x86/boot: Rename overlapping memcpy() to memmove()
[linux/fpc-iii.git] / drivers / md / dm-bufio.c
blobcd77216beff166651c67b0881b747dcdd720c9e7
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
21 #define DM_MSG_PREFIX "bufio"
24 * Memory management policy:
25 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29 * dirty buffers.
31 #define DM_BUFIO_MIN_BUFFERS 8
33 #define DM_BUFIO_MEMORY_PERCENT 2
34 #define DM_BUFIO_VMALLOC_PERCENT 25
35 #define DM_BUFIO_WRITEBACK_PERCENT 75
38 * Check buffer ages in this interval (seconds)
40 #define DM_BUFIO_WORK_TIMER_SECS 30
43 * Free buffers when they are older than this (seconds)
45 #define DM_BUFIO_DEFAULT_AGE_SECS 300
48 * The nr of bytes of cached data to keep around.
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
53 * The number of bvec entries that are embedded directly in the buffer.
54 * If the chunk size is larger, dm-io is used to do the io.
56 #define DM_BUFIO_INLINE_VECS 16
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
66 * dm_buffer->list_mode
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
87 struct dm_bufio_client {
88 struct mutex lock;
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
102 struct dm_io_client *dm_io;
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
107 unsigned minimum_buffers;
109 struct rb_root buffer_tree;
110 wait_queue_head_t free_buffer_wait;
112 int async_write_error;
114 struct list_head client_list;
115 struct shrinker shrinker;
119 * Buffer state bits.
121 #define B_READING 0
122 #define B_WRITING 1
123 #define B_DIRTY 2
126 * Describes how the block was allocated:
127 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128 * See the comment at alloc_buffer_data.
130 enum data_mode {
131 DATA_MODE_SLAB = 0,
132 DATA_MODE_GET_FREE_PAGES = 1,
133 DATA_MODE_VMALLOC = 2,
134 DATA_MODE_LIMIT = 3
137 struct dm_buffer {
138 struct rb_node node;
139 struct list_head lru_list;
140 sector_t block;
141 void *data;
142 enum data_mode data_mode;
143 unsigned char list_mode; /* LIST_* */
144 unsigned hold_count;
145 int read_error;
146 int write_error;
147 unsigned long state;
148 unsigned long last_accessed;
149 struct dm_bufio_client *c;
150 struct list_head write_list;
151 struct bio bio;
152 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 struct stack_trace stack_trace;
156 unsigned long stack_entries[MAX_STACK];
157 #endif
160 /*----------------------------------------------------------------*/
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
167 unsigned ret = c->blocks_per_page_bits - 1;
169 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
171 return ret;
174 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
177 #define dm_bufio_in_request() (!!current->bio_list)
179 static void dm_bufio_lock(struct dm_bufio_client *c)
181 mutex_lock_nested(&c->lock, dm_bufio_in_request());
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
186 return mutex_trylock(&c->lock);
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
191 mutex_unlock(&c->lock);
195 * FIXME Move to sched.h?
197 #ifdef CONFIG_PREEMPT_VOLUNTARY
198 # define dm_bufio_cond_resched() \
199 do { \
200 if (unlikely(need_resched())) \
201 _cond_resched(); \
202 } while (0)
203 #else
204 # define dm_bufio_cond_resched() do { } while (0)
205 #endif
207 /*----------------------------------------------------------------*/
210 * Default cache size: available memory divided by the ratio.
212 static unsigned long dm_bufio_default_cache_size;
215 * Total cache size set by the user.
217 static unsigned long dm_bufio_cache_size;
220 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221 * at any time. If it disagrees, the user has changed cache size.
223 static unsigned long dm_bufio_cache_size_latch;
225 static DEFINE_SPINLOCK(param_spinlock);
228 * Buffers are freed after this timeout
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
239 /*----------------------------------------------------------------*/
242 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
244 static unsigned long dm_bufio_cache_size_per_client;
247 * The current number of clients.
249 static int dm_bufio_client_count;
252 * The list of all clients.
254 static LIST_HEAD(dm_bufio_all_clients);
257 * This mutex protects dm_bufio_cache_size_latch,
258 * dm_bufio_cache_size_per_client and dm_bufio_client_count
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
265 b->stack_trace.nr_entries = 0;
266 b->stack_trace.max_entries = MAX_STACK;
267 b->stack_trace.entries = b->stack_entries;
268 b->stack_trace.skip = 2;
269 save_stack_trace(&b->stack_trace);
271 #endif
273 /*----------------------------------------------------------------
274 * A red/black tree acts as an index for all the buffers.
275 *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
278 struct rb_node *n = c->buffer_tree.rb_node;
279 struct dm_buffer *b;
281 while (n) {
282 b = container_of(n, struct dm_buffer, node);
284 if (b->block == block)
285 return b;
287 n = (b->block < block) ? n->rb_left : n->rb_right;
290 return NULL;
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
295 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 struct dm_buffer *found;
298 while (*new) {
299 found = container_of(*new, struct dm_buffer, node);
301 if (found->block == b->block) {
302 BUG_ON(found != b);
303 return;
306 parent = *new;
307 new = (found->block < b->block) ?
308 &((*new)->rb_left) : &((*new)->rb_right);
311 rb_link_node(&b->node, parent, new);
312 rb_insert_color(&b->node, &c->buffer_tree);
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
317 rb_erase(&b->node, &c->buffer_tree);
320 /*----------------------------------------------------------------*/
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
324 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 &dm_bufio_allocated_kmem_cache,
326 &dm_bufio_allocated_get_free_pages,
327 &dm_bufio_allocated_vmalloc,
330 spin_lock(&param_spinlock);
332 *class_ptr[data_mode] += diff;
334 dm_bufio_current_allocated += diff;
336 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 dm_bufio_peak_allocated = dm_bufio_current_allocated;
339 spin_unlock(&param_spinlock);
343 * Change the number of clients and recalculate per-client limit.
345 static void __cache_size_refresh(void)
347 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 BUG_ON(dm_bufio_client_count < 0);
350 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
353 * Use default if set to 0 and report the actual cache size used.
355 if (!dm_bufio_cache_size_latch) {
356 (void)cmpxchg(&dm_bufio_cache_size, 0,
357 dm_bufio_default_cache_size);
358 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
361 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 (dm_bufio_client_count ? : 1);
366 * Allocating buffer data.
368 * Small buffers are allocated with kmem_cache, to use space optimally.
370 * For large buffers, we choose between get_free_pages and vmalloc.
371 * Each has advantages and disadvantages.
373 * __get_free_pages can randomly fail if the memory is fragmented.
374 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375 * as low as 128M) so using it for caching is not appropriate.
377 * If the allocation may fail we use __get_free_pages. Memory fragmentation
378 * won't have a fatal effect here, but it just causes flushes of some other
379 * buffers and more I/O will be performed. Don't use __get_free_pages if it
380 * always fails (i.e. order >= MAX_ORDER).
382 * If the allocation shouldn't fail we use __vmalloc. This is only for the
383 * initial reserve allocation, so there's no risk of wasting all vmalloc
384 * space.
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 enum data_mode *data_mode)
389 unsigned noio_flag;
390 void *ptr;
392 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393 *data_mode = DATA_MODE_SLAB;
394 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
397 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398 gfp_mask & __GFP_NORETRY) {
399 *data_mode = DATA_MODE_GET_FREE_PAGES;
400 return (void *)__get_free_pages(gfp_mask,
401 c->pages_per_block_bits);
404 *data_mode = DATA_MODE_VMALLOC;
407 * __vmalloc allocates the data pages and auxiliary structures with
408 * gfp_flags that were specified, but pagetables are always allocated
409 * with GFP_KERNEL, no matter what was specified as gfp_mask.
411 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412 * all allocations done by this process (including pagetables) are done
413 * as if GFP_NOIO was specified.
416 if (gfp_mask & __GFP_NORETRY)
417 noio_flag = memalloc_noio_save();
419 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
421 if (gfp_mask & __GFP_NORETRY)
422 memalloc_noio_restore(noio_flag);
424 return ptr;
428 * Free buffer's data.
430 static void free_buffer_data(struct dm_bufio_client *c,
431 void *data, enum data_mode data_mode)
433 switch (data_mode) {
434 case DATA_MODE_SLAB:
435 kmem_cache_free(DM_BUFIO_CACHE(c), data);
436 break;
438 case DATA_MODE_GET_FREE_PAGES:
439 free_pages((unsigned long)data, c->pages_per_block_bits);
440 break;
442 case DATA_MODE_VMALLOC:
443 vfree(data);
444 break;
446 default:
447 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448 data_mode);
449 BUG();
454 * Allocate buffer and its data.
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
458 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459 gfp_mask);
461 if (!b)
462 return NULL;
464 b->c = c;
466 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467 if (!b->data) {
468 kfree(b);
469 return NULL;
472 adjust_total_allocated(b->data_mode, (long)c->block_size);
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477 return b;
481 * Free buffer and its data.
483 static void free_buffer(struct dm_buffer *b)
485 struct dm_bufio_client *c = b->c;
487 adjust_total_allocated(b->data_mode, -(long)c->block_size);
489 free_buffer_data(c, b->data, b->data_mode);
490 kfree(b);
494 * Link buffer to the hash list and clean or dirty queue.
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
498 struct dm_bufio_client *c = b->c;
500 c->n_buffers[dirty]++;
501 b->block = block;
502 b->list_mode = dirty;
503 list_add(&b->lru_list, &c->lru[dirty]);
504 __insert(b->c, b);
505 b->last_accessed = jiffies;
509 * Unlink buffer from the hash list and dirty or clean queue.
511 static void __unlink_buffer(struct dm_buffer *b)
513 struct dm_bufio_client *c = b->c;
515 BUG_ON(!c->n_buffers[b->list_mode]);
517 c->n_buffers[b->list_mode]--;
518 __remove(b->c, b);
519 list_del(&b->lru_list);
523 * Place the buffer to the head of dirty or clean LRU queue.
525 static void __relink_lru(struct dm_buffer *b, int dirty)
527 struct dm_bufio_client *c = b->c;
529 BUG_ON(!c->n_buffers[b->list_mode]);
531 c->n_buffers[b->list_mode]--;
532 c->n_buffers[dirty]++;
533 b->list_mode = dirty;
534 list_move(&b->lru_list, &c->lru[dirty]);
535 b->last_accessed = jiffies;
538 /*----------------------------------------------------------------
539 * Submit I/O on the buffer.
541 * Bio interface is faster but it has some problems:
542 * the vector list is limited (increasing this limit increases
543 * memory-consumption per buffer, so it is not viable);
545 * the memory must be direct-mapped, not vmalloced;
547 * the I/O driver can reject requests spuriously if it thinks that
548 * the requests are too big for the device or if they cross a
549 * controller-defined memory boundary.
551 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552 * it is not vmalloced, try using the bio interface.
554 * If the buffer is big, if it is vmalloced or if the underlying device
555 * rejects the bio because it is too large, use dm-io layer to do the I/O.
556 * The dm-io layer splits the I/O into multiple requests, avoiding the above
557 * shortcomings.
558 *--------------------------------------------------------------*/
561 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562 * that the request was handled directly with bio interface.
564 static void dmio_complete(unsigned long error, void *context)
566 struct dm_buffer *b = context;
568 b->bio.bi_error = error ? -EIO : 0;
569 b->bio.bi_end_io(&b->bio);
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
573 bio_end_io_t *end_io)
575 int r;
576 struct dm_io_request io_req = {
577 .bi_rw = rw,
578 .notify.fn = dmio_complete,
579 .notify.context = b,
580 .client = b->c->dm_io,
582 struct dm_io_region region = {
583 .bdev = b->c->bdev,
584 .sector = block << b->c->sectors_per_block_bits,
585 .count = b->c->block_size >> SECTOR_SHIFT,
588 if (b->data_mode != DATA_MODE_VMALLOC) {
589 io_req.mem.type = DM_IO_KMEM;
590 io_req.mem.ptr.addr = b->data;
591 } else {
592 io_req.mem.type = DM_IO_VMA;
593 io_req.mem.ptr.vma = b->data;
596 b->bio.bi_end_io = end_io;
598 r = dm_io(&io_req, 1, &region, NULL);
599 if (r) {
600 b->bio.bi_error = r;
601 end_io(&b->bio);
605 static void inline_endio(struct bio *bio)
607 bio_end_io_t *end_fn = bio->bi_private;
608 int error = bio->bi_error;
611 * Reset the bio to free any attached resources
612 * (e.g. bio integrity profiles).
614 bio_reset(bio);
616 bio->bi_error = error;
617 end_fn(bio);
620 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
621 bio_end_io_t *end_io)
623 char *ptr;
624 int len;
626 bio_init(&b->bio);
627 b->bio.bi_io_vec = b->bio_vec;
628 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
629 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
630 b->bio.bi_bdev = b->c->bdev;
631 b->bio.bi_end_io = inline_endio;
633 * Use of .bi_private isn't a problem here because
634 * the dm_buffer's inline bio is local to bufio.
636 b->bio.bi_private = end_io;
639 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
640 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
642 ptr = b->data;
643 len = b->c->block_size;
645 if (len >= PAGE_SIZE)
646 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
647 else
648 BUG_ON((unsigned long)ptr & (len - 1));
650 do {
651 if (!bio_add_page(&b->bio, virt_to_page(ptr),
652 len < PAGE_SIZE ? len : PAGE_SIZE,
653 offset_in_page(ptr))) {
654 BUG_ON(b->c->block_size <= PAGE_SIZE);
655 use_dmio(b, rw, block, end_io);
656 return;
659 len -= PAGE_SIZE;
660 ptr += PAGE_SIZE;
661 } while (len > 0);
663 submit_bio(rw, &b->bio);
666 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
667 bio_end_io_t *end_io)
669 if (rw == WRITE && b->c->write_callback)
670 b->c->write_callback(b);
672 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
673 b->data_mode != DATA_MODE_VMALLOC)
674 use_inline_bio(b, rw, block, end_io);
675 else
676 use_dmio(b, rw, block, end_io);
679 /*----------------------------------------------------------------
680 * Writing dirty buffers
681 *--------------------------------------------------------------*/
684 * The endio routine for write.
686 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
687 * it.
689 static void write_endio(struct bio *bio)
691 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
693 b->write_error = bio->bi_error;
694 if (unlikely(bio->bi_error)) {
695 struct dm_bufio_client *c = b->c;
696 int error = bio->bi_error;
697 (void)cmpxchg(&c->async_write_error, 0, error);
700 BUG_ON(!test_bit(B_WRITING, &b->state));
702 smp_mb__before_atomic();
703 clear_bit(B_WRITING, &b->state);
704 smp_mb__after_atomic();
706 wake_up_bit(&b->state, B_WRITING);
710 * Initiate a write on a dirty buffer, but don't wait for it.
712 * - If the buffer is not dirty, exit.
713 * - If there some previous write going on, wait for it to finish (we can't
714 * have two writes on the same buffer simultaneously).
715 * - Submit our write and don't wait on it. We set B_WRITING indicating
716 * that there is a write in progress.
718 static void __write_dirty_buffer(struct dm_buffer *b,
719 struct list_head *write_list)
721 if (!test_bit(B_DIRTY, &b->state))
722 return;
724 clear_bit(B_DIRTY, &b->state);
725 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
727 if (!write_list)
728 submit_io(b, WRITE, b->block, write_endio);
729 else
730 list_add_tail(&b->write_list, write_list);
733 static void __flush_write_list(struct list_head *write_list)
735 struct blk_plug plug;
736 blk_start_plug(&plug);
737 while (!list_empty(write_list)) {
738 struct dm_buffer *b =
739 list_entry(write_list->next, struct dm_buffer, write_list);
740 list_del(&b->write_list);
741 submit_io(b, WRITE, b->block, write_endio);
742 dm_bufio_cond_resched();
744 blk_finish_plug(&plug);
748 * Wait until any activity on the buffer finishes. Possibly write the
749 * buffer if it is dirty. When this function finishes, there is no I/O
750 * running on the buffer and the buffer is not dirty.
752 static void __make_buffer_clean(struct dm_buffer *b)
754 BUG_ON(b->hold_count);
756 if (!b->state) /* fast case */
757 return;
759 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
760 __write_dirty_buffer(b, NULL);
761 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
765 * Find some buffer that is not held by anybody, clean it, unlink it and
766 * return it.
768 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
770 struct dm_buffer *b;
772 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
773 BUG_ON(test_bit(B_WRITING, &b->state));
774 BUG_ON(test_bit(B_DIRTY, &b->state));
776 if (!b->hold_count) {
777 __make_buffer_clean(b);
778 __unlink_buffer(b);
779 return b;
781 dm_bufio_cond_resched();
784 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
785 BUG_ON(test_bit(B_READING, &b->state));
787 if (!b->hold_count) {
788 __make_buffer_clean(b);
789 __unlink_buffer(b);
790 return b;
792 dm_bufio_cond_resched();
795 return NULL;
799 * Wait until some other threads free some buffer or release hold count on
800 * some buffer.
802 * This function is entered with c->lock held, drops it and regains it
803 * before exiting.
805 static void __wait_for_free_buffer(struct dm_bufio_client *c)
807 DECLARE_WAITQUEUE(wait, current);
809 add_wait_queue(&c->free_buffer_wait, &wait);
810 set_task_state(current, TASK_UNINTERRUPTIBLE);
811 dm_bufio_unlock(c);
813 io_schedule();
815 remove_wait_queue(&c->free_buffer_wait, &wait);
817 dm_bufio_lock(c);
820 enum new_flag {
821 NF_FRESH = 0,
822 NF_READ = 1,
823 NF_GET = 2,
824 NF_PREFETCH = 3
828 * Allocate a new buffer. If the allocation is not possible, wait until
829 * some other thread frees a buffer.
831 * May drop the lock and regain it.
833 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
835 struct dm_buffer *b;
838 * dm-bufio is resistant to allocation failures (it just keeps
839 * one buffer reserved in cases all the allocations fail).
840 * So set flags to not try too hard:
841 * GFP_NOIO: don't recurse into the I/O layer
842 * __GFP_NORETRY: don't retry and rather return failure
843 * __GFP_NOMEMALLOC: don't use emergency reserves
844 * __GFP_NOWARN: don't print a warning in case of failure
846 * For debugging, if we set the cache size to 1, no new buffers will
847 * be allocated.
849 while (1) {
850 if (dm_bufio_cache_size_latch != 1) {
851 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
852 if (b)
853 return b;
856 if (nf == NF_PREFETCH)
857 return NULL;
859 if (!list_empty(&c->reserved_buffers)) {
860 b = list_entry(c->reserved_buffers.next,
861 struct dm_buffer, lru_list);
862 list_del(&b->lru_list);
863 c->need_reserved_buffers++;
865 return b;
868 b = __get_unclaimed_buffer(c);
869 if (b)
870 return b;
872 __wait_for_free_buffer(c);
876 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
878 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
880 if (!b)
881 return NULL;
883 if (c->alloc_callback)
884 c->alloc_callback(b);
886 return b;
890 * Free a buffer and wake other threads waiting for free buffers.
892 static void __free_buffer_wake(struct dm_buffer *b)
894 struct dm_bufio_client *c = b->c;
896 if (!c->need_reserved_buffers)
897 free_buffer(b);
898 else {
899 list_add(&b->lru_list, &c->reserved_buffers);
900 c->need_reserved_buffers--;
903 wake_up(&c->free_buffer_wait);
906 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
907 struct list_head *write_list)
909 struct dm_buffer *b, *tmp;
911 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
912 BUG_ON(test_bit(B_READING, &b->state));
914 if (!test_bit(B_DIRTY, &b->state) &&
915 !test_bit(B_WRITING, &b->state)) {
916 __relink_lru(b, LIST_CLEAN);
917 continue;
920 if (no_wait && test_bit(B_WRITING, &b->state))
921 return;
923 __write_dirty_buffer(b, write_list);
924 dm_bufio_cond_resched();
929 * Get writeback threshold and buffer limit for a given client.
931 static void __get_memory_limit(struct dm_bufio_client *c,
932 unsigned long *threshold_buffers,
933 unsigned long *limit_buffers)
935 unsigned long buffers;
937 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
938 mutex_lock(&dm_bufio_clients_lock);
939 __cache_size_refresh();
940 mutex_unlock(&dm_bufio_clients_lock);
943 buffers = dm_bufio_cache_size_per_client >>
944 (c->sectors_per_block_bits + SECTOR_SHIFT);
946 if (buffers < c->minimum_buffers)
947 buffers = c->minimum_buffers;
949 *limit_buffers = buffers;
950 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
954 * Check if we're over watermark.
955 * If we are over threshold_buffers, start freeing buffers.
956 * If we're over "limit_buffers", block until we get under the limit.
958 static void __check_watermark(struct dm_bufio_client *c,
959 struct list_head *write_list)
961 unsigned long threshold_buffers, limit_buffers;
963 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
965 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
966 limit_buffers) {
968 struct dm_buffer *b = __get_unclaimed_buffer(c);
970 if (!b)
971 return;
973 __free_buffer_wake(b);
974 dm_bufio_cond_resched();
977 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
978 __write_dirty_buffers_async(c, 1, write_list);
981 /*----------------------------------------------------------------
982 * Getting a buffer
983 *--------------------------------------------------------------*/
985 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
986 enum new_flag nf, int *need_submit,
987 struct list_head *write_list)
989 struct dm_buffer *b, *new_b = NULL;
991 *need_submit = 0;
993 b = __find(c, block);
994 if (b)
995 goto found_buffer;
997 if (nf == NF_GET)
998 return NULL;
1000 new_b = __alloc_buffer_wait(c, nf);
1001 if (!new_b)
1002 return NULL;
1005 * We've had a period where the mutex was unlocked, so need to
1006 * recheck the hash table.
1008 b = __find(c, block);
1009 if (b) {
1010 __free_buffer_wake(new_b);
1011 goto found_buffer;
1014 __check_watermark(c, write_list);
1016 b = new_b;
1017 b->hold_count = 1;
1018 b->read_error = 0;
1019 b->write_error = 0;
1020 __link_buffer(b, block, LIST_CLEAN);
1022 if (nf == NF_FRESH) {
1023 b->state = 0;
1024 return b;
1027 b->state = 1 << B_READING;
1028 *need_submit = 1;
1030 return b;
1032 found_buffer:
1033 if (nf == NF_PREFETCH)
1034 return NULL;
1036 * Note: it is essential that we don't wait for the buffer to be
1037 * read if dm_bufio_get function is used. Both dm_bufio_get and
1038 * dm_bufio_prefetch can be used in the driver request routine.
1039 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040 * the same buffer, it would deadlock if we waited.
1042 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1043 return NULL;
1045 b->hold_count++;
1046 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047 test_bit(B_WRITING, &b->state));
1048 return b;
1052 * The endio routine for reading: set the error, clear the bit and wake up
1053 * anyone waiting on the buffer.
1055 static void read_endio(struct bio *bio)
1057 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1059 b->read_error = bio->bi_error;
1061 BUG_ON(!test_bit(B_READING, &b->state));
1063 smp_mb__before_atomic();
1064 clear_bit(B_READING, &b->state);
1065 smp_mb__after_atomic();
1067 wake_up_bit(&b->state, B_READING);
1071 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1072 * functions is similar except that dm_bufio_new doesn't read the
1073 * buffer from the disk (assuming that the caller overwrites all the data
1074 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1076 static void *new_read(struct dm_bufio_client *c, sector_t block,
1077 enum new_flag nf, struct dm_buffer **bp)
1079 int need_submit;
1080 struct dm_buffer *b;
1082 LIST_HEAD(write_list);
1084 dm_bufio_lock(c);
1085 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1086 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1087 if (b && b->hold_count == 1)
1088 buffer_record_stack(b);
1089 #endif
1090 dm_bufio_unlock(c);
1092 __flush_write_list(&write_list);
1094 if (!b)
1095 return NULL;
1097 if (need_submit)
1098 submit_io(b, READ, b->block, read_endio);
1100 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1102 if (b->read_error) {
1103 int error = b->read_error;
1105 dm_bufio_release(b);
1107 return ERR_PTR(error);
1110 *bp = b;
1112 return b->data;
1115 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1116 struct dm_buffer **bp)
1118 return new_read(c, block, NF_GET, bp);
1120 EXPORT_SYMBOL_GPL(dm_bufio_get);
1122 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1123 struct dm_buffer **bp)
1125 BUG_ON(dm_bufio_in_request());
1127 return new_read(c, block, NF_READ, bp);
1129 EXPORT_SYMBOL_GPL(dm_bufio_read);
1131 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1132 struct dm_buffer **bp)
1134 BUG_ON(dm_bufio_in_request());
1136 return new_read(c, block, NF_FRESH, bp);
1138 EXPORT_SYMBOL_GPL(dm_bufio_new);
1140 void dm_bufio_prefetch(struct dm_bufio_client *c,
1141 sector_t block, unsigned n_blocks)
1143 struct blk_plug plug;
1145 LIST_HEAD(write_list);
1147 BUG_ON(dm_bufio_in_request());
1149 blk_start_plug(&plug);
1150 dm_bufio_lock(c);
1152 for (; n_blocks--; block++) {
1153 int need_submit;
1154 struct dm_buffer *b;
1155 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1156 &write_list);
1157 if (unlikely(!list_empty(&write_list))) {
1158 dm_bufio_unlock(c);
1159 blk_finish_plug(&plug);
1160 __flush_write_list(&write_list);
1161 blk_start_plug(&plug);
1162 dm_bufio_lock(c);
1164 if (unlikely(b != NULL)) {
1165 dm_bufio_unlock(c);
1167 if (need_submit)
1168 submit_io(b, READ, b->block, read_endio);
1169 dm_bufio_release(b);
1171 dm_bufio_cond_resched();
1173 if (!n_blocks)
1174 goto flush_plug;
1175 dm_bufio_lock(c);
1179 dm_bufio_unlock(c);
1181 flush_plug:
1182 blk_finish_plug(&plug);
1184 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1186 void dm_bufio_release(struct dm_buffer *b)
1188 struct dm_bufio_client *c = b->c;
1190 dm_bufio_lock(c);
1192 BUG_ON(!b->hold_count);
1194 b->hold_count--;
1195 if (!b->hold_count) {
1196 wake_up(&c->free_buffer_wait);
1199 * If there were errors on the buffer, and the buffer is not
1200 * to be written, free the buffer. There is no point in caching
1201 * invalid buffer.
1203 if ((b->read_error || b->write_error) &&
1204 !test_bit(B_READING, &b->state) &&
1205 !test_bit(B_WRITING, &b->state) &&
1206 !test_bit(B_DIRTY, &b->state)) {
1207 __unlink_buffer(b);
1208 __free_buffer_wake(b);
1212 dm_bufio_unlock(c);
1214 EXPORT_SYMBOL_GPL(dm_bufio_release);
1216 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1218 struct dm_bufio_client *c = b->c;
1220 dm_bufio_lock(c);
1222 BUG_ON(test_bit(B_READING, &b->state));
1224 if (!test_and_set_bit(B_DIRTY, &b->state))
1225 __relink_lru(b, LIST_DIRTY);
1227 dm_bufio_unlock(c);
1229 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1231 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1233 LIST_HEAD(write_list);
1235 BUG_ON(dm_bufio_in_request());
1237 dm_bufio_lock(c);
1238 __write_dirty_buffers_async(c, 0, &write_list);
1239 dm_bufio_unlock(c);
1240 __flush_write_list(&write_list);
1242 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1245 * For performance, it is essential that the buffers are written asynchronously
1246 * and simultaneously (so that the block layer can merge the writes) and then
1247 * waited upon.
1249 * Finally, we flush hardware disk cache.
1251 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1253 int a, f;
1254 unsigned long buffers_processed = 0;
1255 struct dm_buffer *b, *tmp;
1257 LIST_HEAD(write_list);
1259 dm_bufio_lock(c);
1260 __write_dirty_buffers_async(c, 0, &write_list);
1261 dm_bufio_unlock(c);
1262 __flush_write_list(&write_list);
1263 dm_bufio_lock(c);
1265 again:
1266 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1267 int dropped_lock = 0;
1269 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1270 buffers_processed++;
1272 BUG_ON(test_bit(B_READING, &b->state));
1274 if (test_bit(B_WRITING, &b->state)) {
1275 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1276 dropped_lock = 1;
1277 b->hold_count++;
1278 dm_bufio_unlock(c);
1279 wait_on_bit_io(&b->state, B_WRITING,
1280 TASK_UNINTERRUPTIBLE);
1281 dm_bufio_lock(c);
1282 b->hold_count--;
1283 } else
1284 wait_on_bit_io(&b->state, B_WRITING,
1285 TASK_UNINTERRUPTIBLE);
1288 if (!test_bit(B_DIRTY, &b->state) &&
1289 !test_bit(B_WRITING, &b->state))
1290 __relink_lru(b, LIST_CLEAN);
1292 dm_bufio_cond_resched();
1295 * If we dropped the lock, the list is no longer consistent,
1296 * so we must restart the search.
1298 * In the most common case, the buffer just processed is
1299 * relinked to the clean list, so we won't loop scanning the
1300 * same buffer again and again.
1302 * This may livelock if there is another thread simultaneously
1303 * dirtying buffers, so we count the number of buffers walked
1304 * and if it exceeds the total number of buffers, it means that
1305 * someone is doing some writes simultaneously with us. In
1306 * this case, stop, dropping the lock.
1308 if (dropped_lock)
1309 goto again;
1311 wake_up(&c->free_buffer_wait);
1312 dm_bufio_unlock(c);
1314 a = xchg(&c->async_write_error, 0);
1315 f = dm_bufio_issue_flush(c);
1316 if (a)
1317 return a;
1319 return f;
1321 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1324 * Use dm-io to send and empty barrier flush the device.
1326 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1328 struct dm_io_request io_req = {
1329 .bi_rw = WRITE_FLUSH,
1330 .mem.type = DM_IO_KMEM,
1331 .mem.ptr.addr = NULL,
1332 .client = c->dm_io,
1334 struct dm_io_region io_reg = {
1335 .bdev = c->bdev,
1336 .sector = 0,
1337 .count = 0,
1340 BUG_ON(dm_bufio_in_request());
1342 return dm_io(&io_req, 1, &io_reg, NULL);
1344 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1347 * We first delete any other buffer that may be at that new location.
1349 * Then, we write the buffer to the original location if it was dirty.
1351 * Then, if we are the only one who is holding the buffer, relink the buffer
1352 * in the hash queue for the new location.
1354 * If there was someone else holding the buffer, we write it to the new
1355 * location but not relink it, because that other user needs to have the buffer
1356 * at the same place.
1358 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1360 struct dm_bufio_client *c = b->c;
1361 struct dm_buffer *new;
1363 BUG_ON(dm_bufio_in_request());
1365 dm_bufio_lock(c);
1367 retry:
1368 new = __find(c, new_block);
1369 if (new) {
1370 if (new->hold_count) {
1371 __wait_for_free_buffer(c);
1372 goto retry;
1376 * FIXME: Is there any point waiting for a write that's going
1377 * to be overwritten in a bit?
1379 __make_buffer_clean(new);
1380 __unlink_buffer(new);
1381 __free_buffer_wake(new);
1384 BUG_ON(!b->hold_count);
1385 BUG_ON(test_bit(B_READING, &b->state));
1387 __write_dirty_buffer(b, NULL);
1388 if (b->hold_count == 1) {
1389 wait_on_bit_io(&b->state, B_WRITING,
1390 TASK_UNINTERRUPTIBLE);
1391 set_bit(B_DIRTY, &b->state);
1392 __unlink_buffer(b);
1393 __link_buffer(b, new_block, LIST_DIRTY);
1394 } else {
1395 sector_t old_block;
1396 wait_on_bit_lock_io(&b->state, B_WRITING,
1397 TASK_UNINTERRUPTIBLE);
1399 * Relink buffer to "new_block" so that write_callback
1400 * sees "new_block" as a block number.
1401 * After the write, link the buffer back to old_block.
1402 * All this must be done in bufio lock, so that block number
1403 * change isn't visible to other threads.
1405 old_block = b->block;
1406 __unlink_buffer(b);
1407 __link_buffer(b, new_block, b->list_mode);
1408 submit_io(b, WRITE, new_block, write_endio);
1409 wait_on_bit_io(&b->state, B_WRITING,
1410 TASK_UNINTERRUPTIBLE);
1411 __unlink_buffer(b);
1412 __link_buffer(b, old_block, b->list_mode);
1415 dm_bufio_unlock(c);
1416 dm_bufio_release(b);
1418 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1421 * Free the given buffer.
1423 * This is just a hint, if the buffer is in use or dirty, this function
1424 * does nothing.
1426 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1428 struct dm_buffer *b;
1430 dm_bufio_lock(c);
1432 b = __find(c, block);
1433 if (b && likely(!b->hold_count) && likely(!b->state)) {
1434 __unlink_buffer(b);
1435 __free_buffer_wake(b);
1438 dm_bufio_unlock(c);
1440 EXPORT_SYMBOL(dm_bufio_forget);
1442 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1444 c->minimum_buffers = n;
1446 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1448 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1450 return c->block_size;
1452 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1454 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1456 return i_size_read(c->bdev->bd_inode) >>
1457 (SECTOR_SHIFT + c->sectors_per_block_bits);
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1461 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1463 return b->block;
1465 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1467 void *dm_bufio_get_block_data(struct dm_buffer *b)
1469 return b->data;
1471 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1473 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1475 return b + 1;
1477 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1479 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1481 return b->c;
1483 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1485 static void drop_buffers(struct dm_bufio_client *c)
1487 struct dm_buffer *b;
1488 int i;
1489 bool warned = false;
1491 BUG_ON(dm_bufio_in_request());
1494 * An optimization so that the buffers are not written one-by-one.
1496 dm_bufio_write_dirty_buffers_async(c);
1498 dm_bufio_lock(c);
1500 while ((b = __get_unclaimed_buffer(c)))
1501 __free_buffer_wake(b);
1503 for (i = 0; i < LIST_SIZE; i++)
1504 list_for_each_entry(b, &c->lru[i], lru_list) {
1505 WARN_ON(!warned);
1506 warned = true;
1507 DMERR("leaked buffer %llx, hold count %u, list %d",
1508 (unsigned long long)b->block, b->hold_count, i);
1509 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1510 print_stack_trace(&b->stack_trace, 1);
1511 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1512 #endif
1515 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1516 while ((b = __get_unclaimed_buffer(c)))
1517 __free_buffer_wake(b);
1518 #endif
1520 for (i = 0; i < LIST_SIZE; i++)
1521 BUG_ON(!list_empty(&c->lru[i]));
1523 dm_bufio_unlock(c);
1527 * We may not be able to evict this buffer if IO pending or the client
1528 * is still using it. Caller is expected to know buffer is too old.
1530 * And if GFP_NOFS is used, we must not do any I/O because we hold
1531 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1532 * rerouted to different bufio client.
1534 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1536 if (!(gfp & __GFP_FS)) {
1537 if (test_bit(B_READING, &b->state) ||
1538 test_bit(B_WRITING, &b->state) ||
1539 test_bit(B_DIRTY, &b->state))
1540 return false;
1543 if (b->hold_count)
1544 return false;
1546 __make_buffer_clean(b);
1547 __unlink_buffer(b);
1548 __free_buffer_wake(b);
1550 return true;
1553 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1555 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1556 return retain_bytes / c->block_size;
1559 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1560 gfp_t gfp_mask)
1562 int l;
1563 struct dm_buffer *b, *tmp;
1564 unsigned long freed = 0;
1565 unsigned long count = nr_to_scan;
1566 unsigned retain_target = get_retain_buffers(c);
1568 for (l = 0; l < LIST_SIZE; l++) {
1569 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1570 if (__try_evict_buffer(b, gfp_mask))
1571 freed++;
1572 if (!--nr_to_scan || ((count - freed) <= retain_target))
1573 return freed;
1574 dm_bufio_cond_resched();
1577 return freed;
1580 static unsigned long
1581 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1583 struct dm_bufio_client *c;
1584 unsigned long freed;
1586 c = container_of(shrink, struct dm_bufio_client, shrinker);
1587 if (sc->gfp_mask & __GFP_FS)
1588 dm_bufio_lock(c);
1589 else if (!dm_bufio_trylock(c))
1590 return SHRINK_STOP;
1592 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1593 dm_bufio_unlock(c);
1594 return freed;
1597 static unsigned long
1598 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1600 struct dm_bufio_client *c;
1601 unsigned long count;
1603 c = container_of(shrink, struct dm_bufio_client, shrinker);
1604 if (sc->gfp_mask & __GFP_FS)
1605 dm_bufio_lock(c);
1606 else if (!dm_bufio_trylock(c))
1607 return 0;
1609 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1610 dm_bufio_unlock(c);
1611 return count;
1615 * Create the buffering interface
1617 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1618 unsigned reserved_buffers, unsigned aux_size,
1619 void (*alloc_callback)(struct dm_buffer *),
1620 void (*write_callback)(struct dm_buffer *))
1622 int r;
1623 struct dm_bufio_client *c;
1624 unsigned i;
1626 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1627 (block_size & (block_size - 1)));
1629 c = kzalloc(sizeof(*c), GFP_KERNEL);
1630 if (!c) {
1631 r = -ENOMEM;
1632 goto bad_client;
1634 c->buffer_tree = RB_ROOT;
1636 c->bdev = bdev;
1637 c->block_size = block_size;
1638 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1639 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1640 __ffs(block_size) - PAGE_SHIFT : 0;
1641 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1642 PAGE_SHIFT - __ffs(block_size) : 0);
1644 c->aux_size = aux_size;
1645 c->alloc_callback = alloc_callback;
1646 c->write_callback = write_callback;
1648 for (i = 0; i < LIST_SIZE; i++) {
1649 INIT_LIST_HEAD(&c->lru[i]);
1650 c->n_buffers[i] = 0;
1653 mutex_init(&c->lock);
1654 INIT_LIST_HEAD(&c->reserved_buffers);
1655 c->need_reserved_buffers = reserved_buffers;
1657 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1659 init_waitqueue_head(&c->free_buffer_wait);
1660 c->async_write_error = 0;
1662 c->dm_io = dm_io_client_create();
1663 if (IS_ERR(c->dm_io)) {
1664 r = PTR_ERR(c->dm_io);
1665 goto bad_dm_io;
1668 mutex_lock(&dm_bufio_clients_lock);
1669 if (c->blocks_per_page_bits) {
1670 if (!DM_BUFIO_CACHE_NAME(c)) {
1671 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1672 if (!DM_BUFIO_CACHE_NAME(c)) {
1673 r = -ENOMEM;
1674 mutex_unlock(&dm_bufio_clients_lock);
1675 goto bad_cache;
1679 if (!DM_BUFIO_CACHE(c)) {
1680 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1681 c->block_size,
1682 c->block_size, 0, NULL);
1683 if (!DM_BUFIO_CACHE(c)) {
1684 r = -ENOMEM;
1685 mutex_unlock(&dm_bufio_clients_lock);
1686 goto bad_cache;
1690 mutex_unlock(&dm_bufio_clients_lock);
1692 while (c->need_reserved_buffers) {
1693 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1695 if (!b) {
1696 r = -ENOMEM;
1697 goto bad_buffer;
1699 __free_buffer_wake(b);
1702 mutex_lock(&dm_bufio_clients_lock);
1703 dm_bufio_client_count++;
1704 list_add(&c->client_list, &dm_bufio_all_clients);
1705 __cache_size_refresh();
1706 mutex_unlock(&dm_bufio_clients_lock);
1708 c->shrinker.count_objects = dm_bufio_shrink_count;
1709 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1710 c->shrinker.seeks = 1;
1711 c->shrinker.batch = 0;
1712 register_shrinker(&c->shrinker);
1714 return c;
1716 bad_buffer:
1717 bad_cache:
1718 while (!list_empty(&c->reserved_buffers)) {
1719 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1720 struct dm_buffer, lru_list);
1721 list_del(&b->lru_list);
1722 free_buffer(b);
1724 dm_io_client_destroy(c->dm_io);
1725 bad_dm_io:
1726 kfree(c);
1727 bad_client:
1728 return ERR_PTR(r);
1730 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1733 * Free the buffering interface.
1734 * It is required that there are no references on any buffers.
1736 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1738 unsigned i;
1740 drop_buffers(c);
1742 unregister_shrinker(&c->shrinker);
1744 mutex_lock(&dm_bufio_clients_lock);
1746 list_del(&c->client_list);
1747 dm_bufio_client_count--;
1748 __cache_size_refresh();
1750 mutex_unlock(&dm_bufio_clients_lock);
1752 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1753 BUG_ON(c->need_reserved_buffers);
1755 while (!list_empty(&c->reserved_buffers)) {
1756 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1757 struct dm_buffer, lru_list);
1758 list_del(&b->lru_list);
1759 free_buffer(b);
1762 for (i = 0; i < LIST_SIZE; i++)
1763 if (c->n_buffers[i])
1764 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1766 for (i = 0; i < LIST_SIZE; i++)
1767 BUG_ON(c->n_buffers[i]);
1769 dm_io_client_destroy(c->dm_io);
1770 kfree(c);
1772 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1774 static unsigned get_max_age_hz(void)
1776 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1778 if (max_age > UINT_MAX / HZ)
1779 max_age = UINT_MAX / HZ;
1781 return max_age * HZ;
1784 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1786 return time_after_eq(jiffies, b->last_accessed + age_hz);
1789 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1791 struct dm_buffer *b, *tmp;
1792 unsigned retain_target = get_retain_buffers(c);
1793 unsigned count;
1795 dm_bufio_lock(c);
1797 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1798 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1799 if (count <= retain_target)
1800 break;
1802 if (!older_than(b, age_hz))
1803 break;
1805 if (__try_evict_buffer(b, 0))
1806 count--;
1808 dm_bufio_cond_resched();
1811 dm_bufio_unlock(c);
1814 static void cleanup_old_buffers(void)
1816 unsigned long max_age_hz = get_max_age_hz();
1817 struct dm_bufio_client *c;
1819 mutex_lock(&dm_bufio_clients_lock);
1821 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1822 __evict_old_buffers(c, max_age_hz);
1824 mutex_unlock(&dm_bufio_clients_lock);
1827 static struct workqueue_struct *dm_bufio_wq;
1828 static struct delayed_work dm_bufio_work;
1830 static void work_fn(struct work_struct *w)
1832 cleanup_old_buffers();
1834 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1835 DM_BUFIO_WORK_TIMER_SECS * HZ);
1838 /*----------------------------------------------------------------
1839 * Module setup
1840 *--------------------------------------------------------------*/
1843 * This is called only once for the whole dm_bufio module.
1844 * It initializes memory limit.
1846 static int __init dm_bufio_init(void)
1848 __u64 mem;
1850 dm_bufio_allocated_kmem_cache = 0;
1851 dm_bufio_allocated_get_free_pages = 0;
1852 dm_bufio_allocated_vmalloc = 0;
1853 dm_bufio_current_allocated = 0;
1855 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1856 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1858 mem = (__u64)((totalram_pages - totalhigh_pages) *
1859 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1861 if (mem > ULONG_MAX)
1862 mem = ULONG_MAX;
1864 #ifdef CONFIG_MMU
1866 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1867 * in fs/proc/internal.h
1869 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1870 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1871 #endif
1873 dm_bufio_default_cache_size = mem;
1875 mutex_lock(&dm_bufio_clients_lock);
1876 __cache_size_refresh();
1877 mutex_unlock(&dm_bufio_clients_lock);
1879 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1880 if (!dm_bufio_wq)
1881 return -ENOMEM;
1883 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1884 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1885 DM_BUFIO_WORK_TIMER_SECS * HZ);
1887 return 0;
1891 * This is called once when unloading the dm_bufio module.
1893 static void __exit dm_bufio_exit(void)
1895 int bug = 0;
1896 int i;
1898 cancel_delayed_work_sync(&dm_bufio_work);
1899 destroy_workqueue(dm_bufio_wq);
1901 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1902 kmem_cache_destroy(dm_bufio_caches[i]);
1904 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1905 kfree(dm_bufio_cache_names[i]);
1907 if (dm_bufio_client_count) {
1908 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1909 __func__, dm_bufio_client_count);
1910 bug = 1;
1913 if (dm_bufio_current_allocated) {
1914 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1915 __func__, dm_bufio_current_allocated);
1916 bug = 1;
1919 if (dm_bufio_allocated_get_free_pages) {
1920 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1921 __func__, dm_bufio_allocated_get_free_pages);
1922 bug = 1;
1925 if (dm_bufio_allocated_vmalloc) {
1926 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1927 __func__, dm_bufio_allocated_vmalloc);
1928 bug = 1;
1931 BUG_ON(bug);
1934 module_init(dm_bufio_init)
1935 module_exit(dm_bufio_exit)
1937 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1938 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1940 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1941 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1943 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1944 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1946 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1947 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1949 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1950 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1952 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1953 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1955 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1956 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1958 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1959 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1961 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1962 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1963 MODULE_LICENSE("GPL");