2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
75 * Number of guaranteed r10bios in case of extreme VM load:
77 #define NR_RAID10_BIOS 256
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
89 #define IO_MADE_GOOD ((struct bio *)2)
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
97 static int max_queued_requests
= 1024;
99 static void allow_barrier(struct r10conf
*conf
);
100 static void lower_barrier(struct r10conf
*conf
);
101 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
102 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
104 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
105 static void end_reshape_write(struct bio
*bio
);
106 static void end_reshape(struct r10conf
*conf
);
108 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
110 struct r10conf
*conf
= data
;
111 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
113 /* allocate a r10bio with room for raid_disks entries in the
115 return kzalloc(size
, gfp_flags
);
118 static void r10bio_pool_free(void *r10_bio
, void *data
)
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
138 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
140 struct r10conf
*conf
= data
;
142 struct r10bio
*r10_bio
;
147 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
151 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
152 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
153 nalloc
= conf
->copies
; /* resync */
155 nalloc
= 2; /* recovery */
160 for (j
= nalloc
; j
-- ; ) {
161 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
164 r10_bio
->devs
[j
].bio
= bio
;
165 if (!conf
->have_replacement
)
167 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
170 r10_bio
->devs
[j
].repl_bio
= bio
;
173 * Allocate RESYNC_PAGES data pages and attach them
176 for (j
= 0 ; j
< nalloc
; j
++) {
177 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
178 bio
= r10_bio
->devs
[j
].bio
;
179 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
180 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
181 &conf
->mddev
->recovery
)) {
182 /* we can share bv_page's during recovery
184 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
185 page
= rbio
->bi_io_vec
[i
].bv_page
;
188 page
= alloc_page(gfp_flags
);
192 bio
->bi_io_vec
[i
].bv_page
= page
;
194 rbio
->bi_io_vec
[i
].bv_page
= page
;
202 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
204 for (i
= 0; i
< RESYNC_PAGES
; i
++)
205 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
208 for ( ; j
< nalloc
; j
++) {
209 if (r10_bio
->devs
[j
].bio
)
210 bio_put(r10_bio
->devs
[j
].bio
);
211 if (r10_bio
->devs
[j
].repl_bio
)
212 bio_put(r10_bio
->devs
[j
].repl_bio
);
214 r10bio_pool_free(r10_bio
, conf
);
218 static void r10buf_pool_free(void *__r10_bio
, void *data
)
221 struct r10conf
*conf
= data
;
222 struct r10bio
*r10bio
= __r10_bio
;
225 for (j
=0; j
< conf
->copies
; j
++) {
226 struct bio
*bio
= r10bio
->devs
[j
].bio
;
228 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
229 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
230 bio
->bi_io_vec
[i
].bv_page
= NULL
;
234 bio
= r10bio
->devs
[j
].repl_bio
;
238 r10bio_pool_free(r10bio
, conf
);
241 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
245 for (i
= 0; i
< conf
->copies
; i
++) {
246 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
247 if (!BIO_SPECIAL(*bio
))
250 bio
= &r10_bio
->devs
[i
].repl_bio
;
251 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
257 static void free_r10bio(struct r10bio
*r10_bio
)
259 struct r10conf
*conf
= r10_bio
->mddev
->private;
261 put_all_bios(conf
, r10_bio
);
262 mempool_free(r10_bio
, conf
->r10bio_pool
);
265 static void put_buf(struct r10bio
*r10_bio
)
267 struct r10conf
*conf
= r10_bio
->mddev
->private;
269 mempool_free(r10_bio
, conf
->r10buf_pool
);
274 static void reschedule_retry(struct r10bio
*r10_bio
)
277 struct mddev
*mddev
= r10_bio
->mddev
;
278 struct r10conf
*conf
= mddev
->private;
280 spin_lock_irqsave(&conf
->device_lock
, flags
);
281 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
283 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
285 /* wake up frozen array... */
286 wake_up(&conf
->wait_barrier
);
288 md_wakeup_thread(mddev
->thread
);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
296 static void raid_end_bio_io(struct r10bio
*r10_bio
)
298 struct bio
*bio
= r10_bio
->master_bio
;
300 struct r10conf
*conf
= r10_bio
->mddev
->private;
302 if (bio
->bi_phys_segments
) {
304 spin_lock_irqsave(&conf
->device_lock
, flags
);
305 bio
->bi_phys_segments
--;
306 done
= (bio
->bi_phys_segments
== 0);
307 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
310 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
311 bio
->bi_error
= -EIO
;
315 * Wake up any possible resync thread that waits for the device
320 free_r10bio(r10_bio
);
324 * Update disk head position estimator based on IRQ completion info.
326 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
328 struct r10conf
*conf
= r10_bio
->mddev
->private;
330 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
331 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
335 * Find the disk number which triggered given bio
337 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
338 struct bio
*bio
, int *slotp
, int *replp
)
343 for (slot
= 0; slot
< conf
->copies
; slot
++) {
344 if (r10_bio
->devs
[slot
].bio
== bio
)
346 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
352 BUG_ON(slot
== conf
->copies
);
353 update_head_pos(slot
, r10_bio
);
359 return r10_bio
->devs
[slot
].devnum
;
362 static void raid10_end_read_request(struct bio
*bio
)
364 int uptodate
= !bio
->bi_error
;
365 struct r10bio
*r10_bio
= bio
->bi_private
;
367 struct md_rdev
*rdev
;
368 struct r10conf
*conf
= r10_bio
->mddev
->private;
370 slot
= r10_bio
->read_slot
;
371 dev
= r10_bio
->devs
[slot
].devnum
;
372 rdev
= r10_bio
->devs
[slot
].rdev
;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot
, r10_bio
);
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
400 raid_end_bio_io(r10_bio
);
401 rdev_dec_pending(rdev
, conf
->mddev
);
404 * oops, read error - keep the refcount on the rdev
406 char b
[BDEVNAME_SIZE
];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
410 bdevname(rdev
->bdev
, b
),
411 (unsigned long long)r10_bio
->sector
);
412 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
413 reschedule_retry(r10_bio
);
417 static void close_write(struct r10bio
*r10_bio
)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
422 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
424 md_write_end(r10_bio
->mddev
);
427 static void one_write_done(struct r10bio
*r10_bio
)
429 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
430 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
431 reschedule_retry(r10_bio
);
433 close_write(r10_bio
);
434 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
435 reschedule_retry(r10_bio
);
437 raid_end_bio_io(r10_bio
);
442 static void raid10_end_write_request(struct bio
*bio
)
444 struct r10bio
*r10_bio
= bio
->bi_private
;
447 struct r10conf
*conf
= r10_bio
->mddev
->private;
449 struct md_rdev
*rdev
= NULL
;
451 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
454 rdev
= conf
->mirrors
[dev
].replacement
;
458 rdev
= conf
->mirrors
[dev
].rdev
;
461 * this branch is our 'one mirror IO has finished' event handler:
465 /* Never record new bad blocks to replacement,
468 md_error(rdev
->mddev
, rdev
);
470 set_bit(WriteErrorSeen
, &rdev
->flags
);
471 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
472 set_bit(MD_RECOVERY_NEEDED
,
473 &rdev
->mddev
->recovery
);
474 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
498 if (test_bit(In_sync
, &rdev
->flags
) &&
499 !test_bit(Faulty
, &rdev
->flags
))
500 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev
,
504 r10_bio
->devs
[slot
].addr
,
506 &first_bad
, &bad_sectors
)) {
509 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
511 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
513 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
519 * Let's see if all mirrored write operations have finished
522 one_write_done(r10_bio
);
524 rdev_dec_pending(rdev
, conf
->mddev
);
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
552 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
560 int last_far_set_start
, last_far_set_size
;
562 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
563 last_far_set_start
*= geo
->far_set_size
;
565 last_far_set_size
= geo
->far_set_size
;
566 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
568 /* now calculate first sector/dev */
569 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
570 sector
= r10bio
->sector
& geo
->chunk_mask
;
572 chunk
*= geo
->near_copies
;
574 dev
= sector_div(stripe
, geo
->raid_disks
);
576 stripe
*= geo
->far_copies
;
578 sector
+= stripe
<< geo
->chunk_shift
;
580 /* and calculate all the others */
581 for (n
= 0; n
< geo
->near_copies
; n
++) {
585 r10bio
->devs
[slot
].devnum
= d
;
586 r10bio
->devs
[slot
].addr
= s
;
589 for (f
= 1; f
< geo
->far_copies
; f
++) {
590 set
= d
/ geo
->far_set_size
;
591 d
+= geo
->near_copies
;
593 if ((geo
->raid_disks
% geo
->far_set_size
) &&
594 (d
> last_far_set_start
)) {
595 d
-= last_far_set_start
;
596 d
%= last_far_set_size
;
597 d
+= last_far_set_start
;
599 d
%= geo
->far_set_size
;
600 d
+= geo
->far_set_size
* set
;
603 r10bio
->devs
[slot
].devnum
= d
;
604 r10bio
->devs
[slot
].addr
= s
;
608 if (dev
>= geo
->raid_disks
) {
610 sector
+= (geo
->chunk_mask
+ 1);
615 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
617 struct geom
*geo
= &conf
->geo
;
619 if (conf
->reshape_progress
!= MaxSector
&&
620 ((r10bio
->sector
>= conf
->reshape_progress
) !=
621 conf
->mddev
->reshape_backwards
)) {
622 set_bit(R10BIO_Previous
, &r10bio
->state
);
625 clear_bit(R10BIO_Previous
, &r10bio
->state
);
627 __raid10_find_phys(geo
, r10bio
);
630 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
632 sector_t offset
, chunk
, vchunk
;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
636 struct geom
*geo
= &conf
->geo
;
637 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
638 int far_set_size
= geo
->far_set_size
;
639 int last_far_set_start
;
641 if (geo
->raid_disks
% geo
->far_set_size
) {
642 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
643 last_far_set_start
*= geo
->far_set_size
;
645 if (dev
>= last_far_set_start
) {
646 far_set_size
= geo
->far_set_size
;
647 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
648 far_set_start
= last_far_set_start
;
652 offset
= sector
& geo
->chunk_mask
;
653 if (geo
->far_offset
) {
655 chunk
= sector
>> geo
->chunk_shift
;
656 fc
= sector_div(chunk
, geo
->far_copies
);
657 dev
-= fc
* geo
->near_copies
;
658 if (dev
< far_set_start
)
661 while (sector
>= geo
->stride
) {
662 sector
-= geo
->stride
;
663 if (dev
< (geo
->near_copies
+ far_set_start
))
664 dev
+= far_set_size
- geo
->near_copies
;
666 dev
-= geo
->near_copies
;
668 chunk
= sector
>> geo
->chunk_shift
;
670 vchunk
= chunk
* geo
->raid_disks
+ dev
;
671 sector_div(vchunk
, geo
->near_copies
);
672 return (vchunk
<< geo
->chunk_shift
) + offset
;
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
687 * The rdev for the device selected will have nr_pending incremented.
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
694 static struct md_rdev
*read_balance(struct r10conf
*conf
,
695 struct r10bio
*r10_bio
,
698 const sector_t this_sector
= r10_bio
->sector
;
700 int sectors
= r10_bio
->sectors
;
701 int best_good_sectors
;
702 sector_t new_distance
, best_dist
;
703 struct md_rdev
*best_rdev
, *rdev
= NULL
;
706 struct geom
*geo
= &conf
->geo
;
708 raid10_find_phys(conf
, r10_bio
);
711 sectors
= r10_bio
->sectors
;
714 best_dist
= MaxSector
;
715 best_good_sectors
= 0;
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
723 if (conf
->mddev
->recovery_cp
< MaxSector
724 && (this_sector
+ sectors
>= conf
->next_resync
))
727 for (slot
= 0; slot
< conf
->copies
; slot
++) {
732 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
734 disk
= r10_bio
->devs
[slot
].devnum
;
735 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
736 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
737 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
738 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
740 test_bit(Faulty
, &rdev
->flags
))
742 if (!test_bit(In_sync
, &rdev
->flags
) &&
743 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
746 dev_sector
= r10_bio
->devs
[slot
].addr
;
747 if (is_badblock(rdev
, dev_sector
, sectors
,
748 &first_bad
, &bad_sectors
)) {
749 if (best_dist
< MaxSector
)
750 /* Already have a better slot */
752 if (first_bad
<= dev_sector
) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
757 bad_sectors
-= (dev_sector
- first_bad
);
758 if (!do_balance
&& sectors
> bad_sectors
)
759 sectors
= bad_sectors
;
760 if (best_good_sectors
> sectors
)
761 best_good_sectors
= sectors
;
763 sector_t good_sectors
=
764 first_bad
- dev_sector
;
765 if (good_sectors
> best_good_sectors
) {
766 best_good_sectors
= good_sectors
;
771 /* Must read from here */
776 best_good_sectors
= sectors
;
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
785 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
788 /* for far > 1 always use the lowest address */
789 if (geo
->far_copies
> 1)
790 new_distance
= r10_bio
->devs
[slot
].addr
;
792 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
793 conf
->mirrors
[disk
].head_position
);
794 if (new_distance
< best_dist
) {
795 best_dist
= new_distance
;
800 if (slot
>= conf
->copies
) {
806 atomic_inc(&rdev
->nr_pending
);
807 if (test_bit(Faulty
, &rdev
->flags
)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
811 rdev_dec_pending(rdev
, conf
->mddev
);
814 r10_bio
->read_slot
= slot
;
818 *max_sectors
= best_good_sectors
;
823 static int raid10_congested(struct mddev
*mddev
, int bits
)
825 struct r10conf
*conf
= mddev
->private;
828 if ((bits
& (1 << WB_async_congested
)) &&
829 conf
->pending_count
>= max_queued_requests
)
834 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
837 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
838 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
839 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
841 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
848 static void flush_pending_writes(struct r10conf
*conf
)
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
853 spin_lock_irq(&conf
->device_lock
);
855 if (conf
->pending_bio_list
.head
) {
857 bio
= bio_list_get(&conf
->pending_bio_list
);
858 conf
->pending_count
= 0;
859 spin_unlock_irq(&conf
->device_lock
);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf
->mddev
->bitmap
);
863 wake_up(&conf
->wait_barrier
);
865 while (bio
) { /* submit pending writes */
866 struct bio
*next
= bio
->bi_next
;
868 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
869 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
873 generic_make_request(bio
);
877 spin_unlock_irq(&conf
->device_lock
);
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
902 static void raise_barrier(struct r10conf
*conf
, int force
)
904 BUG_ON(force
&& !conf
->barrier
);
905 spin_lock_irq(&conf
->resync_lock
);
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
911 /* block any new IO from starting */
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf
->wait_barrier
,
916 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
919 spin_unlock_irq(&conf
->resync_lock
);
922 static void lower_barrier(struct r10conf
*conf
)
925 spin_lock_irqsave(&conf
->resync_lock
, flags
);
927 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
928 wake_up(&conf
->wait_barrier
);
931 static void wait_barrier(struct r10conf
*conf
)
933 spin_lock_irq(&conf
->resync_lock
);
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
945 wait_event_lock_irq(conf
->wait_barrier
,
949 !bio_list_empty(current
->bio_list
)),
954 spin_unlock_irq(&conf
->resync_lock
);
957 static void allow_barrier(struct r10conf
*conf
)
960 spin_lock_irqsave(&conf
->resync_lock
, flags
);
962 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
963 wake_up(&conf
->wait_barrier
);
966 static void freeze_array(struct r10conf
*conf
, int extra
)
968 /* stop syncio and normal IO and wait for everything to
970 * We increment barrier and nr_waiting, and then
971 * wait until nr_pending match nr_queued+extra
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
976 * Thus the number queued (nr_queued) plus this request (extra)
977 * must match the number of pending IOs (nr_pending) before
980 spin_lock_irq(&conf
->resync_lock
);
983 wait_event_lock_irq_cmd(conf
->wait_barrier
,
984 conf
->nr_pending
== conf
->nr_queued
+extra
,
986 flush_pending_writes(conf
));
988 spin_unlock_irq(&conf
->resync_lock
);
991 static void unfreeze_array(struct r10conf
*conf
)
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf
->resync_lock
);
997 wake_up(&conf
->wait_barrier
);
998 spin_unlock_irq(&conf
->resync_lock
);
1001 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1002 struct md_rdev
*rdev
)
1004 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1005 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1006 return rdev
->data_offset
;
1008 return rdev
->new_data_offset
;
1011 struct raid10_plug_cb
{
1012 struct blk_plug_cb cb
;
1013 struct bio_list pending
;
1017 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1019 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1021 struct mddev
*mddev
= plug
->cb
.data
;
1022 struct r10conf
*conf
= mddev
->private;
1025 if (from_schedule
|| current
->bio_list
) {
1026 spin_lock_irq(&conf
->device_lock
);
1027 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1028 conf
->pending_count
+= plug
->pending_cnt
;
1029 spin_unlock_irq(&conf
->device_lock
);
1030 wake_up(&conf
->wait_barrier
);
1031 md_wakeup_thread(mddev
->thread
);
1036 /* we aren't scheduling, so we can do the write-out directly. */
1037 bio
= bio_list_get(&plug
->pending
);
1038 bitmap_unplug(mddev
->bitmap
);
1039 wake_up(&conf
->wait_barrier
);
1041 while (bio
) { /* submit pending writes */
1042 struct bio
*next
= bio
->bi_next
;
1043 bio
->bi_next
= NULL
;
1044 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1045 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1046 /* Just ignore it */
1049 generic_make_request(bio
);
1055 static void __make_request(struct mddev
*mddev
, struct bio
*bio
)
1057 struct r10conf
*conf
= mddev
->private;
1058 struct r10bio
*r10_bio
;
1059 struct bio
*read_bio
;
1061 const int rw
= bio_data_dir(bio
);
1062 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1063 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1064 const unsigned long do_discard
= (bio
->bi_rw
1065 & (REQ_DISCARD
| REQ_SECURE
));
1066 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1067 unsigned long flags
;
1068 struct md_rdev
*blocked_rdev
;
1069 struct blk_plug_cb
*cb
;
1070 struct raid10_plug_cb
*plug
= NULL
;
1071 int sectors_handled
;
1076 * Register the new request and wait if the reconstruction
1077 * thread has put up a bar for new requests.
1078 * Continue immediately if no resync is active currently.
1082 sectors
= bio_sectors(bio
);
1083 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1084 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1085 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1086 /* IO spans the reshape position. Need to wait for
1089 allow_barrier(conf
);
1090 wait_event(conf
->wait_barrier
,
1091 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1092 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1096 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1097 bio_data_dir(bio
) == WRITE
&&
1098 (mddev
->reshape_backwards
1099 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1100 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1101 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1102 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1103 /* Need to update reshape_position in metadata */
1104 mddev
->reshape_position
= conf
->reshape_progress
;
1105 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1106 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1107 md_wakeup_thread(mddev
->thread
);
1108 wait_event(mddev
->sb_wait
,
1109 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1111 conf
->reshape_safe
= mddev
->reshape_position
;
1114 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1116 r10_bio
->master_bio
= bio
;
1117 r10_bio
->sectors
= sectors
;
1119 r10_bio
->mddev
= mddev
;
1120 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1123 /* We might need to issue multiple reads to different
1124 * devices if there are bad blocks around, so we keep
1125 * track of the number of reads in bio->bi_phys_segments.
1126 * If this is 0, there is only one r10_bio and no locking
1127 * will be needed when the request completes. If it is
1128 * non-zero, then it is the number of not-completed requests.
1130 bio
->bi_phys_segments
= 0;
1131 bio_clear_flag(bio
, BIO_SEG_VALID
);
1135 * read balancing logic:
1137 struct md_rdev
*rdev
;
1141 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1143 raid_end_bio_io(r10_bio
);
1146 slot
= r10_bio
->read_slot
;
1148 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1149 bio_trim(read_bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1152 r10_bio
->devs
[slot
].bio
= read_bio
;
1153 r10_bio
->devs
[slot
].rdev
= rdev
;
1155 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1156 choose_data_offset(r10_bio
, rdev
);
1157 read_bio
->bi_bdev
= rdev
->bdev
;
1158 read_bio
->bi_end_io
= raid10_end_read_request
;
1159 read_bio
->bi_rw
= READ
| do_sync
;
1160 read_bio
->bi_private
= r10_bio
;
1162 if (max_sectors
< r10_bio
->sectors
) {
1163 /* Could not read all from this device, so we will
1164 * need another r10_bio.
1166 sectors_handled
= (r10_bio
->sector
+ max_sectors
1167 - bio
->bi_iter
.bi_sector
);
1168 r10_bio
->sectors
= max_sectors
;
1169 spin_lock_irq(&conf
->device_lock
);
1170 if (bio
->bi_phys_segments
== 0)
1171 bio
->bi_phys_segments
= 2;
1173 bio
->bi_phys_segments
++;
1174 spin_unlock_irq(&conf
->device_lock
);
1175 /* Cannot call generic_make_request directly
1176 * as that will be queued in __generic_make_request
1177 * and subsequent mempool_alloc might block
1178 * waiting for it. so hand bio over to raid10d.
1180 reschedule_retry(r10_bio
);
1182 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1184 r10_bio
->master_bio
= bio
;
1185 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1187 r10_bio
->mddev
= mddev
;
1188 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+
1192 generic_make_request(read_bio
);
1199 if (conf
->pending_count
>= max_queued_requests
) {
1200 md_wakeup_thread(mddev
->thread
);
1201 wait_event(conf
->wait_barrier
,
1202 conf
->pending_count
< max_queued_requests
);
1204 /* first select target devices under rcu_lock and
1205 * inc refcount on their rdev. Record them by setting
1207 * If there are known/acknowledged bad blocks on any device
1208 * on which we have seen a write error, we want to avoid
1209 * writing to those blocks. This potentially requires several
1210 * writes to write around the bad blocks. Each set of writes
1211 * gets its own r10_bio with a set of bios attached. The number
1212 * of r10_bios is recored in bio->bi_phys_segments just as with
1216 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1217 raid10_find_phys(conf
, r10_bio
);
1219 blocked_rdev
= NULL
;
1221 max_sectors
= r10_bio
->sectors
;
1223 for (i
= 0; i
< conf
->copies
; i
++) {
1224 int d
= r10_bio
->devs
[i
].devnum
;
1225 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1226 struct md_rdev
*rrdev
= rcu_dereference(
1227 conf
->mirrors
[d
].replacement
);
1230 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1231 atomic_inc(&rdev
->nr_pending
);
1232 blocked_rdev
= rdev
;
1235 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1236 atomic_inc(&rrdev
->nr_pending
);
1237 blocked_rdev
= rrdev
;
1240 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1242 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1245 r10_bio
->devs
[i
].bio
= NULL
;
1246 r10_bio
->devs
[i
].repl_bio
= NULL
;
1248 if (!rdev
&& !rrdev
) {
1249 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1252 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1254 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1258 is_bad
= is_badblock(rdev
, dev_sector
,
1260 &first_bad
, &bad_sectors
);
1262 /* Mustn't write here until the bad block
1265 atomic_inc(&rdev
->nr_pending
);
1266 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1267 blocked_rdev
= rdev
;
1270 if (is_bad
&& first_bad
<= dev_sector
) {
1271 /* Cannot write here at all */
1272 bad_sectors
-= (dev_sector
- first_bad
);
1273 if (bad_sectors
< max_sectors
)
1274 /* Mustn't write more than bad_sectors
1275 * to other devices yet
1277 max_sectors
= bad_sectors
;
1278 /* We don't set R10BIO_Degraded as that
1279 * only applies if the disk is missing,
1280 * so it might be re-added, and we want to
1281 * know to recover this chunk.
1282 * In this case the device is here, and the
1283 * fact that this chunk is not in-sync is
1284 * recorded in the bad block log.
1289 int good_sectors
= first_bad
- dev_sector
;
1290 if (good_sectors
< max_sectors
)
1291 max_sectors
= good_sectors
;
1295 r10_bio
->devs
[i
].bio
= bio
;
1296 atomic_inc(&rdev
->nr_pending
);
1299 r10_bio
->devs
[i
].repl_bio
= bio
;
1300 atomic_inc(&rrdev
->nr_pending
);
1305 if (unlikely(blocked_rdev
)) {
1306 /* Have to wait for this device to get unblocked, then retry */
1310 for (j
= 0; j
< i
; j
++) {
1311 if (r10_bio
->devs
[j
].bio
) {
1312 d
= r10_bio
->devs
[j
].devnum
;
1313 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1315 if (r10_bio
->devs
[j
].repl_bio
) {
1316 struct md_rdev
*rdev
;
1317 d
= r10_bio
->devs
[j
].devnum
;
1318 rdev
= conf
->mirrors
[d
].replacement
;
1320 /* Race with remove_disk */
1322 rdev
= conf
->mirrors
[d
].rdev
;
1324 rdev_dec_pending(rdev
, mddev
);
1327 allow_barrier(conf
);
1328 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1333 if (max_sectors
< r10_bio
->sectors
) {
1334 /* We are splitting this into multiple parts, so
1335 * we need to prepare for allocating another r10_bio.
1337 r10_bio
->sectors
= max_sectors
;
1338 spin_lock_irq(&conf
->device_lock
);
1339 if (bio
->bi_phys_segments
== 0)
1340 bio
->bi_phys_segments
= 2;
1342 bio
->bi_phys_segments
++;
1343 spin_unlock_irq(&conf
->device_lock
);
1345 sectors_handled
= r10_bio
->sector
+ max_sectors
-
1346 bio
->bi_iter
.bi_sector
;
1348 atomic_set(&r10_bio
->remaining
, 1);
1349 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1351 for (i
= 0; i
< conf
->copies
; i
++) {
1353 int d
= r10_bio
->devs
[i
].devnum
;
1354 if (r10_bio
->devs
[i
].bio
) {
1355 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1356 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1357 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1359 r10_bio
->devs
[i
].bio
= mbio
;
1361 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1362 choose_data_offset(r10_bio
,
1364 mbio
->bi_bdev
= rdev
->bdev
;
1365 mbio
->bi_end_io
= raid10_end_write_request
;
1367 WRITE
| do_sync
| do_fua
| do_discard
| do_same
;
1368 mbio
->bi_private
= r10_bio
;
1370 atomic_inc(&r10_bio
->remaining
);
1372 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1375 plug
= container_of(cb
, struct raid10_plug_cb
,
1379 spin_lock_irqsave(&conf
->device_lock
, flags
);
1381 bio_list_add(&plug
->pending
, mbio
);
1382 plug
->pending_cnt
++;
1384 bio_list_add(&conf
->pending_bio_list
, mbio
);
1385 conf
->pending_count
++;
1387 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1389 md_wakeup_thread(mddev
->thread
);
1392 if (r10_bio
->devs
[i
].repl_bio
) {
1393 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1395 /* Replacement just got moved to main 'rdev' */
1397 rdev
= conf
->mirrors
[d
].rdev
;
1399 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1400 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1402 r10_bio
->devs
[i
].repl_bio
= mbio
;
1404 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1407 mbio
->bi_bdev
= rdev
->bdev
;
1408 mbio
->bi_end_io
= raid10_end_write_request
;
1410 WRITE
| do_sync
| do_fua
| do_discard
| do_same
;
1411 mbio
->bi_private
= r10_bio
;
1413 atomic_inc(&r10_bio
->remaining
);
1414 spin_lock_irqsave(&conf
->device_lock
, flags
);
1415 bio_list_add(&conf
->pending_bio_list
, mbio
);
1416 conf
->pending_count
++;
1417 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1418 if (!mddev_check_plugged(mddev
))
1419 md_wakeup_thread(mddev
->thread
);
1423 /* Don't remove the bias on 'remaining' (one_write_done) until
1424 * after checking if we need to go around again.
1427 if (sectors_handled
< bio_sectors(bio
)) {
1428 one_write_done(r10_bio
);
1429 /* We need another r10_bio. It has already been counted
1430 * in bio->bi_phys_segments.
1432 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1434 r10_bio
->master_bio
= bio
;
1435 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1437 r10_bio
->mddev
= mddev
;
1438 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1442 one_write_done(r10_bio
);
1445 static void raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1447 struct r10conf
*conf
= mddev
->private;
1448 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1449 int chunk_sects
= chunk_mask
+ 1;
1453 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1454 md_flush_request(mddev
, bio
);
1458 md_write_start(mddev
, bio
);
1463 * If this request crosses a chunk boundary, we need to split
1466 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1467 bio_sectors(bio
) > chunk_sects
1468 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1469 || conf
->prev
.near_copies
<
1470 conf
->prev
.raid_disks
))) {
1471 split
= bio_split(bio
, chunk_sects
-
1472 (bio
->bi_iter
.bi_sector
&
1474 GFP_NOIO
, fs_bio_set
);
1475 bio_chain(split
, bio
);
1480 __make_request(mddev
, split
);
1481 } while (split
!= bio
);
1483 /* In case raid10d snuck in to freeze_array */
1484 wake_up(&conf
->wait_barrier
);
1487 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1489 struct r10conf
*conf
= mddev
->private;
1492 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1493 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1494 if (conf
->geo
.near_copies
> 1)
1495 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1496 if (conf
->geo
.far_copies
> 1) {
1497 if (conf
->geo
.far_offset
)
1498 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1500 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1501 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1502 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1504 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1505 conf
->geo
.raid_disks
- mddev
->degraded
);
1506 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
1507 seq_printf(seq
, "%s",
1508 conf
->mirrors
[i
].rdev
&&
1509 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1510 seq_printf(seq
, "]");
1513 /* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1518 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1524 disks
= conf
->prev
.raid_disks
;
1525 ncopies
= conf
->prev
.near_copies
;
1527 disks
= conf
->geo
.raid_disks
;
1528 ncopies
= conf
->geo
.near_copies
;
1533 int n
= conf
->copies
;
1537 struct md_rdev
*rdev
;
1538 if (this != ignore
&&
1539 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1540 test_bit(In_sync
, &rdev
->flags
))
1542 this = (this+1) % disks
;
1546 first
= (first
+ ncopies
) % disks
;
1547 } while (first
!= 0);
1554 static int enough(struct r10conf
*conf
, int ignore
)
1556 /* when calling 'enough', both 'prev' and 'geo' must
1558 * This is ensured if ->reconfig_mutex or ->device_lock
1561 return _enough(conf
, 0, ignore
) &&
1562 _enough(conf
, 1, ignore
);
1565 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1567 char b
[BDEVNAME_SIZE
];
1568 struct r10conf
*conf
= mddev
->private;
1569 unsigned long flags
;
1572 * If it is not operational, then we have already marked it as dead
1573 * else if it is the last working disks, ignore the error, let the
1574 * next level up know.
1575 * else mark the drive as failed
1577 spin_lock_irqsave(&conf
->device_lock
, flags
);
1578 if (test_bit(In_sync
, &rdev
->flags
)
1579 && !enough(conf
, rdev
->raid_disk
)) {
1581 * Don't fail the drive, just return an IO error.
1583 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1586 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1589 * If recovery is running, make sure it aborts.
1591 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1592 set_bit(Blocked
, &rdev
->flags
);
1593 set_bit(Faulty
, &rdev
->flags
);
1594 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1595 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1596 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1598 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 "md/raid10:%s: Operation continuing on %d devices.\n",
1600 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1601 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1604 static void print_conf(struct r10conf
*conf
)
1607 struct raid10_info
*tmp
;
1609 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1611 printk(KERN_DEBUG
"(!conf)\n");
1614 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1615 conf
->geo
.raid_disks
);
1617 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1618 char b
[BDEVNAME_SIZE
];
1619 tmp
= conf
->mirrors
+ i
;
1621 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1622 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1623 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1624 bdevname(tmp
->rdev
->bdev
,b
));
1628 static void close_sync(struct r10conf
*conf
)
1631 allow_barrier(conf
);
1633 mempool_destroy(conf
->r10buf_pool
);
1634 conf
->r10buf_pool
= NULL
;
1637 static int raid10_spare_active(struct mddev
*mddev
)
1640 struct r10conf
*conf
= mddev
->private;
1641 struct raid10_info
*tmp
;
1643 unsigned long flags
;
1646 * Find all non-in_sync disks within the RAID10 configuration
1647 * and mark them in_sync
1649 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1650 tmp
= conf
->mirrors
+ i
;
1651 if (tmp
->replacement
1652 && tmp
->replacement
->recovery_offset
== MaxSector
1653 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1654 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1655 /* Replacement has just become active */
1657 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1660 /* Replaced device not technically faulty,
1661 * but we need to be sure it gets removed
1662 * and never re-added.
1664 set_bit(Faulty
, &tmp
->rdev
->flags
);
1665 sysfs_notify_dirent_safe(
1666 tmp
->rdev
->sysfs_state
);
1668 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1669 } else if (tmp
->rdev
1670 && tmp
->rdev
->recovery_offset
== MaxSector
1671 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1672 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1674 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1677 spin_lock_irqsave(&conf
->device_lock
, flags
);
1678 mddev
->degraded
-= count
;
1679 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1685 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1687 struct r10conf
*conf
= mddev
->private;
1691 int last
= conf
->geo
.raid_disks
- 1;
1693 if (mddev
->recovery_cp
< MaxSector
)
1694 /* only hot-add to in-sync arrays, as recovery is
1695 * very different from resync
1698 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1701 if (md_integrity_add_rdev(rdev
, mddev
))
1704 if (rdev
->raid_disk
>= 0)
1705 first
= last
= rdev
->raid_disk
;
1707 if (rdev
->saved_raid_disk
>= first
&&
1708 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1709 mirror
= rdev
->saved_raid_disk
;
1712 for ( ; mirror
<= last
; mirror
++) {
1713 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1714 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1717 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1718 p
->replacement
!= NULL
)
1720 clear_bit(In_sync
, &rdev
->flags
);
1721 set_bit(Replacement
, &rdev
->flags
);
1722 rdev
->raid_disk
= mirror
;
1725 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1726 rdev
->data_offset
<< 9);
1728 rcu_assign_pointer(p
->replacement
, rdev
);
1733 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1734 rdev
->data_offset
<< 9);
1736 p
->head_position
= 0;
1737 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1738 rdev
->raid_disk
= mirror
;
1740 if (rdev
->saved_raid_disk
!= mirror
)
1742 rcu_assign_pointer(p
->rdev
, rdev
);
1745 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1746 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1752 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1754 struct r10conf
*conf
= mddev
->private;
1756 int number
= rdev
->raid_disk
;
1757 struct md_rdev
**rdevp
;
1758 struct raid10_info
*p
= conf
->mirrors
+ number
;
1761 if (rdev
== p
->rdev
)
1763 else if (rdev
== p
->replacement
)
1764 rdevp
= &p
->replacement
;
1768 if (test_bit(In_sync
, &rdev
->flags
) ||
1769 atomic_read(&rdev
->nr_pending
)) {
1773 /* Only remove faulty devices if recovery
1776 if (!test_bit(Faulty
, &rdev
->flags
) &&
1777 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1778 (!p
->replacement
|| p
->replacement
== rdev
) &&
1779 number
< conf
->geo
.raid_disks
&&
1786 if (atomic_read(&rdev
->nr_pending
)) {
1787 /* lost the race, try later */
1791 } else if (p
->replacement
) {
1792 /* We must have just cleared 'rdev' */
1793 p
->rdev
= p
->replacement
;
1794 clear_bit(Replacement
, &p
->replacement
->flags
);
1795 smp_mb(); /* Make sure other CPUs may see both as identical
1796 * but will never see neither -- if they are careful.
1798 p
->replacement
= NULL
;
1799 clear_bit(WantReplacement
, &rdev
->flags
);
1801 /* We might have just remove the Replacement as faulty
1802 * Clear the flag just in case
1804 clear_bit(WantReplacement
, &rdev
->flags
);
1806 err
= md_integrity_register(mddev
);
1814 static void end_sync_read(struct bio
*bio
)
1816 struct r10bio
*r10_bio
= bio
->bi_private
;
1817 struct r10conf
*conf
= r10_bio
->mddev
->private;
1820 if (bio
== r10_bio
->master_bio
) {
1821 /* this is a reshape read */
1822 d
= r10_bio
->read_slot
; /* really the read dev */
1824 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1827 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1829 /* The write handler will notice the lack of
1830 * R10BIO_Uptodate and record any errors etc
1832 atomic_add(r10_bio
->sectors
,
1833 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1835 /* for reconstruct, we always reschedule after a read.
1836 * for resync, only after all reads
1838 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1839 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1840 atomic_dec_and_test(&r10_bio
->remaining
)) {
1841 /* we have read all the blocks,
1842 * do the comparison in process context in raid10d
1844 reschedule_retry(r10_bio
);
1848 static void end_sync_request(struct r10bio
*r10_bio
)
1850 struct mddev
*mddev
= r10_bio
->mddev
;
1852 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1853 if (r10_bio
->master_bio
== NULL
) {
1854 /* the primary of several recovery bios */
1855 sector_t s
= r10_bio
->sectors
;
1856 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1857 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1858 reschedule_retry(r10_bio
);
1861 md_done_sync(mddev
, s
, 1);
1864 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1865 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1866 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1867 reschedule_retry(r10_bio
);
1875 static void end_sync_write(struct bio
*bio
)
1877 struct r10bio
*r10_bio
= bio
->bi_private
;
1878 struct mddev
*mddev
= r10_bio
->mddev
;
1879 struct r10conf
*conf
= mddev
->private;
1885 struct md_rdev
*rdev
= NULL
;
1887 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1889 rdev
= conf
->mirrors
[d
].replacement
;
1891 rdev
= conf
->mirrors
[d
].rdev
;
1893 if (bio
->bi_error
) {
1895 md_error(mddev
, rdev
);
1897 set_bit(WriteErrorSeen
, &rdev
->flags
);
1898 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1899 set_bit(MD_RECOVERY_NEEDED
,
1900 &rdev
->mddev
->recovery
);
1901 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1903 } else if (is_badblock(rdev
,
1904 r10_bio
->devs
[slot
].addr
,
1906 &first_bad
, &bad_sectors
))
1907 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1909 rdev_dec_pending(rdev
, mddev
);
1911 end_sync_request(r10_bio
);
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write. The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1927 * We check if all blocks are in-sync and only write to blocks that
1930 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1932 struct r10conf
*conf
= mddev
->private;
1934 struct bio
*tbio
, *fbio
;
1937 atomic_set(&r10_bio
->remaining
, 1);
1939 /* find the first device with a block */
1940 for (i
=0; i
<conf
->copies
; i
++)
1941 if (!r10_bio
->devs
[i
].bio
->bi_error
)
1944 if (i
== conf
->copies
)
1948 fbio
= r10_bio
->devs
[i
].bio
;
1949 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
1950 fbio
->bi_iter
.bi_idx
= 0;
1952 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1953 /* now find blocks with errors */
1954 for (i
=0 ; i
< conf
->copies
; i
++) {
1957 tbio
= r10_bio
->devs
[i
].bio
;
1959 if (tbio
->bi_end_io
!= end_sync_read
)
1963 if (!r10_bio
->devs
[i
].bio
->bi_error
) {
1964 /* We know that the bi_io_vec layout is the same for
1965 * both 'first' and 'i', so we just compare them.
1966 * All vec entries are PAGE_SIZE;
1968 int sectors
= r10_bio
->sectors
;
1969 for (j
= 0; j
< vcnt
; j
++) {
1970 int len
= PAGE_SIZE
;
1971 if (sectors
< (len
/ 512))
1972 len
= sectors
* 512;
1973 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1974 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1981 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
1982 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1983 /* Don't fix anything. */
1986 /* Ok, we need to write this bio, either to correct an
1987 * inconsistency or to correct an unreadable block.
1988 * First we need to fixup bv_offset, bv_len and
1989 * bi_vecs, as the read request might have corrupted these
1993 tbio
->bi_vcnt
= vcnt
;
1994 tbio
->bi_iter
.bi_size
= fbio
->bi_iter
.bi_size
;
1995 tbio
->bi_rw
= WRITE
;
1996 tbio
->bi_private
= r10_bio
;
1997 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
1998 tbio
->bi_end_io
= end_sync_write
;
2000 bio_copy_data(tbio
, fbio
);
2002 d
= r10_bio
->devs
[i
].devnum
;
2003 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2004 atomic_inc(&r10_bio
->remaining
);
2005 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2007 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2008 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2009 generic_make_request(tbio
);
2012 /* Now write out to any replacement devices
2015 for (i
= 0; i
< conf
->copies
; i
++) {
2018 tbio
= r10_bio
->devs
[i
].repl_bio
;
2019 if (!tbio
|| !tbio
->bi_end_io
)
2021 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2022 && r10_bio
->devs
[i
].bio
!= fbio
)
2023 bio_copy_data(tbio
, fbio
);
2024 d
= r10_bio
->devs
[i
].devnum
;
2025 atomic_inc(&r10_bio
->remaining
);
2026 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2028 generic_make_request(tbio
);
2032 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2033 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2048 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2050 /* We got a read error during recovery.
2051 * We repeat the read in smaller page-sized sections.
2052 * If a read succeeds, write it to the new device or record
2053 * a bad block if we cannot.
2054 * If a read fails, record a bad block on both old and
2057 struct mddev
*mddev
= r10_bio
->mddev
;
2058 struct r10conf
*conf
= mddev
->private;
2059 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2061 int sectors
= r10_bio
->sectors
;
2063 int dr
= r10_bio
->devs
[0].devnum
;
2064 int dw
= r10_bio
->devs
[1].devnum
;
2068 struct md_rdev
*rdev
;
2072 if (s
> (PAGE_SIZE
>>9))
2075 rdev
= conf
->mirrors
[dr
].rdev
;
2076 addr
= r10_bio
->devs
[0].addr
+ sect
,
2077 ok
= sync_page_io(rdev
,
2080 bio
->bi_io_vec
[idx
].bv_page
,
2083 rdev
= conf
->mirrors
[dw
].rdev
;
2084 addr
= r10_bio
->devs
[1].addr
+ sect
;
2085 ok
= sync_page_io(rdev
,
2088 bio
->bi_io_vec
[idx
].bv_page
,
2091 set_bit(WriteErrorSeen
, &rdev
->flags
);
2092 if (!test_and_set_bit(WantReplacement
,
2094 set_bit(MD_RECOVERY_NEEDED
,
2095 &rdev
->mddev
->recovery
);
2099 /* We don't worry if we cannot set a bad block -
2100 * it really is bad so there is no loss in not
2103 rdev_set_badblocks(rdev
, addr
, s
, 0);
2105 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2106 /* need bad block on destination too */
2107 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2108 addr
= r10_bio
->devs
[1].addr
+ sect
;
2109 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2111 /* just abort the recovery */
2113 "md/raid10:%s: recovery aborted"
2114 " due to read error\n",
2117 conf
->mirrors
[dw
].recovery_disabled
2118 = mddev
->recovery_disabled
;
2119 set_bit(MD_RECOVERY_INTR
,
2132 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2134 struct r10conf
*conf
= mddev
->private;
2136 struct bio
*wbio
, *wbio2
;
2138 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2139 fix_recovery_read_error(r10_bio
);
2140 end_sync_request(r10_bio
);
2145 * share the pages with the first bio
2146 * and submit the write request
2148 d
= r10_bio
->devs
[1].devnum
;
2149 wbio
= r10_bio
->devs
[1].bio
;
2150 wbio2
= r10_bio
->devs
[1].repl_bio
;
2151 /* Need to test wbio2->bi_end_io before we call
2152 * generic_make_request as if the former is NULL,
2153 * the latter is free to free wbio2.
2155 if (wbio2
&& !wbio2
->bi_end_io
)
2157 if (wbio
->bi_end_io
) {
2158 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2159 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2160 generic_make_request(wbio
);
2163 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2164 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2165 bio_sectors(wbio2
));
2166 generic_make_request(wbio2
);
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2176 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2178 struct timespec cur_time_mon
;
2179 unsigned long hours_since_last
;
2180 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2182 ktime_get_ts(&cur_time_mon
);
2184 if (rdev
->last_read_error
.tv_sec
== 0 &&
2185 rdev
->last_read_error
.tv_nsec
== 0) {
2186 /* first time we've seen a read error */
2187 rdev
->last_read_error
= cur_time_mon
;
2191 hours_since_last
= (cur_time_mon
.tv_sec
-
2192 rdev
->last_read_error
.tv_sec
) / 3600;
2194 rdev
->last_read_error
= cur_time_mon
;
2197 * if hours_since_last is > the number of bits in read_errors
2198 * just set read errors to 0. We do this to avoid
2199 * overflowing the shift of read_errors by hours_since_last.
2201 if (hours_since_last
>= 8 * sizeof(read_errors
))
2202 atomic_set(&rdev
->read_errors
, 0);
2204 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2207 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2208 int sectors
, struct page
*page
, int rw
)
2213 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2214 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2216 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2220 set_bit(WriteErrorSeen
, &rdev
->flags
);
2221 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2222 set_bit(MD_RECOVERY_NEEDED
,
2223 &rdev
->mddev
->recovery
);
2225 /* need to record an error - either for the block or the device */
2226 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2227 md_error(rdev
->mddev
, rdev
);
2232 * This is a kernel thread which:
2234 * 1. Retries failed read operations on working mirrors.
2235 * 2. Updates the raid superblock when problems encounter.
2236 * 3. Performs writes following reads for array synchronising.
2239 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2241 int sect
= 0; /* Offset from r10_bio->sector */
2242 int sectors
= r10_bio
->sectors
;
2243 struct md_rdev
*rdev
;
2244 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2245 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2247 /* still own a reference to this rdev, so it cannot
2248 * have been cleared recently.
2250 rdev
= conf
->mirrors
[d
].rdev
;
2252 if (test_bit(Faulty
, &rdev
->flags
))
2253 /* drive has already been failed, just ignore any
2254 more fix_read_error() attempts */
2257 check_decay_read_errors(mddev
, rdev
);
2258 atomic_inc(&rdev
->read_errors
);
2259 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2260 char b
[BDEVNAME_SIZE
];
2261 bdevname(rdev
->bdev
, b
);
2264 "md/raid10:%s: %s: Raid device exceeded "
2265 "read_error threshold [cur %d:max %d]\n",
2267 atomic_read(&rdev
->read_errors
), max_read_errors
);
2269 "md/raid10:%s: %s: Failing raid device\n",
2271 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2272 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2278 int sl
= r10_bio
->read_slot
;
2282 if (s
> (PAGE_SIZE
>>9))
2290 d
= r10_bio
->devs
[sl
].devnum
;
2291 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2293 test_bit(In_sync
, &rdev
->flags
) &&
2294 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2295 &first_bad
, &bad_sectors
) == 0) {
2296 atomic_inc(&rdev
->nr_pending
);
2298 success
= sync_page_io(rdev
,
2299 r10_bio
->devs
[sl
].addr
+
2302 conf
->tmppage
, READ
, false);
2303 rdev_dec_pending(rdev
, mddev
);
2309 if (sl
== conf
->copies
)
2311 } while (!success
&& sl
!= r10_bio
->read_slot
);
2315 /* Cannot read from anywhere, just mark the block
2316 * as bad on the first device to discourage future
2319 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2320 rdev
= conf
->mirrors
[dn
].rdev
;
2322 if (!rdev_set_badblocks(
2324 r10_bio
->devs
[r10_bio
->read_slot
].addr
2327 md_error(mddev
, rdev
);
2328 r10_bio
->devs
[r10_bio
->read_slot
].bio
2335 /* write it back and re-read */
2337 while (sl
!= r10_bio
->read_slot
) {
2338 char b
[BDEVNAME_SIZE
];
2343 d
= r10_bio
->devs
[sl
].devnum
;
2344 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2346 !test_bit(In_sync
, &rdev
->flags
))
2349 atomic_inc(&rdev
->nr_pending
);
2351 if (r10_sync_page_io(rdev
,
2352 r10_bio
->devs
[sl
].addr
+
2354 s
, conf
->tmppage
, WRITE
)
2356 /* Well, this device is dead */
2358 "md/raid10:%s: read correction "
2360 " (%d sectors at %llu on %s)\n",
2362 (unsigned long long)(
2364 choose_data_offset(r10_bio
,
2366 bdevname(rdev
->bdev
, b
));
2367 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2370 bdevname(rdev
->bdev
, b
));
2372 rdev_dec_pending(rdev
, mddev
);
2376 while (sl
!= r10_bio
->read_slot
) {
2377 char b
[BDEVNAME_SIZE
];
2382 d
= r10_bio
->devs
[sl
].devnum
;
2383 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2385 !test_bit(In_sync
, &rdev
->flags
))
2388 atomic_inc(&rdev
->nr_pending
);
2390 switch (r10_sync_page_io(rdev
,
2391 r10_bio
->devs
[sl
].addr
+
2396 /* Well, this device is dead */
2398 "md/raid10:%s: unable to read back "
2400 " (%d sectors at %llu on %s)\n",
2402 (unsigned long long)(
2404 choose_data_offset(r10_bio
, rdev
)),
2405 bdevname(rdev
->bdev
, b
));
2406 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2409 bdevname(rdev
->bdev
, b
));
2413 "md/raid10:%s: read error corrected"
2414 " (%d sectors at %llu on %s)\n",
2416 (unsigned long long)(
2418 choose_data_offset(r10_bio
, rdev
)),
2419 bdevname(rdev
->bdev
, b
));
2420 atomic_add(s
, &rdev
->corrected_errors
);
2423 rdev_dec_pending(rdev
, mddev
);
2433 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2435 struct bio
*bio
= r10_bio
->master_bio
;
2436 struct mddev
*mddev
= r10_bio
->mddev
;
2437 struct r10conf
*conf
= mddev
->private;
2438 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2439 /* bio has the data to be written to slot 'i' where
2440 * we just recently had a write error.
2441 * We repeatedly clone the bio and trim down to one block,
2442 * then try the write. Where the write fails we record
2444 * It is conceivable that the bio doesn't exactly align with
2445 * blocks. We must handle this.
2447 * We currently own a reference to the rdev.
2453 int sect_to_write
= r10_bio
->sectors
;
2456 if (rdev
->badblocks
.shift
< 0)
2459 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2460 bdev_logical_block_size(rdev
->bdev
) >> 9);
2461 sector
= r10_bio
->sector
;
2462 sectors
= ((r10_bio
->sector
+ block_sectors
)
2463 & ~(sector_t
)(block_sectors
- 1))
2466 while (sect_to_write
) {
2468 if (sectors
> sect_to_write
)
2469 sectors
= sect_to_write
;
2470 /* Write at 'sector' for 'sectors' */
2471 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2472 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2473 wbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
2474 choose_data_offset(r10_bio
, rdev
) +
2475 (sector
- r10_bio
->sector
));
2476 wbio
->bi_bdev
= rdev
->bdev
;
2477 if (submit_bio_wait(WRITE
, wbio
) < 0)
2479 ok
= rdev_set_badblocks(rdev
, sector
,
2484 sect_to_write
-= sectors
;
2486 sectors
= block_sectors
;
2491 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2493 int slot
= r10_bio
->read_slot
;
2495 struct r10conf
*conf
= mddev
->private;
2496 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2497 char b
[BDEVNAME_SIZE
];
2498 unsigned long do_sync
;
2501 /* we got a read error. Maybe the drive is bad. Maybe just
2502 * the block and we can fix it.
2503 * We freeze all other IO, and try reading the block from
2504 * other devices. When we find one, we re-write
2505 * and check it that fixes the read error.
2506 * This is all done synchronously while the array is
2509 bio
= r10_bio
->devs
[slot
].bio
;
2510 bdevname(bio
->bi_bdev
, b
);
2512 r10_bio
->devs
[slot
].bio
= NULL
;
2514 if (mddev
->ro
== 0) {
2515 freeze_array(conf
, 1);
2516 fix_read_error(conf
, mddev
, r10_bio
);
2517 unfreeze_array(conf
);
2519 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2521 rdev_dec_pending(rdev
, mddev
);
2524 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2526 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2527 " read error for block %llu\n",
2529 (unsigned long long)r10_bio
->sector
);
2530 raid_end_bio_io(r10_bio
);
2534 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2535 slot
= r10_bio
->read_slot
;
2538 "md/raid10:%s: %s: redirecting "
2539 "sector %llu to another mirror\n",
2541 bdevname(rdev
->bdev
, b
),
2542 (unsigned long long)r10_bio
->sector
);
2543 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2545 bio_trim(bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
2546 r10_bio
->devs
[slot
].bio
= bio
;
2547 r10_bio
->devs
[slot
].rdev
= rdev
;
2548 bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
2549 + choose_data_offset(r10_bio
, rdev
);
2550 bio
->bi_bdev
= rdev
->bdev
;
2551 bio
->bi_rw
= READ
| do_sync
;
2552 bio
->bi_private
= r10_bio
;
2553 bio
->bi_end_io
= raid10_end_read_request
;
2554 if (max_sectors
< r10_bio
->sectors
) {
2555 /* Drat - have to split this up more */
2556 struct bio
*mbio
= r10_bio
->master_bio
;
2557 int sectors_handled
=
2558 r10_bio
->sector
+ max_sectors
2559 - mbio
->bi_iter
.bi_sector
;
2560 r10_bio
->sectors
= max_sectors
;
2561 spin_lock_irq(&conf
->device_lock
);
2562 if (mbio
->bi_phys_segments
== 0)
2563 mbio
->bi_phys_segments
= 2;
2565 mbio
->bi_phys_segments
++;
2566 spin_unlock_irq(&conf
->device_lock
);
2567 generic_make_request(bio
);
2569 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2571 r10_bio
->master_bio
= mbio
;
2572 r10_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2574 set_bit(R10BIO_ReadError
,
2576 r10_bio
->mddev
= mddev
;
2577 r10_bio
->sector
= mbio
->bi_iter
.bi_sector
2582 generic_make_request(bio
);
2585 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2587 /* Some sort of write request has finished and it
2588 * succeeded in writing where we thought there was a
2589 * bad block. So forget the bad block.
2590 * Or possibly if failed and we need to record
2594 struct md_rdev
*rdev
;
2596 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2597 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2598 for (m
= 0; m
< conf
->copies
; m
++) {
2599 int dev
= r10_bio
->devs
[m
].devnum
;
2600 rdev
= conf
->mirrors
[dev
].rdev
;
2601 if (r10_bio
->devs
[m
].bio
== NULL
)
2603 if (!r10_bio
->devs
[m
].bio
->bi_error
) {
2604 rdev_clear_badblocks(
2606 r10_bio
->devs
[m
].addr
,
2607 r10_bio
->sectors
, 0);
2609 if (!rdev_set_badblocks(
2611 r10_bio
->devs
[m
].addr
,
2612 r10_bio
->sectors
, 0))
2613 md_error(conf
->mddev
, rdev
);
2615 rdev
= conf
->mirrors
[dev
].replacement
;
2616 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2619 if (!r10_bio
->devs
[m
].repl_bio
->bi_error
) {
2620 rdev_clear_badblocks(
2622 r10_bio
->devs
[m
].addr
,
2623 r10_bio
->sectors
, 0);
2625 if (!rdev_set_badblocks(
2627 r10_bio
->devs
[m
].addr
,
2628 r10_bio
->sectors
, 0))
2629 md_error(conf
->mddev
, rdev
);
2635 for (m
= 0; m
< conf
->copies
; m
++) {
2636 int dev
= r10_bio
->devs
[m
].devnum
;
2637 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2638 rdev
= conf
->mirrors
[dev
].rdev
;
2639 if (bio
== IO_MADE_GOOD
) {
2640 rdev_clear_badblocks(
2642 r10_bio
->devs
[m
].addr
,
2643 r10_bio
->sectors
, 0);
2644 rdev_dec_pending(rdev
, conf
->mddev
);
2645 } else if (bio
!= NULL
&& bio
->bi_error
) {
2647 if (!narrow_write_error(r10_bio
, m
)) {
2648 md_error(conf
->mddev
, rdev
);
2649 set_bit(R10BIO_Degraded
,
2652 rdev_dec_pending(rdev
, conf
->mddev
);
2654 bio
= r10_bio
->devs
[m
].repl_bio
;
2655 rdev
= conf
->mirrors
[dev
].replacement
;
2656 if (rdev
&& bio
== IO_MADE_GOOD
) {
2657 rdev_clear_badblocks(
2659 r10_bio
->devs
[m
].addr
,
2660 r10_bio
->sectors
, 0);
2661 rdev_dec_pending(rdev
, conf
->mddev
);
2665 spin_lock_irq(&conf
->device_lock
);
2666 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2668 spin_unlock_irq(&conf
->device_lock
);
2669 md_wakeup_thread(conf
->mddev
->thread
);
2671 if (test_bit(R10BIO_WriteError
,
2673 close_write(r10_bio
);
2674 raid_end_bio_io(r10_bio
);
2679 static void raid10d(struct md_thread
*thread
)
2681 struct mddev
*mddev
= thread
->mddev
;
2682 struct r10bio
*r10_bio
;
2683 unsigned long flags
;
2684 struct r10conf
*conf
= mddev
->private;
2685 struct list_head
*head
= &conf
->retry_list
;
2686 struct blk_plug plug
;
2688 md_check_recovery(mddev
);
2690 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2691 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2693 spin_lock_irqsave(&conf
->device_lock
, flags
);
2694 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2695 while (!list_empty(&conf
->bio_end_io_list
)) {
2696 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2700 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2701 while (!list_empty(&tmp
)) {
2702 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2704 list_del(&r10_bio
->retry_list
);
2705 if (mddev
->degraded
)
2706 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2708 if (test_bit(R10BIO_WriteError
,
2710 close_write(r10_bio
);
2711 raid_end_bio_io(r10_bio
);
2715 blk_start_plug(&plug
);
2718 flush_pending_writes(conf
);
2720 spin_lock_irqsave(&conf
->device_lock
, flags
);
2721 if (list_empty(head
)) {
2722 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2725 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2726 list_del(head
->prev
);
2728 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2730 mddev
= r10_bio
->mddev
;
2731 conf
= mddev
->private;
2732 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2733 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2734 handle_write_completed(conf
, r10_bio
);
2735 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2736 reshape_request_write(mddev
, r10_bio
);
2737 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2738 sync_request_write(mddev
, r10_bio
);
2739 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2740 recovery_request_write(mddev
, r10_bio
);
2741 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2742 handle_read_error(mddev
, r10_bio
);
2744 /* just a partial read to be scheduled from a
2747 int slot
= r10_bio
->read_slot
;
2748 generic_make_request(r10_bio
->devs
[slot
].bio
);
2752 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2753 md_check_recovery(mddev
);
2755 blk_finish_plug(&plug
);
2758 static int init_resync(struct r10conf
*conf
)
2763 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2764 BUG_ON(conf
->r10buf_pool
);
2765 conf
->have_replacement
= 0;
2766 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2767 if (conf
->mirrors
[i
].replacement
)
2768 conf
->have_replacement
= 1;
2769 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2770 if (!conf
->r10buf_pool
)
2772 conf
->next_resync
= 0;
2777 * perform a "sync" on one "block"
2779 * We need to make sure that no normal I/O request - particularly write
2780 * requests - conflict with active sync requests.
2782 * This is achieved by tracking pending requests and a 'barrier' concept
2783 * that can be installed to exclude normal IO requests.
2785 * Resync and recovery are handled very differently.
2786 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2788 * For resync, we iterate over virtual addresses, read all copies,
2789 * and update if there are differences. If only one copy is live,
2791 * For recovery, we iterate over physical addresses, read a good
2792 * value for each non-in_sync drive, and over-write.
2794 * So, for recovery we may have several outstanding complex requests for a
2795 * given address, one for each out-of-sync device. We model this by allocating
2796 * a number of r10_bio structures, one for each out-of-sync device.
2797 * As we setup these structures, we collect all bio's together into a list
2798 * which we then process collectively to add pages, and then process again
2799 * to pass to generic_make_request.
2801 * The r10_bio structures are linked using a borrowed master_bio pointer.
2802 * This link is counted in ->remaining. When the r10_bio that points to NULL
2803 * has its remaining count decremented to 0, the whole complex operation
2808 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2811 struct r10conf
*conf
= mddev
->private;
2812 struct r10bio
*r10_bio
;
2813 struct bio
*biolist
= NULL
, *bio
;
2814 sector_t max_sector
, nr_sectors
;
2817 sector_t sync_blocks
;
2818 sector_t sectors_skipped
= 0;
2819 int chunks_skipped
= 0;
2820 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2822 if (!conf
->r10buf_pool
)
2823 if (init_resync(conf
))
2827 * Allow skipping a full rebuild for incremental assembly
2828 * of a clean array, like RAID1 does.
2830 if (mddev
->bitmap
== NULL
&&
2831 mddev
->recovery_cp
== MaxSector
&&
2832 mddev
->reshape_position
== MaxSector
&&
2833 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2834 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2835 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2836 conf
->fullsync
== 0) {
2838 return mddev
->dev_sectors
- sector_nr
;
2842 max_sector
= mddev
->dev_sectors
;
2843 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2844 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2845 max_sector
= mddev
->resync_max_sectors
;
2846 if (sector_nr
>= max_sector
) {
2847 /* If we aborted, we need to abort the
2848 * sync on the 'current' bitmap chucks (there can
2849 * be several when recovering multiple devices).
2850 * as we may have started syncing it but not finished.
2851 * We can find the current address in
2852 * mddev->curr_resync, but for recovery,
2853 * we need to convert that to several
2854 * virtual addresses.
2856 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2862 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2863 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2864 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2866 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2868 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2869 bitmap_end_sync(mddev
->bitmap
, sect
,
2873 /* completed sync */
2874 if ((!mddev
->bitmap
|| conf
->fullsync
)
2875 && conf
->have_replacement
2876 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2877 /* Completed a full sync so the replacements
2878 * are now fully recovered.
2880 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2881 if (conf
->mirrors
[i
].replacement
)
2882 conf
->mirrors
[i
].replacement
2888 bitmap_close_sync(mddev
->bitmap
);
2891 return sectors_skipped
;
2894 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2895 return reshape_request(mddev
, sector_nr
, skipped
);
2897 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2898 /* if there has been nothing to do on any drive,
2899 * then there is nothing to do at all..
2902 return (max_sector
- sector_nr
) + sectors_skipped
;
2905 if (max_sector
> mddev
->resync_max
)
2906 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2908 /* make sure whole request will fit in a chunk - if chunks
2911 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2912 max_sector
> (sector_nr
| chunk_mask
))
2913 max_sector
= (sector_nr
| chunk_mask
) + 1;
2915 /* Again, very different code for resync and recovery.
2916 * Both must result in an r10bio with a list of bios that
2917 * have bi_end_io, bi_sector, bi_bdev set,
2918 * and bi_private set to the r10bio.
2919 * For recovery, we may actually create several r10bios
2920 * with 2 bios in each, that correspond to the bios in the main one.
2921 * In this case, the subordinate r10bios link back through a
2922 * borrowed master_bio pointer, and the counter in the master
2923 * includes a ref from each subordinate.
2925 /* First, we decide what to do and set ->bi_end_io
2926 * To end_sync_read if we want to read, and
2927 * end_sync_write if we will want to write.
2930 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2931 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2932 /* recovery... the complicated one */
2936 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
2942 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
2944 if ((mirror
->rdev
== NULL
||
2945 test_bit(In_sync
, &mirror
->rdev
->flags
))
2947 (mirror
->replacement
== NULL
||
2949 &mirror
->replacement
->flags
)))
2953 /* want to reconstruct this device */
2955 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2956 if (sect
>= mddev
->resync_max_sectors
) {
2957 /* last stripe is not complete - don't
2958 * try to recover this sector.
2962 /* Unless we are doing a full sync, or a replacement
2963 * we only need to recover the block if it is set in
2966 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2968 if (sync_blocks
< max_sync
)
2969 max_sync
= sync_blocks
;
2971 mirror
->replacement
== NULL
&&
2973 /* yep, skip the sync_blocks here, but don't assume
2974 * that there will never be anything to do here
2976 chunks_skipped
= -1;
2980 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2982 raise_barrier(conf
, rb2
!= NULL
);
2983 atomic_set(&r10_bio
->remaining
, 0);
2985 r10_bio
->master_bio
= (struct bio
*)rb2
;
2987 atomic_inc(&rb2
->remaining
);
2988 r10_bio
->mddev
= mddev
;
2989 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2990 r10_bio
->sector
= sect
;
2992 raid10_find_phys(conf
, r10_bio
);
2994 /* Need to check if the array will still be
2997 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++)
2998 if (conf
->mirrors
[j
].rdev
== NULL
||
2999 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
3004 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3005 &sync_blocks
, still_degraded
);
3008 for (j
=0; j
<conf
->copies
;j
++) {
3010 int d
= r10_bio
->devs
[j
].devnum
;
3011 sector_t from_addr
, to_addr
;
3012 struct md_rdev
*rdev
;
3013 sector_t sector
, first_bad
;
3015 if (!conf
->mirrors
[d
].rdev
||
3016 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
3018 /* This is where we read from */
3020 rdev
= conf
->mirrors
[d
].rdev
;
3021 sector
= r10_bio
->devs
[j
].addr
;
3023 if (is_badblock(rdev
, sector
, max_sync
,
3024 &first_bad
, &bad_sectors
)) {
3025 if (first_bad
> sector
)
3026 max_sync
= first_bad
- sector
;
3028 bad_sectors
-= (sector
3030 if (max_sync
> bad_sectors
)
3031 max_sync
= bad_sectors
;
3035 bio
= r10_bio
->devs
[0].bio
;
3037 bio
->bi_next
= biolist
;
3039 bio
->bi_private
= r10_bio
;
3040 bio
->bi_end_io
= end_sync_read
;
3042 from_addr
= r10_bio
->devs
[j
].addr
;
3043 bio
->bi_iter
.bi_sector
= from_addr
+
3045 bio
->bi_bdev
= rdev
->bdev
;
3046 atomic_inc(&rdev
->nr_pending
);
3047 /* and we write to 'i' (if not in_sync) */
3049 for (k
=0; k
<conf
->copies
; k
++)
3050 if (r10_bio
->devs
[k
].devnum
== i
)
3052 BUG_ON(k
== conf
->copies
);
3053 to_addr
= r10_bio
->devs
[k
].addr
;
3054 r10_bio
->devs
[0].devnum
= d
;
3055 r10_bio
->devs
[0].addr
= from_addr
;
3056 r10_bio
->devs
[1].devnum
= i
;
3057 r10_bio
->devs
[1].addr
= to_addr
;
3059 rdev
= mirror
->rdev
;
3060 if (!test_bit(In_sync
, &rdev
->flags
)) {
3061 bio
= r10_bio
->devs
[1].bio
;
3063 bio
->bi_next
= biolist
;
3065 bio
->bi_private
= r10_bio
;
3066 bio
->bi_end_io
= end_sync_write
;
3068 bio
->bi_iter
.bi_sector
= to_addr
3069 + rdev
->data_offset
;
3070 bio
->bi_bdev
= rdev
->bdev
;
3071 atomic_inc(&r10_bio
->remaining
);
3073 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3075 /* and maybe write to replacement */
3076 bio
= r10_bio
->devs
[1].repl_bio
;
3078 bio
->bi_end_io
= NULL
;
3079 rdev
= mirror
->replacement
;
3080 /* Note: if rdev != NULL, then bio
3081 * cannot be NULL as r10buf_pool_alloc will
3082 * have allocated it.
3083 * So the second test here is pointless.
3084 * But it keeps semantic-checkers happy, and
3085 * this comment keeps human reviewers
3088 if (rdev
== NULL
|| bio
== NULL
||
3089 test_bit(Faulty
, &rdev
->flags
))
3092 bio
->bi_next
= biolist
;
3094 bio
->bi_private
= r10_bio
;
3095 bio
->bi_end_io
= end_sync_write
;
3097 bio
->bi_iter
.bi_sector
= to_addr
+
3099 bio
->bi_bdev
= rdev
->bdev
;
3100 atomic_inc(&r10_bio
->remaining
);
3103 if (j
== conf
->copies
) {
3104 /* Cannot recover, so abort the recovery or
3105 * record a bad block */
3107 /* problem is that there are bad blocks
3108 * on other device(s)
3111 for (k
= 0; k
< conf
->copies
; k
++)
3112 if (r10_bio
->devs
[k
].devnum
== i
)
3114 if (!test_bit(In_sync
,
3115 &mirror
->rdev
->flags
)
3116 && !rdev_set_badblocks(
3118 r10_bio
->devs
[k
].addr
,
3121 if (mirror
->replacement
&&
3122 !rdev_set_badblocks(
3123 mirror
->replacement
,
3124 r10_bio
->devs
[k
].addr
,
3129 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3131 printk(KERN_INFO
"md/raid10:%s: insufficient "
3132 "working devices for recovery.\n",
3134 mirror
->recovery_disabled
3135 = mddev
->recovery_disabled
;
3139 atomic_dec(&rb2
->remaining
);
3144 if (biolist
== NULL
) {
3146 struct r10bio
*rb2
= r10_bio
;
3147 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3148 rb2
->master_bio
= NULL
;
3154 /* resync. Schedule a read for every block at this virt offset */
3157 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, 0);
3159 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3160 &sync_blocks
, mddev
->degraded
) &&
3161 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3162 &mddev
->recovery
)) {
3163 /* We can skip this block */
3165 return sync_blocks
+ sectors_skipped
;
3167 if (sync_blocks
< max_sync
)
3168 max_sync
= sync_blocks
;
3169 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3172 r10_bio
->mddev
= mddev
;
3173 atomic_set(&r10_bio
->remaining
, 0);
3174 raise_barrier(conf
, 0);
3175 conf
->next_resync
= sector_nr
;
3177 r10_bio
->master_bio
= NULL
;
3178 r10_bio
->sector
= sector_nr
;
3179 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3180 raid10_find_phys(conf
, r10_bio
);
3181 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3183 for (i
= 0; i
< conf
->copies
; i
++) {
3184 int d
= r10_bio
->devs
[i
].devnum
;
3185 sector_t first_bad
, sector
;
3188 if (r10_bio
->devs
[i
].repl_bio
)
3189 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3191 bio
= r10_bio
->devs
[i
].bio
;
3193 bio
->bi_error
= -EIO
;
3194 if (conf
->mirrors
[d
].rdev
== NULL
||
3195 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3197 sector
= r10_bio
->devs
[i
].addr
;
3198 if (is_badblock(conf
->mirrors
[d
].rdev
,
3200 &first_bad
, &bad_sectors
)) {
3201 if (first_bad
> sector
)
3202 max_sync
= first_bad
- sector
;
3204 bad_sectors
-= (sector
- first_bad
);
3205 if (max_sync
> bad_sectors
)
3206 max_sync
= bad_sectors
;
3210 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3211 atomic_inc(&r10_bio
->remaining
);
3212 bio
->bi_next
= biolist
;
3214 bio
->bi_private
= r10_bio
;
3215 bio
->bi_end_io
= end_sync_read
;
3217 bio
->bi_iter
.bi_sector
= sector
+
3218 conf
->mirrors
[d
].rdev
->data_offset
;
3219 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3222 if (conf
->mirrors
[d
].replacement
== NULL
||
3224 &conf
->mirrors
[d
].replacement
->flags
))
3227 /* Need to set up for writing to the replacement */
3228 bio
= r10_bio
->devs
[i
].repl_bio
;
3230 bio
->bi_error
= -EIO
;
3232 sector
= r10_bio
->devs
[i
].addr
;
3233 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3234 bio
->bi_next
= biolist
;
3236 bio
->bi_private
= r10_bio
;
3237 bio
->bi_end_io
= end_sync_write
;
3239 bio
->bi_iter
.bi_sector
= sector
+
3240 conf
->mirrors
[d
].replacement
->data_offset
;
3241 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3246 for (i
=0; i
<conf
->copies
; i
++) {
3247 int d
= r10_bio
->devs
[i
].devnum
;
3248 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3249 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3251 if (r10_bio
->devs
[i
].repl_bio
&&
3252 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3254 conf
->mirrors
[d
].replacement
,
3264 if (sector_nr
+ max_sync
< max_sector
)
3265 max_sector
= sector_nr
+ max_sync
;
3268 int len
= PAGE_SIZE
;
3269 if (sector_nr
+ (len
>>9) > max_sector
)
3270 len
= (max_sector
- sector_nr
) << 9;
3273 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3275 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3276 if (bio_add_page(bio
, page
, len
, 0))
3280 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3281 for (bio2
= biolist
;
3282 bio2
&& bio2
!= bio
;
3283 bio2
= bio2
->bi_next
) {
3284 /* remove last page from this bio */
3286 bio2
->bi_iter
.bi_size
-= len
;
3287 bio_clear_flag(bio2
, BIO_SEG_VALID
);
3291 nr_sectors
+= len
>>9;
3292 sector_nr
+= len
>>9;
3293 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3295 r10_bio
->sectors
= nr_sectors
;
3299 biolist
= biolist
->bi_next
;
3301 bio
->bi_next
= NULL
;
3302 r10_bio
= bio
->bi_private
;
3303 r10_bio
->sectors
= nr_sectors
;
3305 if (bio
->bi_end_io
== end_sync_read
) {
3306 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3308 generic_make_request(bio
);
3312 if (sectors_skipped
)
3313 /* pretend they weren't skipped, it makes
3314 * no important difference in this case
3316 md_done_sync(mddev
, sectors_skipped
, 1);
3318 return sectors_skipped
+ nr_sectors
;
3320 /* There is nowhere to write, so all non-sync
3321 * drives must be failed or in resync, all drives
3322 * have a bad block, so try the next chunk...
3324 if (sector_nr
+ max_sync
< max_sector
)
3325 max_sector
= sector_nr
+ max_sync
;
3327 sectors_skipped
+= (max_sector
- sector_nr
);
3329 sector_nr
= max_sector
;
3334 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3337 struct r10conf
*conf
= mddev
->private;
3340 raid_disks
= min(conf
->geo
.raid_disks
,
3341 conf
->prev
.raid_disks
);
3343 sectors
= conf
->dev_sectors
;
3345 size
= sectors
>> conf
->geo
.chunk_shift
;
3346 sector_div(size
, conf
->geo
.far_copies
);
3347 size
= size
* raid_disks
;
3348 sector_div(size
, conf
->geo
.near_copies
);
3350 return size
<< conf
->geo
.chunk_shift
;
3353 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3355 /* Calculate the number of sectors-per-device that will
3356 * actually be used, and set conf->dev_sectors and
3360 size
= size
>> conf
->geo
.chunk_shift
;
3361 sector_div(size
, conf
->geo
.far_copies
);
3362 size
= size
* conf
->geo
.raid_disks
;
3363 sector_div(size
, conf
->geo
.near_copies
);
3364 /* 'size' is now the number of chunks in the array */
3365 /* calculate "used chunks per device" */
3366 size
= size
* conf
->copies
;
3368 /* We need to round up when dividing by raid_disks to
3369 * get the stride size.
3371 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3373 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3375 if (conf
->geo
.far_offset
)
3376 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3378 sector_div(size
, conf
->geo
.far_copies
);
3379 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3383 enum geo_type
{geo_new
, geo_old
, geo_start
};
3384 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3387 int layout
, chunk
, disks
;
3390 layout
= mddev
->layout
;
3391 chunk
= mddev
->chunk_sectors
;
3392 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3395 layout
= mddev
->new_layout
;
3396 chunk
= mddev
->new_chunk_sectors
;
3397 disks
= mddev
->raid_disks
;
3399 default: /* avoid 'may be unused' warnings */
3400 case geo_start
: /* new when starting reshape - raid_disks not
3402 layout
= mddev
->new_layout
;
3403 chunk
= mddev
->new_chunk_sectors
;
3404 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3409 if (chunk
< (PAGE_SIZE
>> 9) ||
3410 !is_power_of_2(chunk
))
3413 fc
= (layout
>> 8) & 255;
3414 fo
= layout
& (1<<16);
3415 geo
->raid_disks
= disks
;
3416 geo
->near_copies
= nc
;
3417 geo
->far_copies
= fc
;
3418 geo
->far_offset
= fo
;
3419 switch (layout
>> 17) {
3420 case 0: /* original layout. simple but not always optimal */
3421 geo
->far_set_size
= disks
;
3423 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3424 * actually using this, but leave code here just in case.*/
3425 geo
->far_set_size
= disks
/fc
;
3426 WARN(geo
->far_set_size
< fc
,
3427 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3429 case 2: /* "improved" layout fixed to match documentation */
3430 geo
->far_set_size
= fc
* nc
;
3432 default: /* Not a valid layout */
3435 geo
->chunk_mask
= chunk
- 1;
3436 geo
->chunk_shift
= ffz(~chunk
);
3440 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3442 struct r10conf
*conf
= NULL
;
3447 copies
= setup_geo(&geo
, mddev
, geo_new
);
3450 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3451 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3452 mdname(mddev
), PAGE_SIZE
);
3456 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3457 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3458 mdname(mddev
), mddev
->new_layout
);
3463 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3467 /* FIXME calc properly */
3468 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3469 max(0,-mddev
->delta_disks
)),
3474 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3479 conf
->copies
= copies
;
3480 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3481 r10bio_pool_free
, conf
);
3482 if (!conf
->r10bio_pool
)
3485 calc_sectors(conf
, mddev
->dev_sectors
);
3486 if (mddev
->reshape_position
== MaxSector
) {
3487 conf
->prev
= conf
->geo
;
3488 conf
->reshape_progress
= MaxSector
;
3490 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3494 conf
->reshape_progress
= mddev
->reshape_position
;
3495 if (conf
->prev
.far_offset
)
3496 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3498 /* far_copies must be 1 */
3499 conf
->prev
.stride
= conf
->dev_sectors
;
3501 conf
->reshape_safe
= conf
->reshape_progress
;
3502 spin_lock_init(&conf
->device_lock
);
3503 INIT_LIST_HEAD(&conf
->retry_list
);
3504 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3506 spin_lock_init(&conf
->resync_lock
);
3507 init_waitqueue_head(&conf
->wait_barrier
);
3509 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3513 conf
->mddev
= mddev
;
3518 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3521 mempool_destroy(conf
->r10bio_pool
);
3522 kfree(conf
->mirrors
);
3523 safe_put_page(conf
->tmppage
);
3526 return ERR_PTR(err
);
3529 static int raid10_run(struct mddev
*mddev
)
3531 struct r10conf
*conf
;
3532 int i
, disk_idx
, chunk_size
;
3533 struct raid10_info
*disk
;
3534 struct md_rdev
*rdev
;
3536 sector_t min_offset_diff
= 0;
3538 bool discard_supported
= false;
3540 if (mddev
->private == NULL
) {
3541 conf
= setup_conf(mddev
);
3543 return PTR_ERR(conf
);
3544 mddev
->private = conf
;
3546 conf
= mddev
->private;
3550 mddev
->thread
= conf
->thread
;
3551 conf
->thread
= NULL
;
3553 chunk_size
= mddev
->chunk_sectors
<< 9;
3555 blk_queue_max_discard_sectors(mddev
->queue
,
3556 mddev
->chunk_sectors
);
3557 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3558 blk_queue_io_min(mddev
->queue
, chunk_size
);
3559 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3560 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3562 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3563 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3566 rdev_for_each(rdev
, mddev
) {
3568 struct request_queue
*q
;
3570 disk_idx
= rdev
->raid_disk
;
3573 if (disk_idx
>= conf
->geo
.raid_disks
&&
3574 disk_idx
>= conf
->prev
.raid_disks
)
3576 disk
= conf
->mirrors
+ disk_idx
;
3578 if (test_bit(Replacement
, &rdev
->flags
)) {
3579 if (disk
->replacement
)
3581 disk
->replacement
= rdev
;
3587 q
= bdev_get_queue(rdev
->bdev
);
3588 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3589 if (!mddev
->reshape_backwards
)
3593 if (first
|| diff
< min_offset_diff
)
3594 min_offset_diff
= diff
;
3597 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3598 rdev
->data_offset
<< 9);
3600 disk
->head_position
= 0;
3602 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3603 discard_supported
= true;
3607 if (discard_supported
)
3608 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3611 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3614 /* need to check that every block has at least one working mirror */
3615 if (!enough(conf
, -1)) {
3616 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3621 if (conf
->reshape_progress
!= MaxSector
) {
3622 /* must ensure that shape change is supported */
3623 if (conf
->geo
.far_copies
!= 1 &&
3624 conf
->geo
.far_offset
== 0)
3626 if (conf
->prev
.far_copies
!= 1 &&
3627 conf
->prev
.far_offset
== 0)
3631 mddev
->degraded
= 0;
3633 i
< conf
->geo
.raid_disks
3634 || i
< conf
->prev
.raid_disks
;
3637 disk
= conf
->mirrors
+ i
;
3639 if (!disk
->rdev
&& disk
->replacement
) {
3640 /* The replacement is all we have - use it */
3641 disk
->rdev
= disk
->replacement
;
3642 disk
->replacement
= NULL
;
3643 clear_bit(Replacement
, &disk
->rdev
->flags
);
3647 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3648 disk
->head_position
= 0;
3651 disk
->rdev
->saved_raid_disk
< 0)
3654 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3657 if (mddev
->recovery_cp
!= MaxSector
)
3658 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3659 " -- starting background reconstruction\n",
3662 "md/raid10:%s: active with %d out of %d devices\n",
3663 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3664 conf
->geo
.raid_disks
);
3666 * Ok, everything is just fine now
3668 mddev
->dev_sectors
= conf
->dev_sectors
;
3669 size
= raid10_size(mddev
, 0, 0);
3670 md_set_array_sectors(mddev
, size
);
3671 mddev
->resync_max_sectors
= size
;
3674 int stripe
= conf
->geo
.raid_disks
*
3675 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3677 /* Calculate max read-ahead size.
3678 * We need to readahead at least twice a whole stripe....
3681 stripe
/= conf
->geo
.near_copies
;
3682 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3683 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3686 if (md_integrity_register(mddev
))
3689 if (conf
->reshape_progress
!= MaxSector
) {
3690 unsigned long before_length
, after_length
;
3692 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3693 conf
->prev
.far_copies
);
3694 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3695 conf
->geo
.far_copies
);
3697 if (max(before_length
, after_length
) > min_offset_diff
) {
3698 /* This cannot work */
3699 printk("md/raid10: offset difference not enough to continue reshape\n");
3702 conf
->offset_diff
= min_offset_diff
;
3704 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3705 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3706 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3707 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3708 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3715 md_unregister_thread(&mddev
->thread
);
3716 mempool_destroy(conf
->r10bio_pool
);
3717 safe_put_page(conf
->tmppage
);
3718 kfree(conf
->mirrors
);
3720 mddev
->private = NULL
;
3725 static void raid10_free(struct mddev
*mddev
, void *priv
)
3727 struct r10conf
*conf
= priv
;
3729 mempool_destroy(conf
->r10bio_pool
);
3730 safe_put_page(conf
->tmppage
);
3731 kfree(conf
->mirrors
);
3732 kfree(conf
->mirrors_old
);
3733 kfree(conf
->mirrors_new
);
3737 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3739 struct r10conf
*conf
= mddev
->private;
3743 raise_barrier(conf
, 0);
3746 lower_barrier(conf
);
3751 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3753 /* Resize of 'far' arrays is not supported.
3754 * For 'near' and 'offset' arrays we can set the
3755 * number of sectors used to be an appropriate multiple
3756 * of the chunk size.
3757 * For 'offset', this is far_copies*chunksize.
3758 * For 'near' the multiplier is the LCM of
3759 * near_copies and raid_disks.
3760 * So if far_copies > 1 && !far_offset, fail.
3761 * Else find LCM(raid_disks, near_copy)*far_copies and
3762 * multiply by chunk_size. Then round to this number.
3763 * This is mostly done by raid10_size()
3765 struct r10conf
*conf
= mddev
->private;
3766 sector_t oldsize
, size
;
3768 if (mddev
->reshape_position
!= MaxSector
)
3771 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3774 oldsize
= raid10_size(mddev
, 0, 0);
3775 size
= raid10_size(mddev
, sectors
, 0);
3776 if (mddev
->external_size
&&
3777 mddev
->array_sectors
> size
)
3779 if (mddev
->bitmap
) {
3780 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3784 md_set_array_sectors(mddev
, size
);
3785 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3786 revalidate_disk(mddev
->gendisk
);
3787 if (sectors
> mddev
->dev_sectors
&&
3788 mddev
->recovery_cp
> oldsize
) {
3789 mddev
->recovery_cp
= oldsize
;
3790 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3792 calc_sectors(conf
, sectors
);
3793 mddev
->dev_sectors
= conf
->dev_sectors
;
3794 mddev
->resync_max_sectors
= size
;
3798 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3800 struct md_rdev
*rdev
;
3801 struct r10conf
*conf
;
3803 if (mddev
->degraded
> 0) {
3804 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3806 return ERR_PTR(-EINVAL
);
3808 sector_div(size
, devs
);
3810 /* Set new parameters */
3811 mddev
->new_level
= 10;
3812 /* new layout: far_copies = 1, near_copies = 2 */
3813 mddev
->new_layout
= (1<<8) + 2;
3814 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3815 mddev
->delta_disks
= mddev
->raid_disks
;
3816 mddev
->raid_disks
*= 2;
3817 /* make sure it will be not marked as dirty */
3818 mddev
->recovery_cp
= MaxSector
;
3819 mddev
->dev_sectors
= size
;
3821 conf
= setup_conf(mddev
);
3822 if (!IS_ERR(conf
)) {
3823 rdev_for_each(rdev
, mddev
)
3824 if (rdev
->raid_disk
>= 0) {
3825 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3826 rdev
->sectors
= size
;
3834 static void *raid10_takeover(struct mddev
*mddev
)
3836 struct r0conf
*raid0_conf
;
3838 /* raid10 can take over:
3839 * raid0 - providing it has only two drives
3841 if (mddev
->level
== 0) {
3842 /* for raid0 takeover only one zone is supported */
3843 raid0_conf
= mddev
->private;
3844 if (raid0_conf
->nr_strip_zones
> 1) {
3845 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3846 " with more than one zone.\n",
3848 return ERR_PTR(-EINVAL
);
3850 return raid10_takeover_raid0(mddev
,
3851 raid0_conf
->strip_zone
->zone_end
,
3852 raid0_conf
->strip_zone
->nb_dev
);
3854 return ERR_PTR(-EINVAL
);
3857 static int raid10_check_reshape(struct mddev
*mddev
)
3859 /* Called when there is a request to change
3860 * - layout (to ->new_layout)
3861 * - chunk size (to ->new_chunk_sectors)
3862 * - raid_disks (by delta_disks)
3863 * or when trying to restart a reshape that was ongoing.
3865 * We need to validate the request and possibly allocate
3866 * space if that might be an issue later.
3868 * Currently we reject any reshape of a 'far' mode array,
3869 * allow chunk size to change if new is generally acceptable,
3870 * allow raid_disks to increase, and allow
3871 * a switch between 'near' mode and 'offset' mode.
3873 struct r10conf
*conf
= mddev
->private;
3876 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3879 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3880 /* mustn't change number of copies */
3882 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3883 /* Cannot switch to 'far' mode */
3886 if (mddev
->array_sectors
& geo
.chunk_mask
)
3887 /* not factor of array size */
3890 if (!enough(conf
, -1))
3893 kfree(conf
->mirrors_new
);
3894 conf
->mirrors_new
= NULL
;
3895 if (mddev
->delta_disks
> 0) {
3896 /* allocate new 'mirrors' list */
3897 conf
->mirrors_new
= kzalloc(
3898 sizeof(struct raid10_info
)
3899 *(mddev
->raid_disks
+
3900 mddev
->delta_disks
),
3902 if (!conf
->mirrors_new
)
3909 * Need to check if array has failed when deciding whether to:
3911 * - remove non-faulty devices
3914 * This determination is simple when no reshape is happening.
3915 * However if there is a reshape, we need to carefully check
3916 * both the before and after sections.
3917 * This is because some failed devices may only affect one
3918 * of the two sections, and some non-in_sync devices may
3919 * be insync in the section most affected by failed devices.
3921 static int calc_degraded(struct r10conf
*conf
)
3923 int degraded
, degraded2
;
3928 /* 'prev' section first */
3929 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3930 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3931 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3933 else if (!test_bit(In_sync
, &rdev
->flags
))
3934 /* When we can reduce the number of devices in
3935 * an array, this might not contribute to
3936 * 'degraded'. It does now.
3941 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
3945 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3946 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3947 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3949 else if (!test_bit(In_sync
, &rdev
->flags
)) {
3950 /* If reshape is increasing the number of devices,
3951 * this section has already been recovered, so
3952 * it doesn't contribute to degraded.
3955 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
3960 if (degraded2
> degraded
)
3965 static int raid10_start_reshape(struct mddev
*mddev
)
3967 /* A 'reshape' has been requested. This commits
3968 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3969 * This also checks if there are enough spares and adds them
3971 * We currently require enough spares to make the final
3972 * array non-degraded. We also require that the difference
3973 * between old and new data_offset - on each device - is
3974 * enough that we never risk over-writing.
3977 unsigned long before_length
, after_length
;
3978 sector_t min_offset_diff
= 0;
3981 struct r10conf
*conf
= mddev
->private;
3982 struct md_rdev
*rdev
;
3986 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
3989 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
3992 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3993 conf
->prev
.far_copies
);
3994 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3995 conf
->geo
.far_copies
);
3997 rdev_for_each(rdev
, mddev
) {
3998 if (!test_bit(In_sync
, &rdev
->flags
)
3999 && !test_bit(Faulty
, &rdev
->flags
))
4001 if (rdev
->raid_disk
>= 0) {
4002 long long diff
= (rdev
->new_data_offset
4003 - rdev
->data_offset
);
4004 if (!mddev
->reshape_backwards
)
4008 if (first
|| diff
< min_offset_diff
)
4009 min_offset_diff
= diff
;
4013 if (max(before_length
, after_length
) > min_offset_diff
)
4016 if (spares
< mddev
->delta_disks
)
4019 conf
->offset_diff
= min_offset_diff
;
4020 spin_lock_irq(&conf
->device_lock
);
4021 if (conf
->mirrors_new
) {
4022 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4023 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4025 kfree(conf
->mirrors_old
);
4026 conf
->mirrors_old
= conf
->mirrors
;
4027 conf
->mirrors
= conf
->mirrors_new
;
4028 conf
->mirrors_new
= NULL
;
4030 setup_geo(&conf
->geo
, mddev
, geo_start
);
4032 if (mddev
->reshape_backwards
) {
4033 sector_t size
= raid10_size(mddev
, 0, 0);
4034 if (size
< mddev
->array_sectors
) {
4035 spin_unlock_irq(&conf
->device_lock
);
4036 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
4040 mddev
->resync_max_sectors
= size
;
4041 conf
->reshape_progress
= size
;
4043 conf
->reshape_progress
= 0;
4044 conf
->reshape_safe
= conf
->reshape_progress
;
4045 spin_unlock_irq(&conf
->device_lock
);
4047 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4048 ret
= bitmap_resize(mddev
->bitmap
,
4049 raid10_size(mddev
, 0,
4050 conf
->geo
.raid_disks
),
4055 if (mddev
->delta_disks
> 0) {
4056 rdev_for_each(rdev
, mddev
)
4057 if (rdev
->raid_disk
< 0 &&
4058 !test_bit(Faulty
, &rdev
->flags
)) {
4059 if (raid10_add_disk(mddev
, rdev
) == 0) {
4060 if (rdev
->raid_disk
>=
4061 conf
->prev
.raid_disks
)
4062 set_bit(In_sync
, &rdev
->flags
);
4064 rdev
->recovery_offset
= 0;
4066 if (sysfs_link_rdev(mddev
, rdev
))
4067 /* Failure here is OK */;
4069 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4070 && !test_bit(Faulty
, &rdev
->flags
)) {
4071 /* This is a spare that was manually added */
4072 set_bit(In_sync
, &rdev
->flags
);
4075 /* When a reshape changes the number of devices,
4076 * ->degraded is measured against the larger of the
4077 * pre and post numbers.
4079 spin_lock_irq(&conf
->device_lock
);
4080 mddev
->degraded
= calc_degraded(conf
);
4081 spin_unlock_irq(&conf
->device_lock
);
4082 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4083 mddev
->reshape_position
= conf
->reshape_progress
;
4084 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4086 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4087 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4088 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4089 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4090 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4092 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4094 if (!mddev
->sync_thread
) {
4098 conf
->reshape_checkpoint
= jiffies
;
4099 md_wakeup_thread(mddev
->sync_thread
);
4100 md_new_event(mddev
);
4104 mddev
->recovery
= 0;
4105 spin_lock_irq(&conf
->device_lock
);
4106 conf
->geo
= conf
->prev
;
4107 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4108 rdev_for_each(rdev
, mddev
)
4109 rdev
->new_data_offset
= rdev
->data_offset
;
4111 conf
->reshape_progress
= MaxSector
;
4112 conf
->reshape_safe
= MaxSector
;
4113 mddev
->reshape_position
= MaxSector
;
4114 spin_unlock_irq(&conf
->device_lock
);
4118 /* Calculate the last device-address that could contain
4119 * any block from the chunk that includes the array-address 's'
4120 * and report the next address.
4121 * i.e. the address returned will be chunk-aligned and after
4122 * any data that is in the chunk containing 's'.
4124 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4126 s
= (s
| geo
->chunk_mask
) + 1;
4127 s
>>= geo
->chunk_shift
;
4128 s
*= geo
->near_copies
;
4129 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4130 s
*= geo
->far_copies
;
4131 s
<<= geo
->chunk_shift
;
4135 /* Calculate the first device-address that could contain
4136 * any block from the chunk that includes the array-address 's'.
4137 * This too will be the start of a chunk
4139 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4141 s
>>= geo
->chunk_shift
;
4142 s
*= geo
->near_copies
;
4143 sector_div(s
, geo
->raid_disks
);
4144 s
*= geo
->far_copies
;
4145 s
<<= geo
->chunk_shift
;
4149 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4152 /* We simply copy at most one chunk (smallest of old and new)
4153 * at a time, possibly less if that exceeds RESYNC_PAGES,
4154 * or we hit a bad block or something.
4155 * This might mean we pause for normal IO in the middle of
4156 * a chunk, but that is not a problem as mddev->reshape_position
4157 * can record any location.
4159 * If we will want to write to a location that isn't
4160 * yet recorded as 'safe' (i.e. in metadata on disk) then
4161 * we need to flush all reshape requests and update the metadata.
4163 * When reshaping forwards (e.g. to more devices), we interpret
4164 * 'safe' as the earliest block which might not have been copied
4165 * down yet. We divide this by previous stripe size and multiply
4166 * by previous stripe length to get lowest device offset that we
4167 * cannot write to yet.
4168 * We interpret 'sector_nr' as an address that we want to write to.
4169 * From this we use last_device_address() to find where we might
4170 * write to, and first_device_address on the 'safe' position.
4171 * If this 'next' write position is after the 'safe' position,
4172 * we must update the metadata to increase the 'safe' position.
4174 * When reshaping backwards, we round in the opposite direction
4175 * and perform the reverse test: next write position must not be
4176 * less than current safe position.
4178 * In all this the minimum difference in data offsets
4179 * (conf->offset_diff - always positive) allows a bit of slack,
4180 * so next can be after 'safe', but not by more than offset_diff
4182 * We need to prepare all the bios here before we start any IO
4183 * to ensure the size we choose is acceptable to all devices.
4184 * The means one for each copy for write-out and an extra one for
4186 * We store the read-in bio in ->master_bio and the others in
4187 * ->devs[x].bio and ->devs[x].repl_bio.
4189 struct r10conf
*conf
= mddev
->private;
4190 struct r10bio
*r10_bio
;
4191 sector_t next
, safe
, last
;
4195 struct md_rdev
*rdev
;
4198 struct bio
*bio
, *read_bio
;
4199 int sectors_done
= 0;
4201 if (sector_nr
== 0) {
4202 /* If restarting in the middle, skip the initial sectors */
4203 if (mddev
->reshape_backwards
&&
4204 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4205 sector_nr
= (raid10_size(mddev
, 0, 0)
4206 - conf
->reshape_progress
);
4207 } else if (!mddev
->reshape_backwards
&&
4208 conf
->reshape_progress
> 0)
4209 sector_nr
= conf
->reshape_progress
;
4211 mddev
->curr_resync_completed
= sector_nr
;
4212 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4218 /* We don't use sector_nr to track where we are up to
4219 * as that doesn't work well for ->reshape_backwards.
4220 * So just use ->reshape_progress.
4222 if (mddev
->reshape_backwards
) {
4223 /* 'next' is the earliest device address that we might
4224 * write to for this chunk in the new layout
4226 next
= first_dev_address(conf
->reshape_progress
- 1,
4229 /* 'safe' is the last device address that we might read from
4230 * in the old layout after a restart
4232 safe
= last_dev_address(conf
->reshape_safe
- 1,
4235 if (next
+ conf
->offset_diff
< safe
)
4238 last
= conf
->reshape_progress
- 1;
4239 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4240 & conf
->prev
.chunk_mask
);
4241 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4242 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4244 /* 'next' is after the last device address that we
4245 * might write to for this chunk in the new layout
4247 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4249 /* 'safe' is the earliest device address that we might
4250 * read from in the old layout after a restart
4252 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4254 /* Need to update metadata if 'next' might be beyond 'safe'
4255 * as that would possibly corrupt data
4257 if (next
> safe
+ conf
->offset_diff
)
4260 sector_nr
= conf
->reshape_progress
;
4261 last
= sector_nr
| (conf
->geo
.chunk_mask
4262 & conf
->prev
.chunk_mask
);
4264 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4265 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4269 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4270 /* Need to update reshape_position in metadata */
4272 mddev
->reshape_position
= conf
->reshape_progress
;
4273 if (mddev
->reshape_backwards
)
4274 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4275 - conf
->reshape_progress
;
4277 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4278 conf
->reshape_checkpoint
= jiffies
;
4279 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4280 md_wakeup_thread(mddev
->thread
);
4281 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4282 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4283 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4284 allow_barrier(conf
);
4285 return sectors_done
;
4287 conf
->reshape_safe
= mddev
->reshape_position
;
4288 allow_barrier(conf
);
4292 /* Now schedule reads for blocks from sector_nr to last */
4293 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4295 raise_barrier(conf
, sectors_done
!= 0);
4296 atomic_set(&r10_bio
->remaining
, 0);
4297 r10_bio
->mddev
= mddev
;
4298 r10_bio
->sector
= sector_nr
;
4299 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4300 r10_bio
->sectors
= last
- sector_nr
+ 1;
4301 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4302 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4305 /* Cannot read from here, so need to record bad blocks
4306 * on all the target devices.
4309 mempool_free(r10_bio
, conf
->r10buf_pool
);
4310 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4311 return sectors_done
;
4314 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4316 read_bio
->bi_bdev
= rdev
->bdev
;
4317 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4318 + rdev
->data_offset
);
4319 read_bio
->bi_private
= r10_bio
;
4320 read_bio
->bi_end_io
= end_sync_read
;
4321 read_bio
->bi_rw
= READ
;
4322 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4323 read_bio
->bi_error
= 0;
4324 read_bio
->bi_vcnt
= 0;
4325 read_bio
->bi_iter
.bi_size
= 0;
4326 r10_bio
->master_bio
= read_bio
;
4327 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4329 /* Now find the locations in the new layout */
4330 __raid10_find_phys(&conf
->geo
, r10_bio
);
4333 read_bio
->bi_next
= NULL
;
4335 for (s
= 0; s
< conf
->copies
*2; s
++) {
4337 int d
= r10_bio
->devs
[s
/2].devnum
;
4338 struct md_rdev
*rdev2
;
4340 rdev2
= conf
->mirrors
[d
].replacement
;
4341 b
= r10_bio
->devs
[s
/2].repl_bio
;
4343 rdev2
= conf
->mirrors
[d
].rdev
;
4344 b
= r10_bio
->devs
[s
/2].bio
;
4346 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4350 b
->bi_bdev
= rdev2
->bdev
;
4351 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4352 rdev2
->new_data_offset
;
4353 b
->bi_private
= r10_bio
;
4354 b
->bi_end_io
= end_reshape_write
;
4360 /* Now add as many pages as possible to all of these bios. */
4363 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4364 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4365 int len
= (max_sectors
- s
) << 9;
4366 if (len
> PAGE_SIZE
)
4368 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4370 if (bio_add_page(bio
, page
, len
, 0))
4373 /* Didn't fit, must stop */
4375 bio2
&& bio2
!= bio
;
4376 bio2
= bio2
->bi_next
) {
4377 /* Remove last page from this bio */
4379 bio2
->bi_iter
.bi_size
-= len
;
4380 bio_clear_flag(bio2
, BIO_SEG_VALID
);
4384 sector_nr
+= len
>> 9;
4385 nr_sectors
+= len
>> 9;
4388 r10_bio
->sectors
= nr_sectors
;
4390 /* Now submit the read */
4391 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4392 atomic_inc(&r10_bio
->remaining
);
4393 read_bio
->bi_next
= NULL
;
4394 generic_make_request(read_bio
);
4395 sector_nr
+= nr_sectors
;
4396 sectors_done
+= nr_sectors
;
4397 if (sector_nr
<= last
)
4400 /* Now that we have done the whole section we can
4401 * update reshape_progress
4403 if (mddev
->reshape_backwards
)
4404 conf
->reshape_progress
-= sectors_done
;
4406 conf
->reshape_progress
+= sectors_done
;
4408 return sectors_done
;
4411 static void end_reshape_request(struct r10bio
*r10_bio
);
4412 static int handle_reshape_read_error(struct mddev
*mddev
,
4413 struct r10bio
*r10_bio
);
4414 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4416 /* Reshape read completed. Hopefully we have a block
4418 * If we got a read error then we do sync 1-page reads from
4419 * elsewhere until we find the data - or give up.
4421 struct r10conf
*conf
= mddev
->private;
4424 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4425 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4426 /* Reshape has been aborted */
4427 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4431 /* We definitely have the data in the pages, schedule the
4434 atomic_set(&r10_bio
->remaining
, 1);
4435 for (s
= 0; s
< conf
->copies
*2; s
++) {
4437 int d
= r10_bio
->devs
[s
/2].devnum
;
4438 struct md_rdev
*rdev
;
4440 rdev
= conf
->mirrors
[d
].replacement
;
4441 b
= r10_bio
->devs
[s
/2].repl_bio
;
4443 rdev
= conf
->mirrors
[d
].rdev
;
4444 b
= r10_bio
->devs
[s
/2].bio
;
4446 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4448 atomic_inc(&rdev
->nr_pending
);
4449 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4450 atomic_inc(&r10_bio
->remaining
);
4452 generic_make_request(b
);
4454 end_reshape_request(r10_bio
);
4457 static void end_reshape(struct r10conf
*conf
)
4459 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4462 spin_lock_irq(&conf
->device_lock
);
4463 conf
->prev
= conf
->geo
;
4464 md_finish_reshape(conf
->mddev
);
4466 conf
->reshape_progress
= MaxSector
;
4467 conf
->reshape_safe
= MaxSector
;
4468 spin_unlock_irq(&conf
->device_lock
);
4470 /* read-ahead size must cover two whole stripes, which is
4471 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4473 if (conf
->mddev
->queue
) {
4474 int stripe
= conf
->geo
.raid_disks
*
4475 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4476 stripe
/= conf
->geo
.near_copies
;
4477 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4478 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4483 static int handle_reshape_read_error(struct mddev
*mddev
,
4484 struct r10bio
*r10_bio
)
4486 /* Use sync reads to get the blocks from somewhere else */
4487 int sectors
= r10_bio
->sectors
;
4488 struct r10conf
*conf
= mddev
->private;
4490 struct r10bio r10_bio
;
4491 struct r10dev devs
[conf
->copies
];
4493 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4496 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4498 r10b
->sector
= r10_bio
->sector
;
4499 __raid10_find_phys(&conf
->prev
, r10b
);
4504 int first_slot
= slot
;
4506 if (s
> (PAGE_SIZE
>> 9))
4510 int d
= r10b
->devs
[slot
].devnum
;
4511 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4514 test_bit(Faulty
, &rdev
->flags
) ||
4515 !test_bit(In_sync
, &rdev
->flags
))
4518 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4519 success
= sync_page_io(rdev
,
4528 if (slot
>= conf
->copies
)
4530 if (slot
== first_slot
)
4534 /* couldn't read this block, must give up */
4535 set_bit(MD_RECOVERY_INTR
,
4545 static void end_reshape_write(struct bio
*bio
)
4547 struct r10bio
*r10_bio
= bio
->bi_private
;
4548 struct mddev
*mddev
= r10_bio
->mddev
;
4549 struct r10conf
*conf
= mddev
->private;
4553 struct md_rdev
*rdev
= NULL
;
4555 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4557 rdev
= conf
->mirrors
[d
].replacement
;
4560 rdev
= conf
->mirrors
[d
].rdev
;
4563 if (bio
->bi_error
) {
4564 /* FIXME should record badblock */
4565 md_error(mddev
, rdev
);
4568 rdev_dec_pending(rdev
, mddev
);
4569 end_reshape_request(r10_bio
);
4572 static void end_reshape_request(struct r10bio
*r10_bio
)
4574 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4576 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4577 bio_put(r10_bio
->master_bio
);
4581 static void raid10_finish_reshape(struct mddev
*mddev
)
4583 struct r10conf
*conf
= mddev
->private;
4585 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4588 if (mddev
->delta_disks
> 0) {
4589 sector_t size
= raid10_size(mddev
, 0, 0);
4590 md_set_array_sectors(mddev
, size
);
4591 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4592 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4593 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4595 mddev
->resync_max_sectors
= size
;
4596 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4597 revalidate_disk(mddev
->gendisk
);
4600 for (d
= conf
->geo
.raid_disks
;
4601 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4603 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4605 clear_bit(In_sync
, &rdev
->flags
);
4606 rdev
= conf
->mirrors
[d
].replacement
;
4608 clear_bit(In_sync
, &rdev
->flags
);
4611 mddev
->layout
= mddev
->new_layout
;
4612 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4613 mddev
->reshape_position
= MaxSector
;
4614 mddev
->delta_disks
= 0;
4615 mddev
->reshape_backwards
= 0;
4618 static struct md_personality raid10_personality
=
4622 .owner
= THIS_MODULE
,
4623 .make_request
= raid10_make_request
,
4625 .free
= raid10_free
,
4626 .status
= raid10_status
,
4627 .error_handler
= raid10_error
,
4628 .hot_add_disk
= raid10_add_disk
,
4629 .hot_remove_disk
= raid10_remove_disk
,
4630 .spare_active
= raid10_spare_active
,
4631 .sync_request
= raid10_sync_request
,
4632 .quiesce
= raid10_quiesce
,
4633 .size
= raid10_size
,
4634 .resize
= raid10_resize
,
4635 .takeover
= raid10_takeover
,
4636 .check_reshape
= raid10_check_reshape
,
4637 .start_reshape
= raid10_start_reshape
,
4638 .finish_reshape
= raid10_finish_reshape
,
4639 .congested
= raid10_congested
,
4642 static int __init
raid_init(void)
4644 return register_md_personality(&raid10_personality
);
4647 static void raid_exit(void)
4649 unregister_md_personality(&raid10_personality
);
4652 module_init(raid_init
);
4653 module_exit(raid_exit
);
4654 MODULE_LICENSE("GPL");
4655 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4656 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4657 MODULE_ALIAS("md-raid10");
4658 MODULE_ALIAS("md-level-10");
4660 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);