2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * There are three ways that this I2C controller can be driven:
12 * - Raw control of the SDA and SCK signals.
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/slab.h>
86 #include <linux/timer.h>
88 /* Register offsets */
90 #define SCB_STATUS_REG 0x00
91 #define SCB_OVERRIDE_REG 0x04
92 #define SCB_READ_ADDR_REG 0x08
93 #define SCB_READ_COUNT_REG 0x0c
94 #define SCB_WRITE_ADDR_REG 0x10
95 #define SCB_READ_DATA_REG 0x14
96 #define SCB_WRITE_DATA_REG 0x18
97 #define SCB_FIFO_STATUS_REG 0x1c
98 #define SCB_CONTROL_SOFT_RESET 0x1f
99 #define SCB_CLK_SET_REG 0x3c
100 #define SCB_INT_STATUS_REG 0x40
101 #define SCB_INT_CLEAR_REG 0x44
102 #define SCB_INT_MASK_REG 0x48
103 #define SCB_CONTROL_REG 0x4c
104 #define SCB_TIME_TPL_REG 0x50
105 #define SCB_TIME_TPH_REG 0x54
106 #define SCB_TIME_TP2S_REG 0x58
107 #define SCB_TIME_TBI_REG 0x60
108 #define SCB_TIME_TSL_REG 0x64
109 #define SCB_TIME_TDL_REG 0x68
110 #define SCB_TIME_TSDL_REG 0x6c
111 #define SCB_TIME_TSDH_REG 0x70
112 #define SCB_READ_XADDR_REG 0x74
113 #define SCB_WRITE_XADDR_REG 0x78
114 #define SCB_WRITE_COUNT_REG 0x7c
115 #define SCB_CORE_REV_REG 0x80
116 #define SCB_TIME_TCKH_REG 0x84
117 #define SCB_TIME_TCKL_REG 0x88
118 #define SCB_FIFO_FLUSH_REG 0x8c
119 #define SCB_READ_FIFO_REG 0x94
120 #define SCB_CLEAR_REG 0x98
122 /* SCB_CONTROL_REG bits */
124 #define SCB_CONTROL_CLK_ENABLE 0x1e0
125 #define SCB_CONTROL_TRANSACTION_HALT 0x200
127 #define FIFO_READ_FULL BIT(0)
128 #define FIFO_READ_EMPTY BIT(1)
129 #define FIFO_WRITE_FULL BIT(2)
130 #define FIFO_WRITE_EMPTY BIT(3)
132 /* SCB_CLK_SET_REG bits */
133 #define SCB_FILT_DISABLE BIT(31)
134 #define SCB_FILT_BYPASS BIT(30)
135 #define SCB_FILT_INC_MASK 0x7f
136 #define SCB_FILT_INC_SHIFT 16
137 #define SCB_INC_MASK 0x7f
138 #define SCB_INC_SHIFT 8
140 /* SCB_INT_*_REG bits */
142 #define INT_BUS_INACTIVE BIT(0)
143 #define INT_UNEXPECTED_START BIT(1)
144 #define INT_SCLK_LOW_TIMEOUT BIT(2)
145 #define INT_SDAT_LOW_TIMEOUT BIT(3)
146 #define INT_WRITE_ACK_ERR BIT(4)
147 #define INT_ADDR_ACK_ERR BIT(5)
148 #define INT_FIFO_FULL BIT(9)
149 #define INT_FIFO_FILLING BIT(10)
150 #define INT_FIFO_EMPTY BIT(11)
151 #define INT_FIFO_EMPTYING BIT(12)
152 #define INT_TRANSACTION_DONE BIT(15)
153 #define INT_SLAVE_EVENT BIT(16)
154 #define INT_MASTER_HALTED BIT(17)
155 #define INT_TIMING BIT(18)
156 #define INT_STOP_DETECTED BIT(19)
158 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
160 /* Level interrupts need clearing after handling instead of before */
161 #define INT_LEVEL 0x01e00
163 /* Don't allow any interrupts while the clock may be off */
164 #define INT_ENABLE_MASK_INACTIVE 0x00000
166 /* Interrupt masks for the different driver modes */
168 #define INT_ENABLE_MASK_RAW INT_TIMING
170 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
175 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
177 INT_WRITE_ACK_ERR | \
181 INT_MASTER_HALTED | \
184 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
188 /* SCB_STATUS_REG fields */
190 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
191 #define LINESTAT_SCLK_EN BIT(1)
192 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
193 #define LINESTAT_SDAT_EN BIT(3)
194 #define LINESTAT_DET_START_STATUS BIT(4)
195 #define LINESTAT_DET_STOP_STATUS BIT(5)
196 #define LINESTAT_DET_ACK_STATUS BIT(6)
197 #define LINESTAT_DET_NACK_STATUS BIT(7)
198 #define LINESTAT_BUS_IDLE BIT(8)
199 #define LINESTAT_T_DONE_STATUS BIT(9)
200 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
201 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
202 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
203 #define LINESTAT_START_BIT_DET BIT(13)
204 #define LINESTAT_STOP_BIT_DET BIT(14)
205 #define LINESTAT_ACK_DET BIT(15)
206 #define LINESTAT_NACK_DET BIT(16)
207 #define LINESTAT_INPUT_HELD_V BIT(17)
208 #define LINESTAT_ABORT_DET BIT(18)
209 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
210 #define LINESTAT_INPUT_DATA 0xff000000
211 #define LINESTAT_INPUT_DATA_SHIFT 24
213 #define LINESTAT_CLEAR_SHIFT 13
214 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
216 /* SCB_OVERRIDE_REG fields */
218 #define OVERRIDE_SCLK_OVR BIT(0)
219 #define OVERRIDE_SCLKEN_OVR BIT(1)
220 #define OVERRIDE_SDAT_OVR BIT(2)
221 #define OVERRIDE_SDATEN_OVR BIT(3)
222 #define OVERRIDE_MASTER BIT(9)
223 #define OVERRIDE_LINE_OVR_EN BIT(10)
224 #define OVERRIDE_DIRECT BIT(11)
225 #define OVERRIDE_CMD_SHIFT 4
226 #define OVERRIDE_CMD_MASK 0x1f
227 #define OVERRIDE_DATA_SHIFT 24
229 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
231 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
232 OVERRIDE_SCLKEN_OVR | \
234 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
236 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
237 OVERRIDE_SDATEN_OVR | \
240 /* OVERRIDE_CMD values */
242 #define CMD_PAUSE 0x00
243 #define CMD_GEN_DATA 0x01
244 #define CMD_GEN_START 0x02
245 #define CMD_GEN_STOP 0x03
246 #define CMD_GEN_ACK 0x04
247 #define CMD_GEN_NACK 0x05
248 #define CMD_RET_DATA 0x08
249 #define CMD_RET_ACK 0x09
251 /* Fixed timing values */
253 #define TIMEOUT_TBI 0x0
254 #define TIMEOUT_TSL 0xffff
255 #define TIMEOUT_TDL 0x0
257 /* Transaction timeout */
259 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
262 * Worst incs are 1 (innacurate) and 16*256 (irregular).
263 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
264 * in the middle of the valid range (0-127).
266 #define SCB_OPT_INC 64
268 /* Setup the clock enable filtering for 25 ns */
269 #define SCB_FILT_GLITCH 25
272 * Bits to return from interrupt handler functions for different modes.
273 * This delays completion until we've finished with the registers, so that the
274 * function waiting for completion can safely disable the clock to save power.
276 #define ISR_COMPLETE_M BIT(31)
277 #define ISR_FATAL_M BIT(30)
278 #define ISR_WAITSTOP BIT(29)
279 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
280 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
281 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings
{
297 unsigned int max_bitrate
;
298 unsigned int tckh
, tckl
, tsdh
, tsdl
;
299 unsigned int tp2s
, tpl
, tph
;
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings
[] = {
307 .max_bitrate
= 100000,
319 .max_bitrate
= 400000,
331 static u8 img_i2c_reset_seq
[] = { CMD_GEN_START
,
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq
[] = { CMD_GEN_STOP
,
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode
[] = {
343 [MODE_INACTIVE
] = INT_ENABLE_MASK_INACTIVE
,
344 [MODE_RAW
] = INT_ENABLE_MASK_RAW
,
345 [MODE_ATOMIC
] = INT_ENABLE_MASK_ATOMIC
,
346 [MODE_AUTOMATIC
] = INT_ENABLE_MASK_AUTOMATIC
,
347 [MODE_SEQUENCE
] = INT_ENABLE_MASK_ATOMIC
,
349 [MODE_WAITSTOP
] = INT_ENABLE_MASK_WAITSTOP
,
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names
[] = {
355 [CMD_PAUSE
] = "PAUSE",
356 [CMD_GEN_DATA
] = "GEN_DATA",
357 [CMD_GEN_START
] = "GEN_START",
358 [CMD_GEN_STOP
] = "GEN_STOP",
359 [CMD_GEN_ACK
] = "GEN_ACK",
360 [CMD_GEN_NACK
] = "GEN_NACK",
361 [CMD_RET_DATA
] = "RET_DATA",
362 [CMD_RET_ACK
] = "RET_ACK",
366 struct i2c_adapter adap
;
371 * The scb core clock is used to get the input frequency, and to disable
372 * it after every set of transactions to save some power.
374 struct clk
*scb_clk
, *sys_clk
;
375 unsigned int bitrate
;
376 bool need_wr_rd_fence
;
379 struct completion msg_complete
;
380 spinlock_t lock
; /* lock before doing anything with the state */
383 /* After the last transaction, wait for a stop bit */
387 enum img_i2c_mode mode
;
388 u32 int_enable
; /* depends on mode */
389 u32 line_status
; /* line status over command */
392 * To avoid slave event interrupts in automatic mode, use a timer to
393 * poll the abort condition if we don't get an interrupt for too long.
395 struct timer_list check_timer
;
398 /* atomic mode state */
404 /* Sequence: either reset or stop. See img_i2c_sequence. */
408 unsigned int raw_timeout
;
411 static void img_i2c_writel(struct img_i2c
*i2c
, u32 offset
, u32 value
)
413 writel(value
, i2c
->base
+ offset
);
416 static u32
img_i2c_readl(struct img_i2c
*i2c
, u32 offset
)
418 return readl(i2c
->base
+ offset
);
422 * The code to read from the master read fifo, and write to the master
423 * write fifo, checks a bit in an SCB register before every byte to
424 * ensure that the fifo is not full (write fifo) or empty (read fifo).
425 * Due to clock domain crossing inside the SCB block the updated value
426 * of this bit is only visible after 2 cycles.
428 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
429 * revision register), and it's called after reading from or writing to the
430 * fifos to ensure that subsequent reads of the fifo status bits do not read
433 static void img_i2c_wr_rd_fence(struct img_i2c
*i2c
)
435 if (i2c
->need_wr_rd_fence
) {
436 img_i2c_writel(i2c
, SCB_CORE_REV_REG
, 0);
437 img_i2c_writel(i2c
, SCB_CORE_REV_REG
, 0);
441 static void img_i2c_switch_mode(struct img_i2c
*i2c
, enum img_i2c_mode mode
)
444 i2c
->int_enable
= img_i2c_int_enable_by_mode
[mode
];
445 i2c
->line_status
= 0;
448 static void img_i2c_raw_op(struct img_i2c
*i2c
)
450 i2c
->raw_timeout
= 0;
451 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
,
452 OVERRIDE_SCLKEN_OVR
|
453 OVERRIDE_SDATEN_OVR
|
455 OVERRIDE_LINE_OVR_EN
|
457 ((i2c
->at_cur_cmd
& OVERRIDE_CMD_MASK
) << OVERRIDE_CMD_SHIFT
) |
458 (i2c
->at_cur_data
<< OVERRIDE_DATA_SHIFT
));
461 static const char *img_i2c_atomic_op_name(unsigned int cmd
)
463 if (unlikely(cmd
>= ARRAY_SIZE(img_i2c_atomic_cmd_names
)))
465 return img_i2c_atomic_cmd_names
[cmd
];
468 /* Send a single atomic mode command to the hardware */
469 static void img_i2c_atomic_op(struct img_i2c
*i2c
, int cmd
, u8 data
)
471 i2c
->at_cur_cmd
= cmd
;
472 i2c
->at_cur_data
= data
;
474 /* work around lack of data setup time when generating data */
475 if (cmd
== CMD_GEN_DATA
&& i2c
->mode
== MODE_ATOMIC
) {
476 u32 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
478 if (line_status
& LINESTAT_SDAT_LINE_STATUS
&& !(data
& 0x80)) {
479 /* hold the data line down for a moment */
480 img_i2c_switch_mode(i2c
, MODE_RAW
);
486 dev_dbg(i2c
->adap
.dev
.parent
,
487 "atomic cmd=%s (%d) data=%#x\n",
488 img_i2c_atomic_op_name(cmd
), cmd
, data
);
489 i2c
->at_t_done
= (cmd
== CMD_RET_DATA
|| cmd
== CMD_RET_ACK
);
490 i2c
->at_slave_event
= false;
491 i2c
->line_status
= 0;
493 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
,
494 ((cmd
& OVERRIDE_CMD_MASK
) << OVERRIDE_CMD_SHIFT
) |
497 (data
<< OVERRIDE_DATA_SHIFT
));
500 /* Start a transaction in atomic mode */
501 static void img_i2c_atomic_start(struct img_i2c
*i2c
)
503 img_i2c_switch_mode(i2c
, MODE_ATOMIC
);
504 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
505 img_i2c_atomic_op(i2c
, CMD_GEN_START
, 0x00);
508 static void img_i2c_soft_reset(struct img_i2c
*i2c
)
511 img_i2c_writel(i2c
, SCB_CONTROL_REG
, 0);
512 img_i2c_writel(i2c
, SCB_CONTROL_REG
,
513 SCB_CONTROL_CLK_ENABLE
| SCB_CONTROL_SOFT_RESET
);
517 * Enable or release transaction halt for control of repeated starts.
518 * In version 3.3 of the IP when transaction halt is set, an interrupt
519 * will be generated after each byte of a transfer instead of after
520 * every transfer but before the stop bit.
521 * Due to this behaviour we have to be careful that every time we
522 * release the transaction halt we have to re-enable it straight away
523 * so that we only process a single byte, not doing so will result in
524 * all remaining bytes been processed and a stop bit being issued,
525 * which will prevent us having a repeated start.
527 static void img_i2c_transaction_halt(struct img_i2c
*i2c
, bool t_halt
)
531 if (i2c
->t_halt
== t_halt
)
533 i2c
->t_halt
= t_halt
;
534 val
= img_i2c_readl(i2c
, SCB_CONTROL_REG
);
536 val
|= SCB_CONTROL_TRANSACTION_HALT
;
538 val
&= ~SCB_CONTROL_TRANSACTION_HALT
;
539 img_i2c_writel(i2c
, SCB_CONTROL_REG
, val
);
542 /* Drain data from the FIFO into the buffer (automatic mode) */
543 static void img_i2c_read_fifo(struct img_i2c
*i2c
)
545 while (i2c
->msg
.len
) {
549 img_i2c_wr_rd_fence(i2c
);
550 fifo_status
= img_i2c_readl(i2c
, SCB_FIFO_STATUS_REG
);
551 if (fifo_status
& FIFO_READ_EMPTY
)
554 data
= img_i2c_readl(i2c
, SCB_READ_DATA_REG
);
555 *i2c
->msg
.buf
= data
;
557 img_i2c_writel(i2c
, SCB_READ_FIFO_REG
, 0xff);
563 /* Fill the FIFO with data from the buffer (automatic mode) */
564 static void img_i2c_write_fifo(struct img_i2c
*i2c
)
566 while (i2c
->msg
.len
) {
569 img_i2c_wr_rd_fence(i2c
);
570 fifo_status
= img_i2c_readl(i2c
, SCB_FIFO_STATUS_REG
);
571 if (fifo_status
& FIFO_WRITE_FULL
)
574 img_i2c_writel(i2c
, SCB_WRITE_DATA_REG
, *i2c
->msg
.buf
);
579 /* Disable fifo emptying interrupt if nothing more to write */
581 i2c
->int_enable
&= ~INT_FIFO_EMPTYING
;
584 /* Start a read transaction in automatic mode */
585 static void img_i2c_read(struct img_i2c
*i2c
)
587 img_i2c_switch_mode(i2c
, MODE_AUTOMATIC
);
589 i2c
->int_enable
|= INT_SLAVE_EVENT
;
591 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
592 img_i2c_writel(i2c
, SCB_READ_ADDR_REG
, i2c
->msg
.addr
);
593 img_i2c_writel(i2c
, SCB_READ_COUNT_REG
, i2c
->msg
.len
);
595 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
598 /* Start a write transaction in automatic mode */
599 static void img_i2c_write(struct img_i2c
*i2c
)
601 img_i2c_switch_mode(i2c
, MODE_AUTOMATIC
);
603 i2c
->int_enable
|= INT_SLAVE_EVENT
;
605 img_i2c_writel(i2c
, SCB_WRITE_ADDR_REG
, i2c
->msg
.addr
);
606 img_i2c_writel(i2c
, SCB_WRITE_COUNT_REG
, i2c
->msg
.len
);
608 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
609 img_i2c_write_fifo(i2c
);
611 /* img_i2c_write_fifo() may modify int_enable */
612 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
616 * Indicate that the transaction is complete. This is called from the
617 * ISR to wake up the waiting thread, after which the ISR must not
618 * access any more SCB registers.
620 static void img_i2c_complete_transaction(struct img_i2c
*i2c
, int status
)
622 img_i2c_switch_mode(i2c
, MODE_INACTIVE
);
624 i2c
->msg_status
= status
;
625 img_i2c_transaction_halt(i2c
, false);
627 complete(&i2c
->msg_complete
);
630 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c
*i2c
,
631 u32 int_status
, u32 line_status
)
633 /* Stay in raw mode for this, so we don't just loop infinitely */
634 img_i2c_atomic_op(i2c
, i2c
->at_cur_cmd
, i2c
->at_cur_data
);
635 img_i2c_switch_mode(i2c
, MODE_ATOMIC
);
639 static unsigned int img_i2c_raw(struct img_i2c
*i2c
, u32 int_status
,
642 if (int_status
& INT_TIMING
) {
643 if (i2c
->raw_timeout
== 0)
644 return img_i2c_raw_atomic_delay_handler(i2c
,
645 int_status
, line_status
);
651 static unsigned int img_i2c_sequence(struct img_i2c
*i2c
, u32 int_status
)
653 static const unsigned int continue_bits
[] = {
654 [CMD_GEN_START
] = LINESTAT_START_BIT_DET
,
655 [CMD_GEN_DATA
] = LINESTAT_INPUT_HELD_V
,
656 [CMD_RET_ACK
] = LINESTAT_ACK_DET
| LINESTAT_NACK_DET
,
657 [CMD_RET_DATA
] = LINESTAT_INPUT_HELD_V
,
658 [CMD_GEN_STOP
] = LINESTAT_STOP_BIT_DET
,
663 if (int_status
& INT_SLAVE_EVENT
)
664 i2c
->at_slave_event
= true;
665 if (int_status
& INT_TRANSACTION_DONE
)
666 i2c
->at_t_done
= true;
668 if (!i2c
->at_slave_event
|| !i2c
->at_t_done
)
671 /* wait if no continue bits are set */
672 if (i2c
->at_cur_cmd
>= 0 &&
673 i2c
->at_cur_cmd
< ARRAY_SIZE(continue_bits
)) {
674 unsigned int cont_bits
= continue_bits
[i2c
->at_cur_cmd
];
677 cont_bits
|= LINESTAT_ABORT_DET
;
678 if (!(i2c
->line_status
& cont_bits
))
683 /* follow the sequence of commands in i2c->seq */
684 next_cmd
= *i2c
->seq
;
687 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
, 0);
688 return ISR_COMPLETE(0);
690 /* when generating data, the next byte is the data */
691 if (next_cmd
== CMD_GEN_DATA
) {
693 next_data
= *i2c
->seq
;
696 img_i2c_atomic_op(i2c
, next_cmd
, next_data
);
701 static void img_i2c_reset_start(struct img_i2c
*i2c
)
703 /* Initiate the magic dance */
704 img_i2c_switch_mode(i2c
, MODE_SEQUENCE
);
705 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
706 i2c
->seq
= img_i2c_reset_seq
;
707 i2c
->at_slave_event
= true;
708 i2c
->at_t_done
= true;
709 i2c
->at_cur_cmd
= -1;
711 /* img_i2c_reset_seq isn't empty so the following won't fail */
712 img_i2c_sequence(i2c
, 0);
715 static void img_i2c_stop_start(struct img_i2c
*i2c
)
717 /* Initiate a stop bit sequence */
718 img_i2c_switch_mode(i2c
, MODE_SEQUENCE
);
719 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
720 i2c
->seq
= img_i2c_stop_seq
;
721 i2c
->at_slave_event
= true;
722 i2c
->at_t_done
= true;
723 i2c
->at_cur_cmd
= -1;
725 /* img_i2c_stop_seq isn't empty so the following won't fail */
726 img_i2c_sequence(i2c
, 0);
729 static unsigned int img_i2c_atomic(struct img_i2c
*i2c
,
736 if (int_status
& INT_SLAVE_EVENT
)
737 i2c
->at_slave_event
= true;
738 if (int_status
& INT_TRANSACTION_DONE
)
739 i2c
->at_t_done
= true;
741 if (!i2c
->at_slave_event
|| !i2c
->at_t_done
)
742 goto next_atomic_cmd
;
743 if (i2c
->line_status
& LINESTAT_ABORT_DET
) {
744 dev_dbg(i2c
->adap
.dev
.parent
, "abort condition detected\n");
745 next_cmd
= CMD_GEN_STOP
;
746 i2c
->msg_status
= -EIO
;
747 goto next_atomic_cmd
;
750 /* i2c->at_cur_cmd may have completed */
751 switch (i2c
->at_cur_cmd
) {
753 next_cmd
= CMD_GEN_DATA
;
754 next_data
= (i2c
->msg
.addr
<< 1);
755 if (i2c
->msg
.flags
& I2C_M_RD
)
759 if (i2c
->line_status
& LINESTAT_INPUT_HELD_V
)
760 next_cmd
= CMD_RET_ACK
;
763 if (i2c
->line_status
& LINESTAT_ACK_DET
||
764 (i2c
->line_status
& LINESTAT_NACK_DET
&&
765 i2c
->msg
.flags
& I2C_M_IGNORE_NAK
)) {
766 if (i2c
->msg
.len
== 0) {
767 next_cmd
= CMD_GEN_STOP
;
768 } else if (i2c
->msg
.flags
& I2C_M_RD
) {
769 next_cmd
= CMD_RET_DATA
;
771 next_cmd
= CMD_GEN_DATA
;
772 next_data
= *i2c
->msg
.buf
;
776 } else if (i2c
->line_status
& LINESTAT_NACK_DET
) {
777 i2c
->msg_status
= -EIO
;
778 next_cmd
= CMD_GEN_STOP
;
782 if (i2c
->line_status
& LINESTAT_INPUT_HELD_V
) {
783 *i2c
->msg
.buf
= (i2c
->line_status
&
785 >> LINESTAT_INPUT_DATA_SHIFT
;
789 next_cmd
= CMD_GEN_ACK
;
791 next_cmd
= CMD_GEN_NACK
;
795 if (i2c
->line_status
& LINESTAT_ACK_DET
) {
796 next_cmd
= CMD_RET_DATA
;
798 i2c
->msg_status
= -EIO
;
799 next_cmd
= CMD_GEN_STOP
;
803 next_cmd
= CMD_GEN_STOP
;
806 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
, 0);
807 return ISR_COMPLETE(0);
809 dev_err(i2c
->adap
.dev
.parent
, "bad atomic command %d\n",
811 i2c
->msg_status
= -EIO
;
812 next_cmd
= CMD_GEN_STOP
;
817 if (next_cmd
!= -1) {
818 /* don't actually stop unless we're the last transaction */
819 if (next_cmd
== CMD_GEN_STOP
&& !i2c
->msg_status
&&
821 return ISR_COMPLETE(0);
822 img_i2c_atomic_op(i2c
, next_cmd
, next_data
);
828 * Timer function to check if something has gone wrong in automatic mode (so we
829 * don't have to handle so many interrupts just to catch an exception).
831 static void img_i2c_check_timer(unsigned long arg
)
833 struct img_i2c
*i2c
= (struct img_i2c
*)arg
;
835 unsigned int line_status
;
837 spin_lock_irqsave(&i2c
->lock
, flags
);
838 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
840 /* check for an abort condition */
841 if (line_status
& LINESTAT_ABORT_DET
) {
842 dev_dbg(i2c
->adap
.dev
.parent
,
843 "abort condition detected by check timer\n");
844 /* enable slave event interrupt mask to trigger irq */
845 img_i2c_writel(i2c
, SCB_INT_MASK_REG
,
846 i2c
->int_enable
| INT_SLAVE_EVENT
);
849 spin_unlock_irqrestore(&i2c
->lock
, flags
);
852 static unsigned int img_i2c_auto(struct img_i2c
*i2c
,
853 unsigned int int_status
,
854 unsigned int line_status
)
856 if (int_status
& (INT_WRITE_ACK_ERR
| INT_ADDR_ACK_ERR
))
857 return ISR_COMPLETE(EIO
);
859 if (line_status
& LINESTAT_ABORT_DET
) {
860 dev_dbg(i2c
->adap
.dev
.parent
, "abort condition detected\n");
861 /* empty the read fifo */
862 if ((i2c
->msg
.flags
& I2C_M_RD
) &&
863 (int_status
& INT_FIFO_FULL_FILLING
))
864 img_i2c_read_fifo(i2c
);
865 /* use atomic mode and try to force a stop bit */
866 i2c
->msg_status
= -EIO
;
867 img_i2c_stop_start(i2c
);
871 /* Enable transaction halt on start bit */
872 if (!i2c
->last_msg
&& line_status
& LINESTAT_START_BIT_DET
) {
873 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
874 /* we're no longer interested in the slave event */
875 i2c
->int_enable
&= ~INT_SLAVE_EVENT
;
878 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
880 if (int_status
& INT_STOP_DETECTED
) {
881 /* Drain remaining data in FIFO and complete transaction */
882 if (i2c
->msg
.flags
& I2C_M_RD
)
883 img_i2c_read_fifo(i2c
);
884 return ISR_COMPLETE(0);
887 if (i2c
->msg
.flags
& I2C_M_RD
) {
888 if (int_status
& (INT_FIFO_FULL_FILLING
| INT_MASTER_HALTED
)) {
889 img_i2c_read_fifo(i2c
);
890 if (i2c
->msg
.len
== 0)
894 if (int_status
& (INT_FIFO_EMPTY
| INT_MASTER_HALTED
)) {
895 if ((int_status
& INT_FIFO_EMPTY
) &&
898 img_i2c_write_fifo(i2c
);
901 if (int_status
& INT_MASTER_HALTED
) {
903 * Release and then enable transaction halt, to
904 * allow only a single byte to proceed.
906 img_i2c_transaction_halt(i2c
, false);
907 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
913 static irqreturn_t
img_i2c_isr(int irq
, void *dev_id
)
915 struct img_i2c
*i2c
= (struct img_i2c
*)dev_id
;
916 u32 int_status
, line_status
;
917 /* We handle transaction completion AFTER accessing registers */
920 /* Read interrupt status register. */
921 int_status
= img_i2c_readl(i2c
, SCB_INT_STATUS_REG
);
922 /* Clear detected interrupts. */
923 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, int_status
);
926 * Read line status and clear it until it actually is clear. We have
927 * to be careful not to lose any line status bits that get latched.
929 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
930 if (line_status
& LINESTAT_LATCHED
) {
931 img_i2c_writel(i2c
, SCB_CLEAR_REG
,
932 (line_status
& LINESTAT_LATCHED
)
933 >> LINESTAT_CLEAR_SHIFT
);
934 img_i2c_wr_rd_fence(i2c
);
937 spin_lock(&i2c
->lock
);
939 /* Keep track of line status bits received */
940 i2c
->line_status
&= ~LINESTAT_INPUT_DATA
;
941 i2c
->line_status
|= line_status
;
944 * Certain interrupts indicate that sclk low timeout is not
945 * a problem. If any of these are set, just continue.
947 if ((int_status
& INT_SCLK_LOW_TIMEOUT
) &&
948 !(int_status
& (INT_SLAVE_EVENT
|
951 dev_crit(i2c
->adap
.dev
.parent
,
952 "fatal: clock low timeout occurred %s addr 0x%02x\n",
953 (i2c
->msg
.flags
& I2C_M_RD
) ? "reading" : "writing",
955 hret
= ISR_FATAL(EIO
);
959 if (i2c
->mode
== MODE_ATOMIC
)
960 hret
= img_i2c_atomic(i2c
, int_status
, line_status
);
961 else if (i2c
->mode
== MODE_AUTOMATIC
)
962 hret
= img_i2c_auto(i2c
, int_status
, line_status
);
963 else if (i2c
->mode
== MODE_SEQUENCE
)
964 hret
= img_i2c_sequence(i2c
, int_status
);
965 else if (i2c
->mode
== MODE_WAITSTOP
&& (int_status
& INT_SLAVE_EVENT
) &&
966 (line_status
& LINESTAT_STOP_BIT_DET
))
967 hret
= ISR_COMPLETE(0);
968 else if (i2c
->mode
== MODE_RAW
)
969 hret
= img_i2c_raw(i2c
, int_status
, line_status
);
973 /* Clear detected level interrupts. */
974 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, int_status
& INT_LEVEL
);
977 if (hret
& ISR_WAITSTOP
) {
979 * Only wait for stop on last message.
980 * Also we may already have detected the stop bit.
982 if (!i2c
->last_msg
|| i2c
->line_status
& LINESTAT_STOP_BIT_DET
)
983 hret
= ISR_COMPLETE(0);
985 img_i2c_switch_mode(i2c
, MODE_WAITSTOP
);
988 /* now we've finished using regs, handle transaction completion */
989 if (hret
& ISR_COMPLETE_M
) {
990 int status
= -(hret
& ISR_STATUS_M
);
992 img_i2c_complete_transaction(i2c
, status
);
993 if (hret
& ISR_FATAL_M
)
994 img_i2c_switch_mode(i2c
, MODE_FATAL
);
997 /* Enable interrupts (int_enable may be altered by changing mode) */
998 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
1000 spin_unlock(&i2c
->lock
);
1005 /* Force a bus reset sequence and wait for it to complete */
1006 static int img_i2c_reset_bus(struct img_i2c
*i2c
)
1008 unsigned long flags
;
1009 unsigned long time_left
;
1011 spin_lock_irqsave(&i2c
->lock
, flags
);
1012 reinit_completion(&i2c
->msg_complete
);
1013 img_i2c_reset_start(i2c
);
1014 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1016 time_left
= wait_for_completion_timeout(&i2c
->msg_complete
,
1023 static int img_i2c_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msgs
,
1026 struct img_i2c
*i2c
= i2c_get_adapdata(adap
);
1027 bool atomic
= false;
1029 unsigned long time_left
;
1031 if (i2c
->mode
== MODE_SUSPEND
) {
1032 WARN(1, "refusing to service transaction in suspended state\n");
1036 if (i2c
->mode
== MODE_FATAL
)
1039 for (i
= 0; i
< num
; i
++) {
1041 * 0 byte reads are not possible because the slave could try
1042 * and pull the data line low, preventing a stop bit.
1044 if (!msgs
[i
].len
&& msgs
[i
].flags
& I2C_M_RD
)
1047 * 0 byte writes are possible and used for probing, but we
1048 * cannot do them in automatic mode, so use atomic mode
1051 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1055 (msgs
[i
].flags
& I2C_M_IGNORE_NAK
))
1059 ret
= clk_prepare_enable(i2c
->scb_clk
);
1063 for (i
= 0; i
< num
; i
++) {
1064 struct i2c_msg
*msg
= &msgs
[i
];
1065 unsigned long flags
;
1067 spin_lock_irqsave(&i2c
->lock
, flags
);
1070 * Make a copy of the message struct. We mustn't modify the
1071 * original or we'll confuse drivers and i2c-dev.
1074 i2c
->msg_status
= 0;
1077 * After the last message we must have waited for a stop bit.
1078 * Not waiting can cause problems when the clock is disabled
1079 * before the stop bit is sent, and the linux I2C interface
1080 * requires separate transfers not to joined with repeated
1083 i2c
->last_msg
= (i
== num
- 1);
1084 reinit_completion(&i2c
->msg_complete
);
1087 * Clear line status and all interrupts before starting a
1088 * transfer, as we may have unserviced interrupts from
1089 * previous transfers that might be handled in the context
1090 * of the new transfer.
1092 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, ~0);
1093 img_i2c_writel(i2c
, SCB_CLEAR_REG
, ~0);
1096 img_i2c_atomic_start(i2c
);
1099 * Enable transaction halt if not the last message in
1100 * the queue so that we can control repeated starts.
1102 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
1104 if (msg
->flags
& I2C_M_RD
)
1110 * Release and then enable transaction halt, to
1111 * allow only a single byte to proceed.
1112 * This doesn't have an effect on the initial transfer
1113 * but will allow the following transfers to start
1114 * processing if the previous transfer was marked as
1115 * complete while the i2c block was halted.
1117 img_i2c_transaction_halt(i2c
, false);
1118 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
1120 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1122 time_left
= wait_for_completion_timeout(&i2c
->msg_complete
,
1124 del_timer_sync(&i2c
->check_timer
);
1126 if (time_left
== 0) {
1127 dev_err(adap
->dev
.parent
, "i2c transfer timed out\n");
1128 i2c
->msg_status
= -ETIMEDOUT
;
1132 if (i2c
->msg_status
)
1136 clk_disable_unprepare(i2c
->scb_clk
);
1138 return i2c
->msg_status
? i2c
->msg_status
: num
;
1141 static u32
img_i2c_func(struct i2c_adapter
*adap
)
1143 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
1146 static const struct i2c_algorithm img_i2c_algo
= {
1147 .master_xfer
= img_i2c_xfer
,
1148 .functionality
= img_i2c_func
,
1151 static int img_i2c_init(struct img_i2c
*i2c
)
1153 unsigned int clk_khz
, bitrate_khz
, clk_period
, tckh
, tckl
, tsdh
;
1154 unsigned int i
, ret
, data
, prescale
, inc
, int_bitrate
, filt
;
1155 struct img_i2c_timings timing
;
1158 ret
= clk_prepare_enable(i2c
->scb_clk
);
1162 rev
= img_i2c_readl(i2c
, SCB_CORE_REV_REG
);
1163 if ((rev
& 0x00ffffff) < 0x00020200) {
1164 dev_info(i2c
->adap
.dev
.parent
,
1165 "Unknown hardware revision (%d.%d.%d.%d)\n",
1166 (rev
>> 24) & 0xff, (rev
>> 16) & 0xff,
1167 (rev
>> 8) & 0xff, rev
& 0xff);
1168 clk_disable_unprepare(i2c
->scb_clk
);
1172 /* Fencing enabled by default. */
1173 i2c
->need_wr_rd_fence
= true;
1175 /* Determine what mode we're in from the bitrate */
1176 timing
= timings
[0];
1177 for (i
= 0; i
< ARRAY_SIZE(timings
); i
++) {
1178 if (i2c
->bitrate
<= timings
[i
].max_bitrate
) {
1179 timing
= timings
[i
];
1183 if (i2c
->bitrate
> timings
[ARRAY_SIZE(timings
) - 1].max_bitrate
) {
1184 dev_warn(i2c
->adap
.dev
.parent
,
1185 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1187 timings
[ARRAY_SIZE(timings
) - 1].max_bitrate
);
1188 timing
= timings
[ARRAY_SIZE(timings
) - 1];
1189 i2c
->bitrate
= timing
.max_bitrate
;
1192 bitrate_khz
= i2c
->bitrate
/ 1000;
1193 clk_khz
= clk_get_rate(i2c
->scb_clk
) / 1000;
1195 /* Find the prescale that would give us that inc (approx delay = 0) */
1196 prescale
= SCB_OPT_INC
* clk_khz
/ (256 * 16 * bitrate_khz
);
1197 prescale
= clamp_t(unsigned int, prescale
, 1, 8);
1198 clk_khz
/= prescale
;
1200 /* Setup the clock increment value */
1201 inc
= (256 * 16 * bitrate_khz
) / clk_khz
;
1204 * The clock generation logic allows to filter glitches on the bus.
1205 * This filter is able to remove bus glitches shorter than 50ns.
1206 * If the clock enable rate is greater than 20 MHz, no filtering
1207 * is required, so we need to disable it.
1208 * If it's between the 20-40 MHz range, there's no need to divide
1209 * the clock to get a filter.
1211 if (clk_khz
< 20000) {
1212 filt
= SCB_FILT_DISABLE
;
1213 } else if (clk_khz
< 40000) {
1214 filt
= SCB_FILT_BYPASS
;
1216 /* Calculate filter clock */
1217 filt
= (64000 / ((clk_khz
/ 1000) * SCB_FILT_GLITCH
));
1219 /* Scale up if needed */
1220 if (64000 % ((clk_khz
/ 1000) * SCB_FILT_GLITCH
))
1223 if (filt
> SCB_FILT_INC_MASK
)
1224 filt
= SCB_FILT_INC_MASK
;
1226 filt
= (filt
& SCB_FILT_INC_MASK
) << SCB_FILT_INC_SHIFT
;
1228 data
= filt
| ((inc
& SCB_INC_MASK
) << SCB_INC_SHIFT
) | (prescale
- 1);
1229 img_i2c_writel(i2c
, SCB_CLK_SET_REG
, data
);
1231 /* Obtain the clock period of the fx16 clock in ns */
1232 clk_period
= (256 * 1000000) / (clk_khz
* inc
);
1234 /* Calculate the bitrate in terms of internal clock pulses */
1235 int_bitrate
= 1000000 / (bitrate_khz
* clk_period
);
1236 if ((1000000 % (bitrate_khz
* clk_period
)) >=
1237 ((bitrate_khz
* clk_period
) / 2))
1241 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1242 * values from there if they don't meet minimum timing requirements
1244 tckh
= int_bitrate
/ 2;
1245 tckl
= int_bitrate
- tckh
;
1247 /* Adjust TCKH and TCKL values */
1248 data
= DIV_ROUND_UP(timing
.tckl
, clk_period
);
1252 tckh
= int_bitrate
- tckl
;
1261 img_i2c_writel(i2c
, SCB_TIME_TCKH_REG
, tckh
);
1262 img_i2c_writel(i2c
, SCB_TIME_TCKL_REG
, tckl
);
1264 /* Setup TSDH value */
1265 tsdh
= DIV_ROUND_UP(timing
.tsdh
, clk_period
);
1271 img_i2c_writel(i2c
, SCB_TIME_TSDH_REG
, data
);
1273 /* This value is used later */
1276 /* Setup TPL value */
1277 data
= timing
.tpl
/ clk_period
;
1280 img_i2c_writel(i2c
, SCB_TIME_TPL_REG
, data
);
1282 /* Setup TPH value */
1283 data
= timing
.tph
/ clk_period
;
1286 img_i2c_writel(i2c
, SCB_TIME_TPH_REG
, data
);
1288 /* Setup TSDL value to TPL + TSDH + 2 */
1289 img_i2c_writel(i2c
, SCB_TIME_TSDL_REG
, data
+ tsdh
+ 2);
1291 /* Setup TP2S value */
1292 data
= timing
.tp2s
/ clk_period
;
1295 img_i2c_writel(i2c
, SCB_TIME_TP2S_REG
, data
);
1297 img_i2c_writel(i2c
, SCB_TIME_TBI_REG
, TIMEOUT_TBI
);
1298 img_i2c_writel(i2c
, SCB_TIME_TSL_REG
, TIMEOUT_TSL
);
1299 img_i2c_writel(i2c
, SCB_TIME_TDL_REG
, TIMEOUT_TDL
);
1301 /* Take module out of soft reset and enable clocks */
1302 img_i2c_soft_reset(i2c
);
1304 /* Disable all interrupts */
1305 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, 0);
1307 /* Clear all interrupts */
1308 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, ~0);
1310 /* Clear the scb_line_status events */
1311 img_i2c_writel(i2c
, SCB_CLEAR_REG
, ~0);
1313 /* Enable interrupts */
1314 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
1316 /* Perform a synchronous sequence to reset the bus */
1317 ret
= img_i2c_reset_bus(i2c
);
1319 clk_disable_unprepare(i2c
->scb_clk
);
1324 static int img_i2c_probe(struct platform_device
*pdev
)
1326 struct device_node
*node
= pdev
->dev
.of_node
;
1327 struct img_i2c
*i2c
;
1328 struct resource
*res
;
1332 i2c
= devm_kzalloc(&pdev
->dev
, sizeof(struct img_i2c
), GFP_KERNEL
);
1336 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1337 i2c
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1338 if (IS_ERR(i2c
->base
))
1339 return PTR_ERR(i2c
->base
);
1341 irq
= platform_get_irq(pdev
, 0);
1343 dev_err(&pdev
->dev
, "can't get irq number\n");
1347 i2c
->sys_clk
= devm_clk_get(&pdev
->dev
, "sys");
1348 if (IS_ERR(i2c
->sys_clk
)) {
1349 dev_err(&pdev
->dev
, "can't get system clock\n");
1350 return PTR_ERR(i2c
->sys_clk
);
1353 i2c
->scb_clk
= devm_clk_get(&pdev
->dev
, "scb");
1354 if (IS_ERR(i2c
->scb_clk
)) {
1355 dev_err(&pdev
->dev
, "can't get core clock\n");
1356 return PTR_ERR(i2c
->scb_clk
);
1359 ret
= devm_request_irq(&pdev
->dev
, irq
, img_i2c_isr
, 0,
1362 dev_err(&pdev
->dev
, "can't request irq %d\n", irq
);
1366 /* Set up the exception check timer */
1367 init_timer(&i2c
->check_timer
);
1368 i2c
->check_timer
.function
= img_i2c_check_timer
;
1369 i2c
->check_timer
.data
= (unsigned long)i2c
;
1371 i2c
->bitrate
= timings
[0].max_bitrate
;
1372 if (!of_property_read_u32(node
, "clock-frequency", &val
))
1375 i2c_set_adapdata(&i2c
->adap
, i2c
);
1376 i2c
->adap
.dev
.parent
= &pdev
->dev
;
1377 i2c
->adap
.dev
.of_node
= node
;
1378 i2c
->adap
.owner
= THIS_MODULE
;
1379 i2c
->adap
.algo
= &img_i2c_algo
;
1380 i2c
->adap
.retries
= 5;
1381 i2c
->adap
.nr
= pdev
->id
;
1382 snprintf(i2c
->adap
.name
, sizeof(i2c
->adap
.name
), "IMG SCB I2C");
1384 img_i2c_switch_mode(i2c
, MODE_INACTIVE
);
1385 spin_lock_init(&i2c
->lock
);
1386 init_completion(&i2c
->msg_complete
);
1388 platform_set_drvdata(pdev
, i2c
);
1390 ret
= clk_prepare_enable(i2c
->sys_clk
);
1394 ret
= img_i2c_init(i2c
);
1398 ret
= i2c_add_numbered_adapter(&i2c
->adap
);
1400 dev_err(&pdev
->dev
, "failed to add adapter\n");
1407 clk_disable_unprepare(i2c
->sys_clk
);
1411 static int img_i2c_remove(struct platform_device
*dev
)
1413 struct img_i2c
*i2c
= platform_get_drvdata(dev
);
1415 i2c_del_adapter(&i2c
->adap
);
1416 clk_disable_unprepare(i2c
->sys_clk
);
1421 #ifdef CONFIG_PM_SLEEP
1422 static int img_i2c_suspend(struct device
*dev
)
1424 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1426 img_i2c_switch_mode(i2c
, MODE_SUSPEND
);
1428 clk_disable_unprepare(i2c
->sys_clk
);
1433 static int img_i2c_resume(struct device
*dev
)
1435 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1438 ret
= clk_prepare_enable(i2c
->sys_clk
);
1446 #endif /* CONFIG_PM_SLEEP */
1448 static SIMPLE_DEV_PM_OPS(img_i2c_pm
, img_i2c_suspend
, img_i2c_resume
);
1450 static const struct of_device_id img_scb_i2c_match
[] = {
1451 { .compatible
= "img,scb-i2c" },
1454 MODULE_DEVICE_TABLE(of
, img_scb_i2c_match
);
1456 static struct platform_driver img_scb_i2c_driver
= {
1458 .name
= "img-i2c-scb",
1459 .of_match_table
= img_scb_i2c_match
,
1462 .probe
= img_i2c_probe
,
1463 .remove
= img_i2c_remove
,
1465 module_platform_driver(img_scb_i2c_driver
);
1467 MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1468 MODULE_DESCRIPTION("IMG host I2C driver");
1469 MODULE_LICENSE("GPL v2");