x86/boot: Rename overlapping memcpy() to memmove()
[linux/fpc-iii.git] / kernel / sched / debug.c
blob4fbc3bd5ff6067dfe184295fc262987c912b669e
1 /*
2 * kernel/sched/debug.c
4 * Print the CFS rbtree
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19 #include <linux/debugfs.h>
21 #include "sched.h"
23 static DEFINE_SPINLOCK(sched_debug_lock);
26 * This allows printing both to /proc/sched_debug and
27 * to the console
29 #define SEQ_printf(m, x...) \
30 do { \
31 if (m) \
32 seq_printf(m, x); \
33 else \
34 printk(x); \
35 } while (0)
38 * Ease the printing of nsec fields:
40 static long long nsec_high(unsigned long long nsec)
42 if ((long long)nsec < 0) {
43 nsec = -nsec;
44 do_div(nsec, 1000000);
45 return -nsec;
47 do_div(nsec, 1000000);
49 return nsec;
52 static unsigned long nsec_low(unsigned long long nsec)
54 if ((long long)nsec < 0)
55 nsec = -nsec;
57 return do_div(nsec, 1000000);
60 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
62 #define SCHED_FEAT(name, enabled) \
63 #name ,
65 static const char * const sched_feat_names[] = {
66 #include "features.h"
69 #undef SCHED_FEAT
71 static int sched_feat_show(struct seq_file *m, void *v)
73 int i;
75 for (i = 0; i < __SCHED_FEAT_NR; i++) {
76 if (!(sysctl_sched_features & (1UL << i)))
77 seq_puts(m, "NO_");
78 seq_printf(m, "%s ", sched_feat_names[i]);
80 seq_puts(m, "\n");
82 return 0;
85 #ifdef HAVE_JUMP_LABEL
87 #define jump_label_key__true STATIC_KEY_INIT_TRUE
88 #define jump_label_key__false STATIC_KEY_INIT_FALSE
90 #define SCHED_FEAT(name, enabled) \
91 jump_label_key__##enabled ,
93 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
94 #include "features.h"
97 #undef SCHED_FEAT
99 static void sched_feat_disable(int i)
101 static_key_disable(&sched_feat_keys[i]);
104 static void sched_feat_enable(int i)
106 static_key_enable(&sched_feat_keys[i]);
108 #else
109 static void sched_feat_disable(int i) { };
110 static void sched_feat_enable(int i) { };
111 #endif /* HAVE_JUMP_LABEL */
113 static int sched_feat_set(char *cmp)
115 int i;
116 int neg = 0;
118 if (strncmp(cmp, "NO_", 3) == 0) {
119 neg = 1;
120 cmp += 3;
123 for (i = 0; i < __SCHED_FEAT_NR; i++) {
124 if (strcmp(cmp, sched_feat_names[i]) == 0) {
125 if (neg) {
126 sysctl_sched_features &= ~(1UL << i);
127 sched_feat_disable(i);
128 } else {
129 sysctl_sched_features |= (1UL << i);
130 sched_feat_enable(i);
132 break;
136 return i;
139 static ssize_t
140 sched_feat_write(struct file *filp, const char __user *ubuf,
141 size_t cnt, loff_t *ppos)
143 char buf[64];
144 char *cmp;
145 int i;
146 struct inode *inode;
148 if (cnt > 63)
149 cnt = 63;
151 if (copy_from_user(&buf, ubuf, cnt))
152 return -EFAULT;
154 buf[cnt] = 0;
155 cmp = strstrip(buf);
157 /* Ensure the static_key remains in a consistent state */
158 inode = file_inode(filp);
159 inode_lock(inode);
160 i = sched_feat_set(cmp);
161 inode_unlock(inode);
162 if (i == __SCHED_FEAT_NR)
163 return -EINVAL;
165 *ppos += cnt;
167 return cnt;
170 static int sched_feat_open(struct inode *inode, struct file *filp)
172 return single_open(filp, sched_feat_show, NULL);
175 static const struct file_operations sched_feat_fops = {
176 .open = sched_feat_open,
177 .write = sched_feat_write,
178 .read = seq_read,
179 .llseek = seq_lseek,
180 .release = single_release,
183 static __init int sched_init_debug(void)
185 debugfs_create_file("sched_features", 0644, NULL, NULL,
186 &sched_feat_fops);
188 return 0;
190 late_initcall(sched_init_debug);
192 #ifdef CONFIG_SMP
194 #ifdef CONFIG_SYSCTL
196 static struct ctl_table sd_ctl_dir[] = {
198 .procname = "sched_domain",
199 .mode = 0555,
204 static struct ctl_table sd_ctl_root[] = {
206 .procname = "kernel",
207 .mode = 0555,
208 .child = sd_ctl_dir,
213 static struct ctl_table *sd_alloc_ctl_entry(int n)
215 struct ctl_table *entry =
216 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
218 return entry;
221 static void sd_free_ctl_entry(struct ctl_table **tablep)
223 struct ctl_table *entry;
226 * In the intermediate directories, both the child directory and
227 * procname are dynamically allocated and could fail but the mode
228 * will always be set. In the lowest directory the names are
229 * static strings and all have proc handlers.
231 for (entry = *tablep; entry->mode; entry++) {
232 if (entry->child)
233 sd_free_ctl_entry(&entry->child);
234 if (entry->proc_handler == NULL)
235 kfree(entry->procname);
238 kfree(*tablep);
239 *tablep = NULL;
242 static int min_load_idx = 0;
243 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
245 static void
246 set_table_entry(struct ctl_table *entry,
247 const char *procname, void *data, int maxlen,
248 umode_t mode, proc_handler *proc_handler,
249 bool load_idx)
251 entry->procname = procname;
252 entry->data = data;
253 entry->maxlen = maxlen;
254 entry->mode = mode;
255 entry->proc_handler = proc_handler;
257 if (load_idx) {
258 entry->extra1 = &min_load_idx;
259 entry->extra2 = &max_load_idx;
263 static struct ctl_table *
264 sd_alloc_ctl_domain_table(struct sched_domain *sd)
266 struct ctl_table *table = sd_alloc_ctl_entry(14);
268 if (table == NULL)
269 return NULL;
271 set_table_entry(&table[0], "min_interval", &sd->min_interval,
272 sizeof(long), 0644, proc_doulongvec_minmax, false);
273 set_table_entry(&table[1], "max_interval", &sd->max_interval,
274 sizeof(long), 0644, proc_doulongvec_minmax, false);
275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
276 sizeof(int), 0644, proc_dointvec_minmax, true);
277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
278 sizeof(int), 0644, proc_dointvec_minmax, true);
279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
280 sizeof(int), 0644, proc_dointvec_minmax, true);
281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
282 sizeof(int), 0644, proc_dointvec_minmax, true);
283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
284 sizeof(int), 0644, proc_dointvec_minmax, true);
285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
286 sizeof(int), 0644, proc_dointvec_minmax, false);
287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
288 sizeof(int), 0644, proc_dointvec_minmax, false);
289 set_table_entry(&table[9], "cache_nice_tries",
290 &sd->cache_nice_tries,
291 sizeof(int), 0644, proc_dointvec_minmax, false);
292 set_table_entry(&table[10], "flags", &sd->flags,
293 sizeof(int), 0644, proc_dointvec_minmax, false);
294 set_table_entry(&table[11], "max_newidle_lb_cost",
295 &sd->max_newidle_lb_cost,
296 sizeof(long), 0644, proc_doulongvec_minmax, false);
297 set_table_entry(&table[12], "name", sd->name,
298 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
299 /* &table[13] is terminator */
301 return table;
304 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
306 struct ctl_table *entry, *table;
307 struct sched_domain *sd;
308 int domain_num = 0, i;
309 char buf[32];
311 for_each_domain(cpu, sd)
312 domain_num++;
313 entry = table = sd_alloc_ctl_entry(domain_num + 1);
314 if (table == NULL)
315 return NULL;
317 i = 0;
318 for_each_domain(cpu, sd) {
319 snprintf(buf, 32, "domain%d", i);
320 entry->procname = kstrdup(buf, GFP_KERNEL);
321 entry->mode = 0555;
322 entry->child = sd_alloc_ctl_domain_table(sd);
323 entry++;
324 i++;
326 return table;
329 static struct ctl_table_header *sd_sysctl_header;
330 void register_sched_domain_sysctl(void)
332 int i, cpu_num = num_possible_cpus();
333 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
334 char buf[32];
336 WARN_ON(sd_ctl_dir[0].child);
337 sd_ctl_dir[0].child = entry;
339 if (entry == NULL)
340 return;
342 for_each_possible_cpu(i) {
343 snprintf(buf, 32, "cpu%d", i);
344 entry->procname = kstrdup(buf, GFP_KERNEL);
345 entry->mode = 0555;
346 entry->child = sd_alloc_ctl_cpu_table(i);
347 entry++;
350 WARN_ON(sd_sysctl_header);
351 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
354 /* may be called multiple times per register */
355 void unregister_sched_domain_sysctl(void)
357 unregister_sysctl_table(sd_sysctl_header);
358 sd_sysctl_header = NULL;
359 if (sd_ctl_dir[0].child)
360 sd_free_ctl_entry(&sd_ctl_dir[0].child);
362 #endif /* CONFIG_SYSCTL */
363 #endif /* CONFIG_SMP */
365 #ifdef CONFIG_FAIR_GROUP_SCHED
366 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
368 struct sched_entity *se = tg->se[cpu];
370 #define P(F) \
371 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
372 #define PN(F) \
373 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
375 if (!se)
376 return;
378 PN(se->exec_start);
379 PN(se->vruntime);
380 PN(se->sum_exec_runtime);
381 #ifdef CONFIG_SCHEDSTATS
382 if (schedstat_enabled()) {
383 PN(se->statistics.wait_start);
384 PN(se->statistics.sleep_start);
385 PN(se->statistics.block_start);
386 PN(se->statistics.sleep_max);
387 PN(se->statistics.block_max);
388 PN(se->statistics.exec_max);
389 PN(se->statistics.slice_max);
390 PN(se->statistics.wait_max);
391 PN(se->statistics.wait_sum);
392 P(se->statistics.wait_count);
394 #endif
395 P(se->load.weight);
396 #ifdef CONFIG_SMP
397 P(se->avg.load_avg);
398 P(se->avg.util_avg);
399 #endif
400 #undef PN
401 #undef P
403 #endif
405 #ifdef CONFIG_CGROUP_SCHED
406 static char group_path[PATH_MAX];
408 static char *task_group_path(struct task_group *tg)
410 if (autogroup_path(tg, group_path, PATH_MAX))
411 return group_path;
413 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
415 #endif
417 static void
418 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
420 if (rq->curr == p)
421 SEQ_printf(m, "R");
422 else
423 SEQ_printf(m, " ");
425 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
426 p->comm, task_pid_nr(p),
427 SPLIT_NS(p->se.vruntime),
428 (long long)(p->nvcsw + p->nivcsw),
429 p->prio);
430 #ifdef CONFIG_SCHEDSTATS
431 if (schedstat_enabled()) {
432 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
433 SPLIT_NS(p->se.statistics.wait_sum),
434 SPLIT_NS(p->se.sum_exec_runtime),
435 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
437 #else
438 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
439 0LL, 0L,
440 SPLIT_NS(p->se.sum_exec_runtime),
441 0LL, 0L);
442 #endif
443 #ifdef CONFIG_NUMA_BALANCING
444 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
445 #endif
446 #ifdef CONFIG_CGROUP_SCHED
447 SEQ_printf(m, " %s", task_group_path(task_group(p)));
448 #endif
450 SEQ_printf(m, "\n");
453 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
455 struct task_struct *g, *p;
457 SEQ_printf(m,
458 "\nrunnable tasks:\n"
459 " task PID tree-key switches prio"
460 " wait-time sum-exec sum-sleep\n"
461 "------------------------------------------------------"
462 "----------------------------------------------------\n");
464 rcu_read_lock();
465 for_each_process_thread(g, p) {
466 if (task_cpu(p) != rq_cpu)
467 continue;
469 print_task(m, rq, p);
471 rcu_read_unlock();
474 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
476 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
477 spread, rq0_min_vruntime, spread0;
478 struct rq *rq = cpu_rq(cpu);
479 struct sched_entity *last;
480 unsigned long flags;
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
484 #else
485 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
486 #endif
487 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
488 SPLIT_NS(cfs_rq->exec_clock));
490 raw_spin_lock_irqsave(&rq->lock, flags);
491 if (cfs_rq->rb_leftmost)
492 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
493 last = __pick_last_entity(cfs_rq);
494 if (last)
495 max_vruntime = last->vruntime;
496 min_vruntime = cfs_rq->min_vruntime;
497 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
498 raw_spin_unlock_irqrestore(&rq->lock, flags);
499 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
500 SPLIT_NS(MIN_vruntime));
501 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
502 SPLIT_NS(min_vruntime));
503 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
504 SPLIT_NS(max_vruntime));
505 spread = max_vruntime - MIN_vruntime;
506 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
507 SPLIT_NS(spread));
508 spread0 = min_vruntime - rq0_min_vruntime;
509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
510 SPLIT_NS(spread0));
511 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
512 cfs_rq->nr_spread_over);
513 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
514 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
515 #ifdef CONFIG_SMP
516 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
517 cfs_rq->avg.load_avg);
518 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
519 cfs_rq->runnable_load_avg);
520 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
521 cfs_rq->avg.util_avg);
522 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
523 atomic_long_read(&cfs_rq->removed_load_avg));
524 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
525 atomic_long_read(&cfs_rq->removed_util_avg));
526 #ifdef CONFIG_FAIR_GROUP_SCHED
527 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
528 cfs_rq->tg_load_avg_contrib);
529 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
530 atomic_long_read(&cfs_rq->tg->load_avg));
531 #endif
532 #endif
533 #ifdef CONFIG_CFS_BANDWIDTH
534 SEQ_printf(m, " .%-30s: %d\n", "throttled",
535 cfs_rq->throttled);
536 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
537 cfs_rq->throttle_count);
538 #endif
540 #ifdef CONFIG_FAIR_GROUP_SCHED
541 print_cfs_group_stats(m, cpu, cfs_rq->tg);
542 #endif
545 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
547 #ifdef CONFIG_RT_GROUP_SCHED
548 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
549 #else
550 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
551 #endif
553 #define P(x) \
554 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
555 #define PN(x) \
556 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
558 P(rt_nr_running);
559 P(rt_throttled);
560 PN(rt_time);
561 PN(rt_runtime);
563 #undef PN
564 #undef P
567 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
569 struct dl_bw *dl_bw;
571 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
572 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
573 #ifdef CONFIG_SMP
574 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
575 #else
576 dl_bw = &dl_rq->dl_bw;
577 #endif
578 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
579 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
582 extern __read_mostly int sched_clock_running;
584 static void print_cpu(struct seq_file *m, int cpu)
586 struct rq *rq = cpu_rq(cpu);
587 unsigned long flags;
589 #ifdef CONFIG_X86
591 unsigned int freq = cpu_khz ? : 1;
593 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
594 cpu, freq / 1000, (freq % 1000));
596 #else
597 SEQ_printf(m, "cpu#%d\n", cpu);
598 #endif
600 #define P(x) \
601 do { \
602 if (sizeof(rq->x) == 4) \
603 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
604 else \
605 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
606 } while (0)
608 #define PN(x) \
609 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
611 P(nr_running);
612 SEQ_printf(m, " .%-30s: %lu\n", "load",
613 rq->load.weight);
614 P(nr_switches);
615 P(nr_load_updates);
616 P(nr_uninterruptible);
617 PN(next_balance);
618 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
619 PN(clock);
620 PN(clock_task);
621 P(cpu_load[0]);
622 P(cpu_load[1]);
623 P(cpu_load[2]);
624 P(cpu_load[3]);
625 P(cpu_load[4]);
626 #undef P
627 #undef PN
629 #ifdef CONFIG_SCHEDSTATS
630 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
631 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
633 #ifdef CONFIG_SMP
634 P64(avg_idle);
635 P64(max_idle_balance_cost);
636 #endif
638 if (schedstat_enabled()) {
639 P(yld_count);
640 P(sched_count);
641 P(sched_goidle);
642 P(ttwu_count);
643 P(ttwu_local);
646 #undef P
647 #undef P64
648 #endif
649 spin_lock_irqsave(&sched_debug_lock, flags);
650 print_cfs_stats(m, cpu);
651 print_rt_stats(m, cpu);
652 print_dl_stats(m, cpu);
654 print_rq(m, rq, cpu);
655 spin_unlock_irqrestore(&sched_debug_lock, flags);
656 SEQ_printf(m, "\n");
659 static const char *sched_tunable_scaling_names[] = {
660 "none",
661 "logaritmic",
662 "linear"
665 static void sched_debug_header(struct seq_file *m)
667 u64 ktime, sched_clk, cpu_clk;
668 unsigned long flags;
670 local_irq_save(flags);
671 ktime = ktime_to_ns(ktime_get());
672 sched_clk = sched_clock();
673 cpu_clk = local_clock();
674 local_irq_restore(flags);
676 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
677 init_utsname()->release,
678 (int)strcspn(init_utsname()->version, " "),
679 init_utsname()->version);
681 #define P(x) \
682 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
683 #define PN(x) \
684 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
685 PN(ktime);
686 PN(sched_clk);
687 PN(cpu_clk);
688 P(jiffies);
689 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
690 P(sched_clock_stable());
691 #endif
692 #undef PN
693 #undef P
695 SEQ_printf(m, "\n");
696 SEQ_printf(m, "sysctl_sched\n");
698 #define P(x) \
699 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
700 #define PN(x) \
701 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
702 PN(sysctl_sched_latency);
703 PN(sysctl_sched_min_granularity);
704 PN(sysctl_sched_wakeup_granularity);
705 P(sysctl_sched_child_runs_first);
706 P(sysctl_sched_features);
707 #undef PN
708 #undef P
710 SEQ_printf(m, " .%-40s: %d (%s)\n",
711 "sysctl_sched_tunable_scaling",
712 sysctl_sched_tunable_scaling,
713 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
714 SEQ_printf(m, "\n");
717 static int sched_debug_show(struct seq_file *m, void *v)
719 int cpu = (unsigned long)(v - 2);
721 if (cpu != -1)
722 print_cpu(m, cpu);
723 else
724 sched_debug_header(m);
726 return 0;
729 void sysrq_sched_debug_show(void)
731 int cpu;
733 sched_debug_header(NULL);
734 for_each_online_cpu(cpu)
735 print_cpu(NULL, cpu);
740 * This itererator needs some explanation.
741 * It returns 1 for the header position.
742 * This means 2 is cpu 0.
743 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
744 * to use cpumask_* to iterate over the cpus.
746 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
748 unsigned long n = *offset;
750 if (n == 0)
751 return (void *) 1;
753 n--;
755 if (n > 0)
756 n = cpumask_next(n - 1, cpu_online_mask);
757 else
758 n = cpumask_first(cpu_online_mask);
760 *offset = n + 1;
762 if (n < nr_cpu_ids)
763 return (void *)(unsigned long)(n + 2);
764 return NULL;
767 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
769 (*offset)++;
770 return sched_debug_start(file, offset);
773 static void sched_debug_stop(struct seq_file *file, void *data)
777 static const struct seq_operations sched_debug_sops = {
778 .start = sched_debug_start,
779 .next = sched_debug_next,
780 .stop = sched_debug_stop,
781 .show = sched_debug_show,
784 static int sched_debug_release(struct inode *inode, struct file *file)
786 seq_release(inode, file);
788 return 0;
791 static int sched_debug_open(struct inode *inode, struct file *filp)
793 int ret = 0;
795 ret = seq_open(filp, &sched_debug_sops);
797 return ret;
800 static const struct file_operations sched_debug_fops = {
801 .open = sched_debug_open,
802 .read = seq_read,
803 .llseek = seq_lseek,
804 .release = sched_debug_release,
807 static int __init init_sched_debug_procfs(void)
809 struct proc_dir_entry *pe;
811 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
812 if (!pe)
813 return -ENOMEM;
814 return 0;
817 __initcall(init_sched_debug_procfs);
819 #define __P(F) \
820 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
821 #define P(F) \
822 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
823 #define __PN(F) \
824 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
825 #define PN(F) \
826 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
829 #ifdef CONFIG_NUMA_BALANCING
830 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
831 unsigned long tpf, unsigned long gsf, unsigned long gpf)
833 SEQ_printf(m, "numa_faults node=%d ", node);
834 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
835 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
837 #endif
840 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
842 #ifdef CONFIG_NUMA_BALANCING
843 struct mempolicy *pol;
845 if (p->mm)
846 P(mm->numa_scan_seq);
848 task_lock(p);
849 pol = p->mempolicy;
850 if (pol && !(pol->flags & MPOL_F_MORON))
851 pol = NULL;
852 mpol_get(pol);
853 task_unlock(p);
855 P(numa_pages_migrated);
856 P(numa_preferred_nid);
857 P(total_numa_faults);
858 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
859 task_node(p), task_numa_group_id(p));
860 show_numa_stats(p, m);
861 mpol_put(pol);
862 #endif
865 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
867 unsigned long nr_switches;
869 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
870 get_nr_threads(p));
871 SEQ_printf(m,
872 "---------------------------------------------------------"
873 "----------\n");
874 #define __P(F) \
875 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
876 #define P(F) \
877 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
878 #define __PN(F) \
879 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
880 #define PN(F) \
881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
883 PN(se.exec_start);
884 PN(se.vruntime);
885 PN(se.sum_exec_runtime);
887 nr_switches = p->nvcsw + p->nivcsw;
889 #ifdef CONFIG_SCHEDSTATS
890 P(se.nr_migrations);
892 if (schedstat_enabled()) {
893 u64 avg_atom, avg_per_cpu;
895 PN(se.statistics.sum_sleep_runtime);
896 PN(se.statistics.wait_start);
897 PN(se.statistics.sleep_start);
898 PN(se.statistics.block_start);
899 PN(se.statistics.sleep_max);
900 PN(se.statistics.block_max);
901 PN(se.statistics.exec_max);
902 PN(se.statistics.slice_max);
903 PN(se.statistics.wait_max);
904 PN(se.statistics.wait_sum);
905 P(se.statistics.wait_count);
906 PN(se.statistics.iowait_sum);
907 P(se.statistics.iowait_count);
908 P(se.statistics.nr_migrations_cold);
909 P(se.statistics.nr_failed_migrations_affine);
910 P(se.statistics.nr_failed_migrations_running);
911 P(se.statistics.nr_failed_migrations_hot);
912 P(se.statistics.nr_forced_migrations);
913 P(se.statistics.nr_wakeups);
914 P(se.statistics.nr_wakeups_sync);
915 P(se.statistics.nr_wakeups_migrate);
916 P(se.statistics.nr_wakeups_local);
917 P(se.statistics.nr_wakeups_remote);
918 P(se.statistics.nr_wakeups_affine);
919 P(se.statistics.nr_wakeups_affine_attempts);
920 P(se.statistics.nr_wakeups_passive);
921 P(se.statistics.nr_wakeups_idle);
923 avg_atom = p->se.sum_exec_runtime;
924 if (nr_switches)
925 avg_atom = div64_ul(avg_atom, nr_switches);
926 else
927 avg_atom = -1LL;
929 avg_per_cpu = p->se.sum_exec_runtime;
930 if (p->se.nr_migrations) {
931 avg_per_cpu = div64_u64(avg_per_cpu,
932 p->se.nr_migrations);
933 } else {
934 avg_per_cpu = -1LL;
937 __PN(avg_atom);
938 __PN(avg_per_cpu);
940 #endif
941 __P(nr_switches);
942 SEQ_printf(m, "%-45s:%21Ld\n",
943 "nr_voluntary_switches", (long long)p->nvcsw);
944 SEQ_printf(m, "%-45s:%21Ld\n",
945 "nr_involuntary_switches", (long long)p->nivcsw);
947 P(se.load.weight);
948 #ifdef CONFIG_SMP
949 P(se.avg.load_sum);
950 P(se.avg.util_sum);
951 P(se.avg.load_avg);
952 P(se.avg.util_avg);
953 P(se.avg.last_update_time);
954 #endif
955 P(policy);
956 P(prio);
957 #undef PN
958 #undef __PN
959 #undef P
960 #undef __P
963 unsigned int this_cpu = raw_smp_processor_id();
964 u64 t0, t1;
966 t0 = cpu_clock(this_cpu);
967 t1 = cpu_clock(this_cpu);
968 SEQ_printf(m, "%-45s:%21Ld\n",
969 "clock-delta", (long long)(t1-t0));
972 sched_show_numa(p, m);
975 void proc_sched_set_task(struct task_struct *p)
977 #ifdef CONFIG_SCHEDSTATS
978 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
979 #endif