCC\n",
675 ret_val
= acpi_os_read_memory((acpi_physical_address
)reg
->address
,
676 val
, reg
->bit_width
);
680 static int cpc_write(struct cpc_reg
*reg
, u64 val
)
684 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
685 void __iomem
*vaddr
= GET_PCC_VADDR(reg
->address
);
687 switch (reg
->bit_width
) {
689 writeb_relaxed(val
, vaddr
);
692 writew_relaxed(val
, vaddr
);
695 writel_relaxed(val
, vaddr
);
698 writeq_relaxed(val
, vaddr
);
701 pr_debug("Error: Cannot write %u bit width to PCC\n",
707 ret_val
= acpi_os_write_memory((acpi_physical_address
)reg
->address
,
708 val
, reg
->bit_width
);
713 * cppc_get_perf_caps - Get a CPUs performance capabilities.
714 * @cpunum: CPU from which to get capabilities info.
715 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
717 * Return: 0 for success with perf_caps populated else -ERRNO.
719 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
721 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
722 struct cpc_register_resource
*highest_reg
, *lowest_reg
, *ref_perf
,
724 u64 high
, low
, ref
, nom
;
728 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
732 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
733 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
734 ref_perf
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
735 nom_perf
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
737 spin_lock(&pcc_lock
);
739 /* Are any of the regs PCC ?*/
740 if ((highest_reg
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) ||
741 (lowest_reg
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) ||
742 (ref_perf
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) ||
743 (nom_perf
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
)) {
744 /* Ring doorbell once to update PCC subspace */
745 if (send_pcc_cmd(CMD_READ
) < 0) {
751 cpc_read(&highest_reg
->cpc_entry
.reg
, &high
);
752 perf_caps
->highest_perf
= high
;
754 cpc_read(&lowest_reg
->cpc_entry
.reg
, &low
);
755 perf_caps
->lowest_perf
= low
;
757 cpc_read(&ref_perf
->cpc_entry
.reg
, &ref
);
758 perf_caps
->reference_perf
= ref
;
760 cpc_read(&nom_perf
->cpc_entry
.reg
, &nom
);
761 perf_caps
->nominal_perf
= nom
;
764 perf_caps
->reference_perf
= perf_caps
->nominal_perf
;
766 if (!high
|| !low
|| !nom
)
770 spin_unlock(&pcc_lock
);
773 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
776 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
777 * @cpunum: CPU from which to read counters.
778 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
780 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
782 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
784 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
785 struct cpc_register_resource
*delivered_reg
, *reference_reg
;
786 u64 delivered
, reference
;
790 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
794 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
795 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
797 spin_lock(&pcc_lock
);
799 /* Are any of the regs PCC ?*/
800 if ((delivered_reg
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) ||
801 (reference_reg
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
)) {
802 /* Ring doorbell once to update PCC subspace */
803 if (send_pcc_cmd(CMD_READ
) < 0) {
809 cpc_read(&delivered_reg
->cpc_entry
.reg
, &delivered
);
810 cpc_read(&reference_reg
->cpc_entry
.reg
, &reference
);
812 if (!delivered
|| !reference
) {
817 perf_fb_ctrs
->delivered
= delivered
;
818 perf_fb_ctrs
->reference
= reference
;
820 perf_fb_ctrs
->delivered
-= perf_fb_ctrs
->prev_delivered
;
821 perf_fb_ctrs
->reference
-= perf_fb_ctrs
->prev_reference
;
823 perf_fb_ctrs
->prev_delivered
= delivered
;
824 perf_fb_ctrs
->prev_reference
= reference
;
827 spin_unlock(&pcc_lock
);
830 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
833 * cppc_set_perf - Set a CPUs performance controls.
834 * @cpu: CPU for which to set performance controls.
835 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
837 * Return: 0 for success, -ERRNO otherwise.
839 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
841 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
842 struct cpc_register_resource
*desired_reg
;
846 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
850 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
852 spin_lock(&pcc_lock
);
854 /* If this is PCC reg, check if channel is free before writing */
855 if (desired_reg
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
856 ret
= check_pcc_chan();
862 * Skip writing MIN/MAX until Linux knows how to come up with
865 cpc_write(&desired_reg
->cpc_entry
.reg
, perf_ctrls
->desired_perf
);
867 /* Is this a PCC reg ?*/
868 if (desired_reg
->cpc_entry
.reg
.space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
869 /* Ring doorbell so Remote can get our perf request. */
870 if (send_pcc_cmd(CMD_WRITE
) < 0)
874 spin_unlock(&pcc_lock
);
878 EXPORT_SYMBOL_GPL(cppc_set_perf
);