2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
58 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
66 module_param(use_spi_crc
, bool, 0);
68 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
72 * We use the system_freezable_wq, because of two reasons.
73 * First, it allows several works (not the same work item) to be
74 * executed simultaneously. Second, the queue becomes frozen when
75 * userspace becomes frozen during system PM.
77 return queue_delayed_work(system_freezable_wq
, work
, delay
);
80 #ifdef CONFIG_FAIL_MMC_REQUEST
83 * Internal function. Inject random data errors.
84 * If mmc_data is NULL no errors are injected.
86 static void mmc_should_fail_request(struct mmc_host
*host
,
87 struct mmc_request
*mrq
)
89 struct mmc_command
*cmd
= mrq
->cmd
;
90 struct mmc_data
*data
= mrq
->data
;
91 static const int data_errors
[] = {
100 if (cmd
->error
|| data
->error
||
101 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
104 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
105 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
108 #else /* CONFIG_FAIL_MMC_REQUEST */
110 static inline void mmc_should_fail_request(struct mmc_host
*host
,
111 struct mmc_request
*mrq
)
115 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 * mmc_request_done - finish processing an MMC request
119 * @host: MMC host which completed request
120 * @mrq: MMC request which request
122 * MMC drivers should call this function when they have completed
123 * their processing of a request.
125 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
127 struct mmc_command
*cmd
= mrq
->cmd
;
128 int err
= cmd
->error
;
130 /* Flag re-tuning needed on CRC errors */
131 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
132 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
133 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
134 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
135 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
136 mmc_retune_needed(host
);
138 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
139 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
143 if (err
&& cmd
->retries
&& !mmc_card_removed(host
->card
)) {
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
151 mmc_should_fail_request(host
, mrq
);
153 led_trigger_event(host
->led
, LED_OFF
);
156 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
157 mmc_hostname(host
), mrq
->sbc
->opcode
,
159 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
160 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
163 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 mmc_hostname(host
), cmd
->opcode
, err
,
165 cmd
->resp
[0], cmd
->resp
[1],
166 cmd
->resp
[2], cmd
->resp
[3]);
169 pr_debug("%s: %d bytes transferred: %d\n",
171 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
175 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
176 mmc_hostname(host
), mrq
->stop
->opcode
,
178 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
179 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
187 EXPORT_SYMBOL(mmc_request_done
);
189 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
193 /* Assumes host controller has been runtime resumed by mmc_claim_host */
194 err
= mmc_retune(host
);
196 mrq
->cmd
->error
= err
;
197 mmc_request_done(host
, mrq
);
202 * For sdio rw commands we must wait for card busy otherwise some
203 * sdio devices won't work properly.
205 if (mmc_is_io_op(mrq
->cmd
->opcode
) && host
->ops
->card_busy
) {
206 int tries
= 500; /* Wait aprox 500ms at maximum */
208 while (host
->ops
->card_busy(host
) && --tries
)
212 mrq
->cmd
->error
= -EBUSY
;
213 mmc_request_done(host
, mrq
);
218 host
->ops
->request(host
, mrq
);
221 static int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
223 #ifdef CONFIG_MMC_DEBUG
225 struct scatterlist
*sg
;
227 mmc_retune_hold(host
);
229 if (mmc_card_removed(host
->card
))
233 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
234 mmc_hostname(host
), mrq
->sbc
->opcode
,
235 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
238 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
239 mmc_hostname(host
), mrq
->cmd
->opcode
,
240 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
243 pr_debug("%s: blksz %d blocks %d flags %08x "
244 "tsac %d ms nsac %d\n",
245 mmc_hostname(host
), mrq
->data
->blksz
,
246 mrq
->data
->blocks
, mrq
->data
->flags
,
247 mrq
->data
->timeout_ns
/ 1000000,
248 mrq
->data
->timeout_clks
);
252 pr_debug("%s: CMD%u arg %08x flags %08x\n",
253 mmc_hostname(host
), mrq
->stop
->opcode
,
254 mrq
->stop
->arg
, mrq
->stop
->flags
);
257 WARN_ON(!host
->claimed
);
266 BUG_ON(mrq
->data
->blksz
> host
->max_blk_size
);
267 BUG_ON(mrq
->data
->blocks
> host
->max_blk_count
);
268 BUG_ON(mrq
->data
->blocks
* mrq
->data
->blksz
>
271 #ifdef CONFIG_MMC_DEBUG
273 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
275 BUG_ON(sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
);
278 mrq
->cmd
->data
= mrq
->data
;
279 mrq
->data
->error
= 0;
280 mrq
->data
->mrq
= mrq
;
282 mrq
->data
->stop
= mrq
->stop
;
283 mrq
->stop
->error
= 0;
284 mrq
->stop
->mrq
= mrq
;
287 led_trigger_event(host
->led
, LED_FULL
);
288 __mmc_start_request(host
, mrq
);
294 * mmc_start_bkops - start BKOPS for supported cards
295 * @card: MMC card to start BKOPS
296 * @form_exception: A flag to indicate if this function was
297 * called due to an exception raised by the card
299 * Start background operations whenever requested.
300 * When the urgent BKOPS bit is set in a R1 command response
301 * then background operations should be started immediately.
303 void mmc_start_bkops(struct mmc_card
*card
, bool from_exception
)
307 bool use_busy_signal
;
311 if (!card
->ext_csd
.man_bkops_en
|| mmc_card_doing_bkops(card
))
314 err
= mmc_read_bkops_status(card
);
316 pr_err("%s: Failed to read bkops status: %d\n",
317 mmc_hostname(card
->host
), err
);
321 if (!card
->ext_csd
.raw_bkops_status
)
324 if (card
->ext_csd
.raw_bkops_status
< EXT_CSD_BKOPS_LEVEL_2
&&
328 mmc_claim_host(card
->host
);
329 if (card
->ext_csd
.raw_bkops_status
>= EXT_CSD_BKOPS_LEVEL_2
) {
330 timeout
= MMC_BKOPS_MAX_TIMEOUT
;
331 use_busy_signal
= true;
334 use_busy_signal
= false;
337 mmc_retune_hold(card
->host
);
339 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
340 EXT_CSD_BKOPS_START
, 1, timeout
,
341 use_busy_signal
, true, false);
343 pr_warn("%s: Error %d starting bkops\n",
344 mmc_hostname(card
->host
), err
);
345 mmc_retune_release(card
->host
);
350 * For urgent bkops status (LEVEL_2 and more)
351 * bkops executed synchronously, otherwise
352 * the operation is in progress
354 if (!use_busy_signal
)
355 mmc_card_set_doing_bkops(card
);
357 mmc_retune_release(card
->host
);
359 mmc_release_host(card
->host
);
361 EXPORT_SYMBOL(mmc_start_bkops
);
364 * mmc_wait_data_done() - done callback for data request
365 * @mrq: done data request
367 * Wakes up mmc context, passed as a callback to host controller driver
369 static void mmc_wait_data_done(struct mmc_request
*mrq
)
371 struct mmc_context_info
*context_info
= &mrq
->host
->context_info
;
373 context_info
->is_done_rcv
= true;
374 wake_up_interruptible(&context_info
->wait
);
377 static void mmc_wait_done(struct mmc_request
*mrq
)
379 complete(&mrq
->completion
);
383 *__mmc_start_data_req() - starts data request
384 * @host: MMC host to start the request
385 * @mrq: data request to start
387 * Sets the done callback to be called when request is completed by the card.
388 * Starts data mmc request execution
390 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
394 mrq
->done
= mmc_wait_data_done
;
397 err
= mmc_start_request(host
, mrq
);
399 mrq
->cmd
->error
= err
;
400 mmc_wait_data_done(mrq
);
406 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
410 init_completion(&mrq
->completion
);
411 mrq
->done
= mmc_wait_done
;
413 err
= mmc_start_request(host
, mrq
);
415 mrq
->cmd
->error
= err
;
416 complete(&mrq
->completion
);
423 * mmc_wait_for_data_req_done() - wait for request completed
424 * @host: MMC host to prepare the command.
425 * @mrq: MMC request to wait for
427 * Blocks MMC context till host controller will ack end of data request
428 * execution or new request notification arrives from the block layer.
429 * Handles command retries.
431 * Returns enum mmc_blk_status after checking errors.
433 static int mmc_wait_for_data_req_done(struct mmc_host
*host
,
434 struct mmc_request
*mrq
,
435 struct mmc_async_req
*next_req
)
437 struct mmc_command
*cmd
;
438 struct mmc_context_info
*context_info
= &host
->context_info
;
443 wait_event_interruptible(context_info
->wait
,
444 (context_info
->is_done_rcv
||
445 context_info
->is_new_req
));
446 spin_lock_irqsave(&context_info
->lock
, flags
);
447 context_info
->is_waiting_last_req
= false;
448 spin_unlock_irqrestore(&context_info
->lock
, flags
);
449 if (context_info
->is_done_rcv
) {
450 context_info
->is_done_rcv
= false;
451 context_info
->is_new_req
= false;
454 if (!cmd
->error
|| !cmd
->retries
||
455 mmc_card_removed(host
->card
)) {
456 err
= host
->areq
->err_check(host
->card
,
458 break; /* return err */
460 mmc_retune_recheck(host
);
461 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
463 cmd
->opcode
, cmd
->error
);
466 __mmc_start_request(host
, mrq
);
467 continue; /* wait for done/new event again */
469 } else if (context_info
->is_new_req
) {
470 context_info
->is_new_req
= false;
472 return MMC_BLK_NEW_REQUEST
;
475 mmc_retune_release(host
);
479 static void mmc_wait_for_req_done(struct mmc_host
*host
,
480 struct mmc_request
*mrq
)
482 struct mmc_command
*cmd
;
485 wait_for_completion(&mrq
->completion
);
490 * If host has timed out waiting for the sanitize
491 * to complete, card might be still in programming state
492 * so let's try to bring the card out of programming
495 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
496 if (!mmc_interrupt_hpi(host
->card
)) {
497 pr_warn("%s: %s: Interrupted sanitize\n",
498 mmc_hostname(host
), __func__
);
502 pr_err("%s: %s: Failed to interrupt sanitize\n",
503 mmc_hostname(host
), __func__
);
506 if (!cmd
->error
|| !cmd
->retries
||
507 mmc_card_removed(host
->card
))
510 mmc_retune_recheck(host
);
512 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
513 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
516 __mmc_start_request(host
, mrq
);
519 mmc_retune_release(host
);
523 * mmc_pre_req - Prepare for a new request
524 * @host: MMC host to prepare command
525 * @mrq: MMC request to prepare for
526 * @is_first_req: true if there is no previous started request
527 * that may run in parellel to this call, otherwise false
529 * mmc_pre_req() is called in prior to mmc_start_req() to let
530 * host prepare for the new request. Preparation of a request may be
531 * performed while another request is running on the host.
533 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
536 if (host
->ops
->pre_req
)
537 host
->ops
->pre_req(host
, mrq
, is_first_req
);
541 * mmc_post_req - Post process a completed request
542 * @host: MMC host to post process command
543 * @mrq: MMC request to post process for
544 * @err: Error, if non zero, clean up any resources made in pre_req
546 * Let the host post process a completed request. Post processing of
547 * a request may be performed while another reuqest is running.
549 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
552 if (host
->ops
->post_req
)
553 host
->ops
->post_req(host
, mrq
, err
);
557 * mmc_start_req - start a non-blocking request
558 * @host: MMC host to start command
559 * @areq: async request to start
560 * @error: out parameter returns 0 for success, otherwise non zero
562 * Start a new MMC custom command request for a host.
563 * If there is on ongoing async request wait for completion
564 * of that request and start the new one and return.
565 * Does not wait for the new request to complete.
567 * Returns the completed request, NULL in case of none completed.
568 * Wait for the an ongoing request (previoulsy started) to complete and
569 * return the completed request. If there is no ongoing request, NULL
570 * is returned without waiting. NULL is not an error condition.
572 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
573 struct mmc_async_req
*areq
, int *error
)
577 struct mmc_async_req
*data
= host
->areq
;
579 /* Prepare a new request */
581 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
584 err
= mmc_wait_for_data_req_done(host
, host
->areq
->mrq
, areq
);
585 if (err
== MMC_BLK_NEW_REQUEST
) {
589 * The previous request was not completed,
595 * Check BKOPS urgency for each R1 response
597 if (host
->card
&& mmc_card_mmc(host
->card
) &&
598 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
599 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
600 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
)) {
602 /* Cancel the prepared request */
604 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
606 mmc_start_bkops(host
->card
, true);
608 /* prepare the request again */
610 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
615 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
618 mmc_post_req(host
, host
->areq
->mrq
, 0);
620 /* Cancel a prepared request if it was not started. */
621 if ((err
|| start_err
) && areq
)
622 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
633 EXPORT_SYMBOL(mmc_start_req
);
636 * mmc_wait_for_req - start a request and wait for completion
637 * @host: MMC host to start command
638 * @mrq: MMC request to start
640 * Start a new MMC custom command request for a host, and wait
641 * for the command to complete. Does not attempt to parse the
644 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
646 __mmc_start_req(host
, mrq
);
647 mmc_wait_for_req_done(host
, mrq
);
649 EXPORT_SYMBOL(mmc_wait_for_req
);
652 * mmc_interrupt_hpi - Issue for High priority Interrupt
653 * @card: the MMC card associated with the HPI transfer
655 * Issued High Priority Interrupt, and check for card status
656 * until out-of prg-state.
658 int mmc_interrupt_hpi(struct mmc_card
*card
)
662 unsigned long prg_wait
;
666 if (!card
->ext_csd
.hpi_en
) {
667 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
671 mmc_claim_host(card
->host
);
672 err
= mmc_send_status(card
, &status
);
674 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
678 switch (R1_CURRENT_STATE(status
)) {
684 * In idle and transfer states, HPI is not needed and the caller
685 * can issue the next intended command immediately
691 /* In all other states, it's illegal to issue HPI */
692 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
693 mmc_hostname(card
->host
), R1_CURRENT_STATE(status
));
698 err
= mmc_send_hpi_cmd(card
, &status
);
702 prg_wait
= jiffies
+ msecs_to_jiffies(card
->ext_csd
.out_of_int_time
);
704 err
= mmc_send_status(card
, &status
);
706 if (!err
&& R1_CURRENT_STATE(status
) == R1_STATE_TRAN
)
708 if (time_after(jiffies
, prg_wait
))
713 mmc_release_host(card
->host
);
716 EXPORT_SYMBOL(mmc_interrupt_hpi
);
719 * mmc_wait_for_cmd - start a command and wait for completion
720 * @host: MMC host to start command
721 * @cmd: MMC command to start
722 * @retries: maximum number of retries
724 * Start a new MMC command for a host, and wait for the command
725 * to complete. Return any error that occurred while the command
726 * was executing. Do not attempt to parse the response.
728 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
730 struct mmc_request mrq
= {NULL
};
732 WARN_ON(!host
->claimed
);
734 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
735 cmd
->retries
= retries
;
740 mmc_wait_for_req(host
, &mrq
);
745 EXPORT_SYMBOL(mmc_wait_for_cmd
);
748 * mmc_stop_bkops - stop ongoing BKOPS
749 * @card: MMC card to check BKOPS
751 * Send HPI command to stop ongoing background operations to
752 * allow rapid servicing of foreground operations, e.g. read/
753 * writes. Wait until the card comes out of the programming state
754 * to avoid errors in servicing read/write requests.
756 int mmc_stop_bkops(struct mmc_card
*card
)
761 err
= mmc_interrupt_hpi(card
);
764 * If err is EINVAL, we can't issue an HPI.
765 * It should complete the BKOPS.
767 if (!err
|| (err
== -EINVAL
)) {
768 mmc_card_clr_doing_bkops(card
);
769 mmc_retune_release(card
->host
);
775 EXPORT_SYMBOL(mmc_stop_bkops
);
777 int mmc_read_bkops_status(struct mmc_card
*card
)
782 mmc_claim_host(card
->host
);
783 err
= mmc_get_ext_csd(card
, &ext_csd
);
784 mmc_release_host(card
->host
);
788 card
->ext_csd
.raw_bkops_status
= ext_csd
[EXT_CSD_BKOPS_STATUS
];
789 card
->ext_csd
.raw_exception_status
= ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
];
793 EXPORT_SYMBOL(mmc_read_bkops_status
);
796 * mmc_set_data_timeout - set the timeout for a data command
797 * @data: data phase for command
798 * @card: the MMC card associated with the data transfer
800 * Computes the data timeout parameters according to the
801 * correct algorithm given the card type.
803 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
808 * SDIO cards only define an upper 1 s limit on access.
810 if (mmc_card_sdio(card
)) {
811 data
->timeout_ns
= 1000000000;
812 data
->timeout_clks
= 0;
817 * SD cards use a 100 multiplier rather than 10
819 mult
= mmc_card_sd(card
) ? 100 : 10;
822 * Scale up the multiplier (and therefore the timeout) by
823 * the r2w factor for writes.
825 if (data
->flags
& MMC_DATA_WRITE
)
826 mult
<<= card
->csd
.r2w_factor
;
828 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
829 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
832 * SD cards also have an upper limit on the timeout.
834 if (mmc_card_sd(card
)) {
835 unsigned int timeout_us
, limit_us
;
837 timeout_us
= data
->timeout_ns
/ 1000;
838 if (card
->host
->ios
.clock
)
839 timeout_us
+= data
->timeout_clks
* 1000 /
840 (card
->host
->ios
.clock
/ 1000);
842 if (data
->flags
& MMC_DATA_WRITE
)
844 * The MMC spec "It is strongly recommended
845 * for hosts to implement more than 500ms
846 * timeout value even if the card indicates
847 * the 250ms maximum busy length." Even the
848 * previous value of 300ms is known to be
849 * insufficient for some cards.
856 * SDHC cards always use these fixed values.
858 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
859 data
->timeout_ns
= limit_us
* 1000;
860 data
->timeout_clks
= 0;
863 /* assign limit value if invalid */
865 data
->timeout_ns
= limit_us
* 1000;
869 * Some cards require longer data read timeout than indicated in CSD.
870 * Address this by setting the read timeout to a "reasonably high"
871 * value. For the cards tested, 300ms has proven enough. If necessary,
872 * this value can be increased if other problematic cards require this.
874 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
875 data
->timeout_ns
= 300000000;
876 data
->timeout_clks
= 0;
880 * Some cards need very high timeouts if driven in SPI mode.
881 * The worst observed timeout was 900ms after writing a
882 * continuous stream of data until the internal logic
885 if (mmc_host_is_spi(card
->host
)) {
886 if (data
->flags
& MMC_DATA_WRITE
) {
887 if (data
->timeout_ns
< 1000000000)
888 data
->timeout_ns
= 1000000000; /* 1s */
890 if (data
->timeout_ns
< 100000000)
891 data
->timeout_ns
= 100000000; /* 100ms */
895 EXPORT_SYMBOL(mmc_set_data_timeout
);
898 * mmc_align_data_size - pads a transfer size to a more optimal value
899 * @card: the MMC card associated with the data transfer
900 * @sz: original transfer size
902 * Pads the original data size with a number of extra bytes in
903 * order to avoid controller bugs and/or performance hits
904 * (e.g. some controllers revert to PIO for certain sizes).
906 * Returns the improved size, which might be unmodified.
908 * Note that this function is only relevant when issuing a
909 * single scatter gather entry.
911 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
914 * FIXME: We don't have a system for the controller to tell
915 * the core about its problems yet, so for now we just 32-bit
918 sz
= ((sz
+ 3) / 4) * 4;
922 EXPORT_SYMBOL(mmc_align_data_size
);
925 * __mmc_claim_host - exclusively claim a host
926 * @host: mmc host to claim
927 * @abort: whether or not the operation should be aborted
929 * Claim a host for a set of operations. If @abort is non null and
930 * dereference a non-zero value then this will return prematurely with
931 * that non-zero value without acquiring the lock. Returns zero
932 * with the lock held otherwise.
934 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
936 DECLARE_WAITQUEUE(wait
, current
);
943 add_wait_queue(&host
->wq
, &wait
);
944 spin_lock_irqsave(&host
->lock
, flags
);
946 set_current_state(TASK_UNINTERRUPTIBLE
);
947 stop
= abort
? atomic_read(abort
) : 0;
948 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
950 spin_unlock_irqrestore(&host
->lock
, flags
);
952 spin_lock_irqsave(&host
->lock
, flags
);
954 set_current_state(TASK_RUNNING
);
957 host
->claimer
= current
;
958 host
->claim_cnt
+= 1;
959 if (host
->claim_cnt
== 1)
963 spin_unlock_irqrestore(&host
->lock
, flags
);
964 remove_wait_queue(&host
->wq
, &wait
);
967 pm_runtime_get_sync(mmc_dev(host
));
971 EXPORT_SYMBOL(__mmc_claim_host
);
974 * mmc_release_host - release a host
975 * @host: mmc host to release
977 * Release a MMC host, allowing others to claim the host
978 * for their operations.
980 void mmc_release_host(struct mmc_host
*host
)
984 WARN_ON(!host
->claimed
);
986 spin_lock_irqsave(&host
->lock
, flags
);
987 if (--host
->claim_cnt
) {
988 /* Release for nested claim */
989 spin_unlock_irqrestore(&host
->lock
, flags
);
992 host
->claimer
= NULL
;
993 spin_unlock_irqrestore(&host
->lock
, flags
);
995 pm_runtime_mark_last_busy(mmc_dev(host
));
996 pm_runtime_put_autosuspend(mmc_dev(host
));
999 EXPORT_SYMBOL(mmc_release_host
);
1002 * This is a helper function, which fetches a runtime pm reference for the
1003 * card device and also claims the host.
1005 void mmc_get_card(struct mmc_card
*card
)
1007 pm_runtime_get_sync(&card
->dev
);
1008 mmc_claim_host(card
->host
);
1010 EXPORT_SYMBOL(mmc_get_card
);
1013 * This is a helper function, which releases the host and drops the runtime
1014 * pm reference for the card device.
1016 void mmc_put_card(struct mmc_card
*card
)
1018 mmc_release_host(card
->host
);
1019 pm_runtime_mark_last_busy(&card
->dev
);
1020 pm_runtime_put_autosuspend(&card
->dev
);
1022 EXPORT_SYMBOL(mmc_put_card
);
1025 * Internal function that does the actual ios call to the host driver,
1026 * optionally printing some debug output.
1028 static inline void mmc_set_ios(struct mmc_host
*host
)
1030 struct mmc_ios
*ios
= &host
->ios
;
1032 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033 "width %u timing %u\n",
1034 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
1035 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
1036 1 << ios
->bus_width
, ios
->timing
);
1038 host
->ops
->set_ios(host
, ios
);
1042 * Control chip select pin on a host.
1044 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
1046 host
->ios
.chip_select
= mode
;
1051 * Sets the host clock to the highest possible frequency that
1054 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1056 WARN_ON(hz
&& hz
< host
->f_min
);
1058 if (hz
> host
->f_max
)
1061 host
->ios
.clock
= hz
;
1065 int mmc_execute_tuning(struct mmc_card
*card
)
1067 struct mmc_host
*host
= card
->host
;
1071 if (!host
->ops
->execute_tuning
)
1074 if (mmc_card_mmc(card
))
1075 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
1077 opcode
= MMC_SEND_TUNING_BLOCK
;
1079 err
= host
->ops
->execute_tuning(host
, opcode
);
1082 pr_err("%s: tuning execution failed: %d\n",
1083 mmc_hostname(host
), err
);
1085 mmc_retune_enable(host
);
1091 * Change the bus mode (open drain/push-pull) of a host.
1093 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1095 host
->ios
.bus_mode
= mode
;
1100 * Change data bus width of a host.
1102 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1104 host
->ios
.bus_width
= width
;
1109 * Set initial state after a power cycle or a hw_reset.
1111 void mmc_set_initial_state(struct mmc_host
*host
)
1113 mmc_retune_disable(host
);
1115 if (mmc_host_is_spi(host
))
1116 host
->ios
.chip_select
= MMC_CS_HIGH
;
1118 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1119 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1120 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1121 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1122 host
->ios
.drv_type
= 0;
1128 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1129 * @vdd: voltage (mV)
1130 * @low_bits: prefer low bits in boundary cases
1132 * This function returns the OCR bit number according to the provided @vdd
1133 * value. If conversion is not possible a negative errno value returned.
1135 * Depending on the @low_bits flag the function prefers low or high OCR bits
1136 * on boundary voltages. For example,
1137 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1138 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1140 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1142 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1144 const int max_bit
= ilog2(MMC_VDD_35_36
);
1147 if (vdd
< 1650 || vdd
> 3600)
1150 if (vdd
>= 1650 && vdd
<= 1950)
1151 return ilog2(MMC_VDD_165_195
);
1156 /* Base 2000 mV, step 100 mV, bit's base 8. */
1157 bit
= (vdd
- 2000) / 100 + 8;
1164 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1165 * @vdd_min: minimum voltage value (mV)
1166 * @vdd_max: maximum voltage value (mV)
1168 * This function returns the OCR mask bits according to the provided @vdd_min
1169 * and @vdd_max values. If conversion is not possible the function returns 0.
1171 * Notes wrt boundary cases:
1172 * This function sets the OCR bits for all boundary voltages, for example
1173 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1174 * MMC_VDD_34_35 mask.
1176 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1180 if (vdd_max
< vdd_min
)
1183 /* Prefer high bits for the boundary vdd_max values. */
1184 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1188 /* Prefer low bits for the boundary vdd_min values. */
1189 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1193 /* Fill the mask, from max bit to min bit. */
1194 while (vdd_max
>= vdd_min
)
1195 mask
|= 1 << vdd_max
--;
1199 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1204 * mmc_of_parse_voltage - return mask of supported voltages
1205 * @np: The device node need to be parsed.
1206 * @mask: mask of voltages available for MMC/SD/SDIO
1208 * Parse the "voltage-ranges" DT property, returning zero if it is not
1209 * found, negative errno if the voltage-range specification is invalid,
1210 * or one if the voltage-range is specified and successfully parsed.
1212 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1214 const u32
*voltage_ranges
;
1217 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1218 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1219 if (!voltage_ranges
) {
1220 pr_debug("%s: voltage-ranges unspecified\n", np
->full_name
);
1224 pr_err("%s: voltage-ranges empty\n", np
->full_name
);
1228 for (i
= 0; i
< num_ranges
; i
++) {
1229 const int j
= i
* 2;
1232 ocr_mask
= mmc_vddrange_to_ocrmask(
1233 be32_to_cpu(voltage_ranges
[j
]),
1234 be32_to_cpu(voltage_ranges
[j
+ 1]));
1236 pr_err("%s: voltage-range #%d is invalid\n",
1245 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1247 #endif /* CONFIG_OF */
1249 static int mmc_of_get_func_num(struct device_node
*node
)
1254 ret
= of_property_read_u32(node
, "reg", ®
);
1261 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1264 struct device_node
*node
;
1266 if (!host
->parent
|| !host
->parent
->of_node
)
1269 for_each_child_of_node(host
->parent
->of_node
, node
) {
1270 if (mmc_of_get_func_num(node
) == func_num
)
1277 #ifdef CONFIG_REGULATOR
1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281 * @vdd_bit: OCR bit number
1282 * @min_uV: minimum voltage value (mV)
1283 * @max_uV: maximum voltage value (mV)
1285 * This function returns the voltage range according to the provided OCR
1286 * bit number. If conversion is not possible a negative errno value returned.
1288 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1296 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297 * bits this regulator doesn't quite support ... don't
1298 * be too picky, most cards and regulators are OK with
1299 * a 0.1V range goof (it's a small error percentage).
1301 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1303 *min_uV
= 1650 * 1000;
1304 *max_uV
= 1950 * 1000;
1306 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1307 *max_uV
= *min_uV
+ 100 * 1000;
1314 * mmc_regulator_get_ocrmask - return mask of supported voltages
1315 * @supply: regulator to use
1317 * This returns either a negative errno, or a mask of voltages that
1318 * can be provided to MMC/SD/SDIO devices using the specified voltage
1319 * regulator. This would normally be called before registering the
1322 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1330 count
= regulator_count_voltages(supply
);
1334 for (i
= 0; i
< count
; i
++) {
1335 vdd_uV
= regulator_list_voltage(supply
, i
);
1339 vdd_mV
= vdd_uV
/ 1000;
1340 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1344 vdd_uV
= regulator_get_voltage(supply
);
1348 vdd_mV
= vdd_uV
/ 1000;
1349 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1354 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1358 * @mmc: the host to regulate
1359 * @supply: regulator to use
1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1362 * Returns zero on success, else negative errno.
1364 * MMC host drivers may use this to enable or disable a regulator using
1365 * a particular supply voltage. This would normally be called from the
1368 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1369 struct regulator
*supply
,
1370 unsigned short vdd_bit
)
1376 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1378 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1379 if (result
== 0 && !mmc
->regulator_enabled
) {
1380 result
= regulator_enable(supply
);
1382 mmc
->regulator_enabled
= true;
1384 } else if (mmc
->regulator_enabled
) {
1385 result
= regulator_disable(supply
);
1387 mmc
->regulator_enabled
= false;
1391 dev_err(mmc_dev(mmc
),
1392 "could not set regulator OCR (%d)\n", result
);
1395 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1397 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1398 int min_uV
, int target_uV
,
1402 * Check if supported first to avoid errors since we may try several
1403 * signal levels during power up and don't want to show errors.
1405 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1408 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1413 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1415 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1416 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1417 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1418 * SD card spec also define VQMMC in terms of VMMC.
1419 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1421 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1422 * requested voltage. This is definitely a good idea for UHS where there's a
1423 * separate regulator on the card that's trying to make 1.8V and it's best if
1426 * This function is expected to be used by a controller's
1427 * start_signal_voltage_switch() function.
1429 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1431 struct device
*dev
= mmc_dev(mmc
);
1432 int ret
, volt
, min_uV
, max_uV
;
1434 /* If no vqmmc supply then we can't change the voltage */
1435 if (IS_ERR(mmc
->supply
.vqmmc
))
1438 switch (ios
->signal_voltage
) {
1439 case MMC_SIGNAL_VOLTAGE_120
:
1440 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1441 1100000, 1200000, 1300000);
1442 case MMC_SIGNAL_VOLTAGE_180
:
1443 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1444 1700000, 1800000, 1950000);
1445 case MMC_SIGNAL_VOLTAGE_330
:
1446 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1450 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1451 __func__
, volt
, max_uV
);
1453 min_uV
= max(volt
- 300000, 2700000);
1454 max_uV
= min(max_uV
+ 200000, 3600000);
1457 * Due to a limitation in the current implementation of
1458 * regulator_set_voltage_triplet() which is taking the lowest
1459 * voltage possible if below the target, search for a suitable
1460 * voltage in two steps and try to stay close to vmmc
1461 * with a 0.3V tolerance at first.
1463 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1464 min_uV
, volt
, max_uV
))
1467 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1468 2700000, volt
, 3600000);
1473 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1475 #endif /* CONFIG_REGULATOR */
1477 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1479 struct device
*dev
= mmc_dev(mmc
);
1482 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1483 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1485 if (IS_ERR(mmc
->supply
.vmmc
)) {
1486 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1487 return -EPROBE_DEFER
;
1488 dev_dbg(dev
, "No vmmc regulator found\n");
1490 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1492 mmc
->ocr_avail
= ret
;
1494 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1497 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1498 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1499 return -EPROBE_DEFER
;
1500 dev_dbg(dev
, "No vqmmc regulator found\n");
1505 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1508 * Mask off any voltages we don't support and select
1509 * the lowest voltage
1511 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1516 * Sanity check the voltages that the card claims to
1520 dev_warn(mmc_dev(host
),
1521 "card claims to support voltages below defined range\n");
1525 ocr
&= host
->ocr_avail
;
1527 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1531 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1534 mmc_power_cycle(host
, ocr
);
1538 if (bit
!= host
->ios
.vdd
)
1539 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1545 int __mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1548 int old_signal_voltage
= host
->ios
.signal_voltage
;
1550 host
->ios
.signal_voltage
= signal_voltage
;
1551 if (host
->ops
->start_signal_voltage_switch
)
1552 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1555 host
->ios
.signal_voltage
= old_signal_voltage
;
1561 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
, u32 ocr
)
1563 struct mmc_command cmd
= {0};
1570 * Send CMD11 only if the request is to switch the card to
1573 if (signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1574 return __mmc_set_signal_voltage(host
, signal_voltage
);
1577 * If we cannot switch voltages, return failure so the caller
1578 * can continue without UHS mode
1580 if (!host
->ops
->start_signal_voltage_switch
)
1582 if (!host
->ops
->card_busy
)
1583 pr_warn("%s: cannot verify signal voltage switch\n",
1584 mmc_hostname(host
));
1586 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1588 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1590 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1594 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1598 * The card should drive cmd and dat[0:3] low immediately
1599 * after the response of cmd11, but wait 1 ms to be sure
1602 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1607 * During a signal voltage level switch, the clock must be gated
1608 * for 5 ms according to the SD spec
1610 clock
= host
->ios
.clock
;
1611 host
->ios
.clock
= 0;
1614 if (__mmc_set_signal_voltage(host
, signal_voltage
)) {
1616 * Voltages may not have been switched, but we've already
1617 * sent CMD11, so a power cycle is required anyway
1623 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1625 host
->ios
.clock
= clock
;
1628 /* Wait for at least 1 ms according to spec */
1632 * Failure to switch is indicated by the card holding
1635 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1640 pr_debug("%s: Signal voltage switch failed, "
1641 "power cycling card\n", mmc_hostname(host
));
1642 mmc_power_cycle(host
, ocr
);
1649 * Select timing parameters for host.
1651 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1653 host
->ios
.timing
= timing
;
1658 * Select appropriate driver type for host.
1660 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1662 host
->ios
.drv_type
= drv_type
;
1666 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1667 int card_drv_type
, int *drv_type
)
1669 struct mmc_host
*host
= card
->host
;
1670 int host_drv_type
= SD_DRIVER_TYPE_B
;
1674 if (!host
->ops
->select_drive_strength
)
1677 /* Use SD definition of driver strength for hosts */
1678 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1679 host_drv_type
|= SD_DRIVER_TYPE_A
;
1681 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1682 host_drv_type
|= SD_DRIVER_TYPE_C
;
1684 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1685 host_drv_type
|= SD_DRIVER_TYPE_D
;
1688 * The drive strength that the hardware can support
1689 * depends on the board design. Pass the appropriate
1690 * information and let the hardware specific code
1691 * return what is possible given the options
1693 return host
->ops
->select_drive_strength(card
, max_dtr
,
1700 * Apply power to the MMC stack. This is a two-stage process.
1701 * First, we enable power to the card without the clock running.
1702 * We then wait a bit for the power to stabilise. Finally,
1703 * enable the bus drivers and clock to the card.
1705 * We must _NOT_ enable the clock prior to power stablising.
1707 * If a host does all the power sequencing itself, ignore the
1708 * initial MMC_POWER_UP stage.
1710 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1712 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1715 mmc_pwrseq_pre_power_on(host
);
1717 host
->ios
.vdd
= fls(ocr
) - 1;
1718 host
->ios
.power_mode
= MMC_POWER_UP
;
1719 /* Set initial state and call mmc_set_ios */
1720 mmc_set_initial_state(host
);
1722 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1723 if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
) == 0)
1724 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1725 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
) == 0)
1726 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1727 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
) == 0)
1728 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1731 * This delay should be sufficient to allow the power supply
1732 * to reach the minimum voltage.
1736 mmc_pwrseq_post_power_on(host
);
1738 host
->ios
.clock
= host
->f_init
;
1740 host
->ios
.power_mode
= MMC_POWER_ON
;
1744 * This delay must be at least 74 clock sizes, or 1 ms, or the
1745 * time required to reach a stable voltage.
1750 void mmc_power_off(struct mmc_host
*host
)
1752 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1755 mmc_pwrseq_power_off(host
);
1757 host
->ios
.clock
= 0;
1760 host
->ios
.power_mode
= MMC_POWER_OFF
;
1761 /* Set initial state and call mmc_set_ios */
1762 mmc_set_initial_state(host
);
1765 * Some configurations, such as the 802.11 SDIO card in the OLPC
1766 * XO-1.5, require a short delay after poweroff before the card
1767 * can be successfully turned on again.
1772 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1774 mmc_power_off(host
);
1775 /* Wait at least 1 ms according to SD spec */
1777 mmc_power_up(host
, ocr
);
1781 * Cleanup when the last reference to the bus operator is dropped.
1783 static void __mmc_release_bus(struct mmc_host
*host
)
1786 BUG_ON(host
->bus_refs
);
1787 BUG_ON(!host
->bus_dead
);
1789 host
->bus_ops
= NULL
;
1793 * Increase reference count of bus operator
1795 static inline void mmc_bus_get(struct mmc_host
*host
)
1797 unsigned long flags
;
1799 spin_lock_irqsave(&host
->lock
, flags
);
1801 spin_unlock_irqrestore(&host
->lock
, flags
);
1805 * Decrease reference count of bus operator and free it if
1806 * it is the last reference.
1808 static inline void mmc_bus_put(struct mmc_host
*host
)
1810 unsigned long flags
;
1812 spin_lock_irqsave(&host
->lock
, flags
);
1814 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1815 __mmc_release_bus(host
);
1816 spin_unlock_irqrestore(&host
->lock
, flags
);
1820 * Assign a mmc bus handler to a host. Only one bus handler may control a
1821 * host at any given time.
1823 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1825 unsigned long flags
;
1830 WARN_ON(!host
->claimed
);
1832 spin_lock_irqsave(&host
->lock
, flags
);
1834 BUG_ON(host
->bus_ops
);
1835 BUG_ON(host
->bus_refs
);
1837 host
->bus_ops
= ops
;
1841 spin_unlock_irqrestore(&host
->lock
, flags
);
1845 * Remove the current bus handler from a host.
1847 void mmc_detach_bus(struct mmc_host
*host
)
1849 unsigned long flags
;
1853 WARN_ON(!host
->claimed
);
1854 WARN_ON(!host
->bus_ops
);
1856 spin_lock_irqsave(&host
->lock
, flags
);
1860 spin_unlock_irqrestore(&host
->lock
, flags
);
1865 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1868 #ifdef CONFIG_MMC_DEBUG
1869 unsigned long flags
;
1870 spin_lock_irqsave(&host
->lock
, flags
);
1871 WARN_ON(host
->removed
);
1872 spin_unlock_irqrestore(&host
->lock
, flags
);
1876 * If the device is configured as wakeup, we prevent a new sleep for
1877 * 5 s to give provision for user space to consume the event.
1879 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1880 device_can_wakeup(mmc_dev(host
)))
1881 pm_wakeup_event(mmc_dev(host
), 5000);
1883 host
->detect_change
= 1;
1884 mmc_schedule_delayed_work(&host
->detect
, delay
);
1888 * mmc_detect_change - process change of state on a MMC socket
1889 * @host: host which changed state.
1890 * @delay: optional delay to wait before detection (jiffies)
1892 * MMC drivers should call this when they detect a card has been
1893 * inserted or removed. The MMC layer will confirm that any
1894 * present card is still functional, and initialize any newly
1897 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1899 _mmc_detect_change(host
, delay
, true);
1901 EXPORT_SYMBOL(mmc_detect_change
);
1903 void mmc_init_erase(struct mmc_card
*card
)
1907 if (is_power_of_2(card
->erase_size
))
1908 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1910 card
->erase_shift
= 0;
1913 * It is possible to erase an arbitrarily large area of an SD or MMC
1914 * card. That is not desirable because it can take a long time
1915 * (minutes) potentially delaying more important I/O, and also the
1916 * timeout calculations become increasingly hugely over-estimated.
1917 * Consequently, 'pref_erase' is defined as a guide to limit erases
1918 * to that size and alignment.
1920 * For SD cards that define Allocation Unit size, limit erases to one
1921 * Allocation Unit at a time. For MMC cards that define High Capacity
1922 * Erase Size, whether it is switched on or not, limit to that size.
1923 * Otherwise just have a stab at a good value. For modern cards it
1924 * will end up being 4MiB. Note that if the value is too small, it
1925 * can end up taking longer to erase.
1927 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1928 card
->pref_erase
= card
->ssr
.au
;
1929 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1930 } else if (card
->ext_csd
.hc_erase_size
) {
1931 card
->pref_erase
= card
->ext_csd
.hc_erase_size
;
1932 } else if (card
->erase_size
) {
1933 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1935 card
->pref_erase
= 512 * 1024 / 512;
1937 card
->pref_erase
= 1024 * 1024 / 512;
1939 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1941 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1942 if (card
->pref_erase
< card
->erase_size
)
1943 card
->pref_erase
= card
->erase_size
;
1945 sz
= card
->pref_erase
% card
->erase_size
;
1947 card
->pref_erase
+= card
->erase_size
- sz
;
1950 card
->pref_erase
= 0;
1953 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1954 unsigned int arg
, unsigned int qty
)
1956 unsigned int erase_timeout
;
1958 if (arg
== MMC_DISCARD_ARG
||
1959 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1960 erase_timeout
= card
->ext_csd
.trim_timeout
;
1961 } else if (card
->ext_csd
.erase_group_def
& 1) {
1962 /* High Capacity Erase Group Size uses HC timeouts */
1963 if (arg
== MMC_TRIM_ARG
)
1964 erase_timeout
= card
->ext_csd
.trim_timeout
;
1966 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1968 /* CSD Erase Group Size uses write timeout */
1969 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1970 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
1971 unsigned int timeout_us
;
1973 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1974 if (card
->csd
.tacc_ns
< 1000000)
1975 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
1977 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
1980 * ios.clock is only a target. The real clock rate might be
1981 * less but not that much less, so fudge it by multiplying by 2.
1984 timeout_us
+= (timeout_clks
* 1000) /
1985 (card
->host
->ios
.clock
/ 1000);
1987 erase_timeout
= timeout_us
/ 1000;
1990 * Theoretically, the calculation could underflow so round up
1991 * to 1ms in that case.
1997 /* Multiplier for secure operations */
1998 if (arg
& MMC_SECURE_ARGS
) {
1999 if (arg
== MMC_SECURE_ERASE_ARG
)
2000 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
2002 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
2005 erase_timeout
*= qty
;
2008 * Ensure at least a 1 second timeout for SPI as per
2009 * 'mmc_set_data_timeout()'
2011 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
2012 erase_timeout
= 1000;
2014 return erase_timeout
;
2017 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
2021 unsigned int erase_timeout
;
2023 if (card
->ssr
.erase_timeout
) {
2024 /* Erase timeout specified in SD Status Register (SSR) */
2025 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
2026 card
->ssr
.erase_offset
;
2029 * Erase timeout not specified in SD Status Register (SSR) so
2030 * use 250ms per write block.
2032 erase_timeout
= 250 * qty
;
2035 /* Must not be less than 1 second */
2036 if (erase_timeout
< 1000)
2037 erase_timeout
= 1000;
2039 return erase_timeout
;
2042 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
2046 if (mmc_card_sd(card
))
2047 return mmc_sd_erase_timeout(card
, arg
, qty
);
2049 return mmc_mmc_erase_timeout(card
, arg
, qty
);
2052 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
2053 unsigned int to
, unsigned int arg
)
2055 struct mmc_command cmd
= {0};
2056 unsigned int qty
= 0;
2057 unsigned long timeout
;
2060 mmc_retune_hold(card
->host
);
2063 * qty is used to calculate the erase timeout which depends on how many
2064 * erase groups (or allocation units in SD terminology) are affected.
2065 * We count erasing part of an erase group as one erase group.
2066 * For SD, the allocation units are always a power of 2. For MMC, the
2067 * erase group size is almost certainly also power of 2, but it does not
2068 * seem to insist on that in the JEDEC standard, so we fall back to
2069 * division in that case. SD may not specify an allocation unit size,
2070 * in which case the timeout is based on the number of write blocks.
2072 * Note that the timeout for secure trim 2 will only be correct if the
2073 * number of erase groups specified is the same as the total of all
2074 * preceding secure trim 1 commands. Since the power may have been
2075 * lost since the secure trim 1 commands occurred, it is generally
2076 * impossible to calculate the secure trim 2 timeout correctly.
2078 if (card
->erase_shift
)
2079 qty
+= ((to
>> card
->erase_shift
) -
2080 (from
>> card
->erase_shift
)) + 1;
2081 else if (mmc_card_sd(card
))
2082 qty
+= to
- from
+ 1;
2084 qty
+= ((to
/ card
->erase_size
) -
2085 (from
/ card
->erase_size
)) + 1;
2087 if (!mmc_card_blockaddr(card
)) {
2092 if (mmc_card_sd(card
))
2093 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2095 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2097 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2098 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2100 pr_err("mmc_erase: group start error %d, "
2101 "status %#x\n", err
, cmd
.resp
[0]);
2106 memset(&cmd
, 0, sizeof(struct mmc_command
));
2107 if (mmc_card_sd(card
))
2108 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2110 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2112 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2113 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2115 pr_err("mmc_erase: group end error %d, status %#x\n",
2121 memset(&cmd
, 0, sizeof(struct mmc_command
));
2122 cmd
.opcode
= MMC_ERASE
;
2124 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2125 cmd
.busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2126 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2128 pr_err("mmc_erase: erase error %d, status %#x\n",
2134 if (mmc_host_is_spi(card
->host
))
2137 timeout
= jiffies
+ msecs_to_jiffies(MMC_CORE_TIMEOUT_MS
);
2139 memset(&cmd
, 0, sizeof(struct mmc_command
));
2140 cmd
.opcode
= MMC_SEND_STATUS
;
2141 cmd
.arg
= card
->rca
<< 16;
2142 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2143 /* Do not retry else we can't see errors */
2144 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2145 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2146 pr_err("error %d requesting status %#x\n",
2152 /* Timeout if the device never becomes ready for data and
2153 * never leaves the program state.
2155 if (time_after(jiffies
, timeout
)) {
2156 pr_err("%s: Card stuck in programming state! %s\n",
2157 mmc_hostname(card
->host
), __func__
);
2162 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2163 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2165 mmc_retune_release(card
->host
);
2170 * mmc_erase - erase sectors.
2171 * @card: card to erase
2172 * @from: first sector to erase
2173 * @nr: number of sectors to erase
2174 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2176 * Caller must claim host before calling this function.
2178 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2181 unsigned int rem
, to
= from
+ nr
;
2184 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2185 !(card
->csd
.cmdclass
& CCC_ERASE
))
2188 if (!card
->erase_size
)
2191 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2194 if ((arg
& MMC_SECURE_ARGS
) &&
2195 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2198 if ((arg
& MMC_TRIM_ARGS
) &&
2199 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2202 if (arg
== MMC_SECURE_ERASE_ARG
) {
2203 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2207 if (arg
== MMC_ERASE_ARG
) {
2208 rem
= from
% card
->erase_size
;
2210 rem
= card
->erase_size
- rem
;
2217 rem
= nr
% card
->erase_size
;
2230 /* 'from' and 'to' are inclusive */
2234 * Special case where only one erase-group fits in the timeout budget:
2235 * If the region crosses an erase-group boundary on this particular
2236 * case, we will be trimming more than one erase-group which, does not
2237 * fit in the timeout budget of the controller, so we need to split it
2238 * and call mmc_do_erase() twice if necessary. This special case is
2239 * identified by the card->eg_boundary flag.
2241 rem
= card
->erase_size
- (from
% card
->erase_size
);
2242 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2243 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2245 if ((err
) || (to
<= from
))
2249 return mmc_do_erase(card
, from
, to
, arg
);
2251 EXPORT_SYMBOL(mmc_erase
);
2253 int mmc_can_erase(struct mmc_card
*card
)
2255 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2256 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2260 EXPORT_SYMBOL(mmc_can_erase
);
2262 int mmc_can_trim(struct mmc_card
*card
)
2264 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2265 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2269 EXPORT_SYMBOL(mmc_can_trim
);
2271 int mmc_can_discard(struct mmc_card
*card
)
2274 * As there's no way to detect the discard support bit at v4.5
2275 * use the s/w feature support filed.
2277 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2281 EXPORT_SYMBOL(mmc_can_discard
);
2283 int mmc_can_sanitize(struct mmc_card
*card
)
2285 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2287 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2291 EXPORT_SYMBOL(mmc_can_sanitize
);
2293 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2295 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2296 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2300 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2302 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2305 if (!card
->erase_size
)
2307 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2311 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2313 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2316 struct mmc_host
*host
= card
->host
;
2317 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, timeout
;
2318 unsigned int last_timeout
= 0;
2320 if (card
->erase_shift
)
2321 max_qty
= UINT_MAX
>> card
->erase_shift
;
2322 else if (mmc_card_sd(card
))
2325 max_qty
= UINT_MAX
/ card
->erase_size
;
2327 /* Find the largest qty with an OK timeout */
2330 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2331 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2332 if (timeout
> host
->max_busy_timeout
)
2334 if (timeout
< last_timeout
)
2336 last_timeout
= timeout
;
2346 * When specifying a sector range to trim, chances are we might cross
2347 * an erase-group boundary even if the amount of sectors is less than
2349 * If we can only fit one erase-group in the controller timeout budget,
2350 * we have to care that erase-group boundaries are not crossed by a
2351 * single trim operation. We flag that special case with "eg_boundary".
2352 * In all other cases we can just decrement qty and pretend that we
2353 * always touch (qty + 1) erase-groups as a simple optimization.
2356 card
->eg_boundary
= 1;
2360 /* Convert qty to sectors */
2361 if (card
->erase_shift
)
2362 max_discard
= qty
<< card
->erase_shift
;
2363 else if (mmc_card_sd(card
))
2364 max_discard
= qty
+ 1;
2366 max_discard
= qty
* card
->erase_size
;
2371 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2373 struct mmc_host
*host
= card
->host
;
2374 unsigned int max_discard
, max_trim
;
2376 if (!host
->max_busy_timeout
)
2380 * Without erase_group_def set, MMC erase timeout depends on clock
2381 * frequence which can change. In that case, the best choice is
2382 * just the preferred erase size.
2384 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2385 return card
->pref_erase
;
2387 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2388 if (mmc_can_trim(card
)) {
2389 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2390 if (max_trim
< max_discard
)
2391 max_discard
= max_trim
;
2392 } else if (max_discard
< card
->erase_size
) {
2395 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2396 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
);
2399 EXPORT_SYMBOL(mmc_calc_max_discard
);
2401 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2403 struct mmc_command cmd
= {0};
2405 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
))
2408 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2410 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2411 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2413 EXPORT_SYMBOL(mmc_set_blocklen
);
2415 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2418 struct mmc_command cmd
= {0};
2420 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2421 cmd
.arg
= blockcount
& 0x0000FFFF;
2424 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2425 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2427 EXPORT_SYMBOL(mmc_set_blockcount
);
2429 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2431 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2433 host
->ops
->hw_reset(host
);
2436 int mmc_hw_reset(struct mmc_host
*host
)
2444 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2449 ret
= host
->bus_ops
->reset(host
);
2452 if (ret
!= -EOPNOTSUPP
)
2453 pr_warn("%s: tried to reset card\n", mmc_hostname(host
));
2457 EXPORT_SYMBOL(mmc_hw_reset
);
2459 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2461 host
->f_init
= freq
;
2463 #ifdef CONFIG_MMC_DEBUG
2464 pr_info("%s: %s: trying to init card at %u Hz\n",
2465 mmc_hostname(host
), __func__
, host
->f_init
);
2467 mmc_power_up(host
, host
->ocr_avail
);
2470 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2471 * do a hardware reset if possible.
2473 mmc_hw_reset_for_init(host
);
2476 * sdio_reset sends CMD52 to reset card. Since we do not know
2477 * if the card is being re-initialized, just send it. CMD52
2478 * should be ignored by SD/eMMC cards.
2479 * Skip it if we already know that we do not support SDIO commands
2481 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2486 mmc_send_if_cond(host
, host
->ocr_avail
);
2488 /* Order's important: probe SDIO, then SD, then MMC */
2489 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2490 if (!mmc_attach_sdio(host
))
2493 if (!mmc_attach_sd(host
))
2495 if (!mmc_attach_mmc(host
))
2498 mmc_power_off(host
);
2502 int _mmc_detect_card_removed(struct mmc_host
*host
)
2506 if (!host
->card
|| mmc_card_removed(host
->card
))
2509 ret
= host
->bus_ops
->alive(host
);
2512 * Card detect status and alive check may be out of sync if card is
2513 * removed slowly, when card detect switch changes while card/slot
2514 * pads are still contacted in hardware (refer to "SD Card Mechanical
2515 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2516 * detect work 200ms later for this case.
2518 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2519 mmc_detect_change(host
, msecs_to_jiffies(200));
2520 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2524 mmc_card_set_removed(host
->card
);
2525 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2531 int mmc_detect_card_removed(struct mmc_host
*host
)
2533 struct mmc_card
*card
= host
->card
;
2536 WARN_ON(!host
->claimed
);
2541 if (!mmc_card_is_removable(host
))
2544 ret
= mmc_card_removed(card
);
2546 * The card will be considered unchanged unless we have been asked to
2547 * detect a change or host requires polling to provide card detection.
2549 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2552 host
->detect_change
= 0;
2554 ret
= _mmc_detect_card_removed(host
);
2555 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2557 * Schedule a detect work as soon as possible to let a
2558 * rescan handle the card removal.
2560 cancel_delayed_work(&host
->detect
);
2561 _mmc_detect_change(host
, 0, false);
2567 EXPORT_SYMBOL(mmc_detect_card_removed
);
2569 void mmc_rescan(struct work_struct
*work
)
2571 struct mmc_host
*host
=
2572 container_of(work
, struct mmc_host
, detect
.work
);
2575 if (host
->rescan_disable
)
2578 /* If there is a non-removable card registered, only scan once */
2579 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2581 host
->rescan_entered
= 1;
2583 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2584 mmc_claim_host(host
);
2585 host
->ops
->card_event(host
);
2586 mmc_release_host(host
);
2587 host
->trigger_card_event
= false;
2593 * if there is a _removable_ card registered, check whether it is
2596 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2597 host
->bus_ops
->detect(host
);
2599 host
->detect_change
= 0;
2602 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2603 * the card is no longer present.
2608 /* if there still is a card present, stop here */
2609 if (host
->bus_ops
!= NULL
) {
2615 * Only we can add a new handler, so it's safe to
2616 * release the lock here.
2620 mmc_claim_host(host
);
2621 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2622 host
->ops
->get_cd(host
) == 0) {
2623 mmc_power_off(host
);
2624 mmc_release_host(host
);
2628 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2629 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2631 if (freqs
[i
] <= host
->f_min
)
2634 mmc_release_host(host
);
2637 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2638 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2641 void mmc_start_host(struct mmc_host
*host
)
2643 host
->f_init
= max(freqs
[0], host
->f_min
);
2644 host
->rescan_disable
= 0;
2645 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2647 mmc_claim_host(host
);
2648 if (host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)
2649 mmc_power_off(host
);
2651 mmc_power_up(host
, host
->ocr_avail
);
2652 mmc_release_host(host
);
2654 mmc_gpiod_request_cd_irq(host
);
2655 _mmc_detect_change(host
, 0, false);
2658 void mmc_stop_host(struct mmc_host
*host
)
2660 #ifdef CONFIG_MMC_DEBUG
2661 unsigned long flags
;
2662 spin_lock_irqsave(&host
->lock
, flags
);
2664 spin_unlock_irqrestore(&host
->lock
, flags
);
2666 if (host
->slot
.cd_irq
>= 0)
2667 disable_irq(host
->slot
.cd_irq
);
2669 host
->rescan_disable
= 1;
2670 cancel_delayed_work_sync(&host
->detect
);
2672 /* clear pm flags now and let card drivers set them as needed */
2676 if (host
->bus_ops
&& !host
->bus_dead
) {
2677 /* Calling bus_ops->remove() with a claimed host can deadlock */
2678 host
->bus_ops
->remove(host
);
2679 mmc_claim_host(host
);
2680 mmc_detach_bus(host
);
2681 mmc_power_off(host
);
2682 mmc_release_host(host
);
2690 mmc_claim_host(host
);
2691 mmc_power_off(host
);
2692 mmc_release_host(host
);
2695 int mmc_power_save_host(struct mmc_host
*host
)
2699 #ifdef CONFIG_MMC_DEBUG
2700 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2705 if (!host
->bus_ops
|| host
->bus_dead
) {
2710 if (host
->bus_ops
->power_save
)
2711 ret
= host
->bus_ops
->power_save(host
);
2715 mmc_power_off(host
);
2719 EXPORT_SYMBOL(mmc_power_save_host
);
2721 int mmc_power_restore_host(struct mmc_host
*host
)
2725 #ifdef CONFIG_MMC_DEBUG
2726 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2731 if (!host
->bus_ops
|| host
->bus_dead
) {
2736 mmc_power_up(host
, host
->card
->ocr
);
2737 ret
= host
->bus_ops
->power_restore(host
);
2743 EXPORT_SYMBOL(mmc_power_restore_host
);
2746 * Flush the cache to the non-volatile storage.
2748 int mmc_flush_cache(struct mmc_card
*card
)
2752 if (mmc_card_mmc(card
) &&
2753 (card
->ext_csd
.cache_size
> 0) &&
2754 (card
->ext_csd
.cache_ctrl
& 1)) {
2755 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2756 EXT_CSD_FLUSH_CACHE
, 1, 0);
2758 pr_err("%s: cache flush error %d\n",
2759 mmc_hostname(card
->host
), err
);
2764 EXPORT_SYMBOL(mmc_flush_cache
);
2766 #ifdef CONFIG_PM_SLEEP
2767 /* Do the card removal on suspend if card is assumed removeable
2768 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2771 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2772 unsigned long mode
, void *unused
)
2774 struct mmc_host
*host
= container_of(
2775 notify_block
, struct mmc_host
, pm_notify
);
2776 unsigned long flags
;
2780 case PM_HIBERNATION_PREPARE
:
2781 case PM_SUSPEND_PREPARE
:
2782 case PM_RESTORE_PREPARE
:
2783 spin_lock_irqsave(&host
->lock
, flags
);
2784 host
->rescan_disable
= 1;
2785 spin_unlock_irqrestore(&host
->lock
, flags
);
2786 cancel_delayed_work_sync(&host
->detect
);
2791 /* Validate prerequisites for suspend */
2792 if (host
->bus_ops
->pre_suspend
)
2793 err
= host
->bus_ops
->pre_suspend(host
);
2797 /* Calling bus_ops->remove() with a claimed host can deadlock */
2798 host
->bus_ops
->remove(host
);
2799 mmc_claim_host(host
);
2800 mmc_detach_bus(host
);
2801 mmc_power_off(host
);
2802 mmc_release_host(host
);
2806 case PM_POST_SUSPEND
:
2807 case PM_POST_HIBERNATION
:
2808 case PM_POST_RESTORE
:
2810 spin_lock_irqsave(&host
->lock
, flags
);
2811 host
->rescan_disable
= 0;
2812 spin_unlock_irqrestore(&host
->lock
, flags
);
2813 _mmc_detect_change(host
, 0, false);
2820 void mmc_register_pm_notifier(struct mmc_host
*host
)
2822 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2823 register_pm_notifier(&host
->pm_notify
);
2826 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2828 unregister_pm_notifier(&host
->pm_notify
);
2833 * mmc_init_context_info() - init synchronization context
2836 * Init struct context_info needed to implement asynchronous
2837 * request mechanism, used by mmc core, host driver and mmc requests
2840 void mmc_init_context_info(struct mmc_host
*host
)
2842 spin_lock_init(&host
->context_info
.lock
);
2843 host
->context_info
.is_new_req
= false;
2844 host
->context_info
.is_done_rcv
= false;
2845 host
->context_info
.is_waiting_last_req
= false;
2846 init_waitqueue_head(&host
->context_info
.wait
);
2849 static int __init
mmc_init(void)
2853 ret
= mmc_register_bus();
2857 ret
= mmc_register_host_class();
2859 goto unregister_bus
;
2861 ret
= sdio_register_bus();
2863 goto unregister_host_class
;
2867 unregister_host_class
:
2868 mmc_unregister_host_class();
2870 mmc_unregister_bus();
2874 static void __exit
mmc_exit(void)
2876 sdio_unregister_bus();
2877 mmc_unregister_host_class();
2878 mmc_unregister_bus();
2881 subsys_initcall(mmc_init
);
2882 module_exit(mmc_exit
);
2884 MODULE_LICENSE("GPL");