2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
33 * 64K will take DMA, 9600 baud X.25 should be ok.
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/kernel.h>
44 #include <linux/net.h>
45 #include <linux/skbuff.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/delay.h>
49 #include <linux/hdlc.h>
50 #include <linux/ioport.h>
51 #include <linux/init.h>
52 #include <linux/gfp.h>
57 #include <linux/spinlock.h>
63 * z8530_read_port - Architecture specific interface function
66 * Provided port access methods. The Comtrol SV11 requires no delays
67 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
69 * In the longer term this should become an architecture specific
70 * section so that this can become a generic driver interface for all
71 * platforms. For now we only handle PC I/O ports with or without the
72 * dread 5uS sanity delay.
74 * The caller must hold sufficient locks to avoid violating the horrible
78 static inline int z8530_read_port(unsigned long p
)
80 u8 r
=inb(Z8530_PORT_OF(p
));
81 if(p
&Z8530_PORT_SLEEP
) /* gcc should figure this out efficiently ! */
87 * z8530_write_port - Architecture specific interface function
91 * Write a value to a port with delays if need be. Note that the
92 * caller must hold locks to avoid read/writes from other contexts
93 * violating the 5uS rule
95 * In the longer term this should become an architecture specific
96 * section so that this can become a generic driver interface for all
97 * platforms. For now we only handle PC I/O ports with or without the
98 * dread 5uS sanity delay.
102 static inline void z8530_write_port(unsigned long p
, u8 d
)
104 outb(d
,Z8530_PORT_OF(p
));
105 if(p
&Z8530_PORT_SLEEP
)
111 static void z8530_rx_done(struct z8530_channel
*c
);
112 static void z8530_tx_done(struct z8530_channel
*c
);
116 * read_zsreg - Read a register from a Z85230
117 * @c: Z8530 channel to read from (2 per chip)
118 * @reg: Register to read
119 * FIXME: Use a spinlock.
121 * Most of the Z8530 registers are indexed off the control registers.
122 * A read is done by writing to the control register and reading the
123 * register back. The caller must hold the lock
126 static inline u8
read_zsreg(struct z8530_channel
*c
, u8 reg
)
129 z8530_write_port(c
->ctrlio
, reg
);
130 return z8530_read_port(c
->ctrlio
);
134 * read_zsdata - Read the data port of a Z8530 channel
135 * @c: The Z8530 channel to read the data port from
137 * The data port provides fast access to some things. We still
138 * have all the 5uS delays to worry about.
141 static inline u8
read_zsdata(struct z8530_channel
*c
)
144 r
=z8530_read_port(c
->dataio
);
149 * write_zsreg - Write to a Z8530 channel register
150 * @c: The Z8530 channel
151 * @reg: Register number
152 * @val: Value to write
154 * Write a value to an indexed register. The caller must hold the lock
155 * to honour the irritating delay rules. We know about register 0
156 * being fast to access.
158 * Assumes c->lock is held.
160 static inline void write_zsreg(struct z8530_channel
*c
, u8 reg
, u8 val
)
163 z8530_write_port(c
->ctrlio
, reg
);
164 z8530_write_port(c
->ctrlio
, val
);
169 * write_zsctrl - Write to a Z8530 control register
170 * @c: The Z8530 channel
171 * @val: Value to write
173 * Write directly to the control register on the Z8530
176 static inline void write_zsctrl(struct z8530_channel
*c
, u8 val
)
178 z8530_write_port(c
->ctrlio
, val
);
182 * write_zsdata - Write to a Z8530 control register
183 * @c: The Z8530 channel
184 * @val: Value to write
186 * Write directly to the data register on the Z8530
190 static inline void write_zsdata(struct z8530_channel
*c
, u8 val
)
192 z8530_write_port(c
->dataio
, val
);
196 * Register loading parameters for a dead port
199 u8 z8530_dead_port
[]=
204 EXPORT_SYMBOL(z8530_dead_port
);
207 * Register loading parameters for currently supported circuit types
212 * Data clocked by telco end. This is the correct data for the UK
213 * "kilostream" service, and most other similar services.
216 u8 z8530_hdlc_kilostream
[]=
218 4, SYNC_ENAB
|SDLC
|X1CLK
,
219 2, 0, /* No vector */
221 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
222 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
223 9, 0, /* Disable interrupts */
226 10, ABUNDER
|NRZ
|CRCPS
,/*MARKIDLE ??*/
229 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
230 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
235 EXPORT_SYMBOL(z8530_hdlc_kilostream
);
238 * As above but for enhanced chips.
241 u8 z8530_hdlc_kilostream_85230
[]=
243 4, SYNC_ENAB
|SDLC
|X1CLK
,
244 2, 0, /* No vector */
246 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
247 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
248 9, 0, /* Disable interrupts */
251 10, ABUNDER
|NRZ
|CRCPS
, /* MARKIDLE?? */
254 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
255 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
257 23, 3, /* Extended mode AUTO TX and EOM*/
262 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230
);
265 * z8530_flush_fifo - Flush on chip RX FIFO
266 * @c: Channel to flush
268 * Flush the receive FIFO. There is no specific option for this, we
269 * blindly read bytes and discard them. Reading when there is no data
270 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
272 * All locking is handled for the caller. On return data may still be
273 * present if it arrived during the flush.
276 static void z8530_flush_fifo(struct z8530_channel
*c
)
282 if(c
->dev
->type
==Z85230
)
292 * z8530_rtsdtr - Control the outgoing DTS/RTS line
293 * @c: The Z8530 channel to control;
294 * @set: 1 to set, 0 to clear
296 * Sets or clears DTR/RTS on the requested line. All locking is handled
297 * by the caller. For now we assume all boards use the actual RTS/DTR
298 * on the chip. Apparently one or two don't. We'll scream about them
302 static void z8530_rtsdtr(struct z8530_channel
*c
, int set
)
305 c
->regs
[5] |= (RTS
| DTR
);
307 c
->regs
[5] &= ~(RTS
| DTR
);
308 write_zsreg(c
, R5
, c
->regs
[5]);
312 * z8530_rx - Handle a PIO receive event
313 * @c: Z8530 channel to process
315 * Receive handler for receiving in PIO mode. This is much like the
316 * async one but not quite the same or as complex
318 * Note: Its intended that this handler can easily be separated from
319 * the main code to run realtime. That'll be needed for some machines
320 * (eg to ever clock 64kbits on a sparc ;)).
322 * The RT_LOCK macros don't do anything now. Keep the code covered
323 * by them as short as possible in all circumstances - clocks cost
324 * baud. The interrupt handler is assumed to be atomic w.r.t. to
325 * other code - this is true in the RT case too.
327 * We only cover the sync cases for this. If you want 2Mbit async
328 * do it yourself but consider medical assistance first. This non DMA
329 * synchronous mode is portable code. The DMA mode assumes PCI like
332 * Called with the device lock held
335 static void z8530_rx(struct z8530_channel
*c
)
342 if(!(read_zsreg(c
, R0
)&1))
345 stat
=read_zsreg(c
, R1
);
350 if(c
->count
< c
->max
)
362 if(stat
&(Rx_OVR
|CRC_ERR
))
364 /* Rewind the buffer and return */
366 c
->dptr
=c
->skb
->data
;
370 pr_warn("%s: overrun\n", c
->dev
->name
);
376 /* printk("crc error\n"); */
378 /* Shove the frame upstream */
383 * Drop the lock for RX processing, or
384 * there are deadlocks
387 write_zsctrl(c
, RES_Rx_CRC
);
394 write_zsctrl(c
, ERR_RES
);
395 write_zsctrl(c
, RES_H_IUS
);
400 * z8530_tx - Handle a PIO transmit event
401 * @c: Z8530 channel to process
403 * Z8530 transmit interrupt handler for the PIO mode. The basic
404 * idea is to attempt to keep the FIFO fed. We fill as many bytes
405 * in as possible, its quite possible that we won't keep up with the
406 * data rate otherwise.
409 static void z8530_tx(struct z8530_channel
*c
)
413 if(!(read_zsreg(c
, R0
)&4))
417 * Shovel out the byte
419 write_zsreg(c
, R8
, *c
->tx_ptr
++);
420 write_zsctrl(c
, RES_H_IUS
);
421 /* We are about to underflow */
424 write_zsctrl(c
, RES_EOM_L
);
425 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
431 * End of frame TX - fire another one
434 write_zsctrl(c
, RES_Tx_P
);
437 write_zsctrl(c
, RES_H_IUS
);
441 * z8530_status - Handle a PIO status exception
442 * @chan: Z8530 channel to process
444 * A status event occurred in PIO synchronous mode. There are several
445 * reasons the chip will bother us here. A transmit underrun means we
446 * failed to feed the chip fast enough and just broke a packet. A DCD
447 * change is a line up or down.
450 static void z8530_status(struct z8530_channel
*chan
)
454 status
= read_zsreg(chan
, R0
);
455 altered
= chan
->status
^ status
;
457 chan
->status
= status
;
459 if (status
& TxEOM
) {
460 /* printk("%s: Tx underrun.\n", chan->dev->name); */
461 chan
->netdevice
->stats
.tx_fifo_errors
++;
462 write_zsctrl(chan
, ERR_RES
);
466 if (altered
& chan
->dcdcheck
)
468 if (status
& chan
->dcdcheck
) {
469 pr_info("%s: DCD raised\n", chan
->dev
->name
);
470 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
472 netif_carrier_on(chan
->netdevice
);
474 pr_info("%s: DCD lost\n", chan
->dev
->name
);
475 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
476 z8530_flush_fifo(chan
);
478 netif_carrier_off(chan
->netdevice
);
482 write_zsctrl(chan
, RES_EXT_INT
);
483 write_zsctrl(chan
, RES_H_IUS
);
486 struct z8530_irqhandler z8530_sync
= {
489 .status
= z8530_status
,
492 EXPORT_SYMBOL(z8530_sync
);
495 * z8530_dma_rx - Handle a DMA RX event
496 * @chan: Channel to handle
498 * Non bus mastering DMA interfaces for the Z8x30 devices. This
499 * is really pretty PC specific. The DMA mode means that most receive
500 * events are handled by the DMA hardware. We get a kick here only if
504 static void z8530_dma_rx(struct z8530_channel
*chan
)
508 /* Special condition check only */
511 read_zsreg(chan
, R7
);
512 read_zsreg(chan
, R6
);
514 status
=read_zsreg(chan
, R1
);
518 z8530_rx_done(chan
); /* Fire up the next one */
520 write_zsctrl(chan
, ERR_RES
);
521 write_zsctrl(chan
, RES_H_IUS
);
525 /* DMA is off right now, drain the slow way */
531 * z8530_dma_tx - Handle a DMA TX event
532 * @chan: The Z8530 channel to handle
534 * We have received an interrupt while doing DMA transmissions. It
535 * shouldn't happen. Scream loudly if it does.
538 static void z8530_dma_tx(struct z8530_channel
*chan
)
542 pr_warn("Hey who turned the DMA off?\n");
546 /* This shouldn't occur in DMA mode */
547 pr_err("DMA tx - bogus event!\n");
552 * z8530_dma_status - Handle a DMA status exception
553 * @chan: Z8530 channel to process
555 * A status event occurred on the Z8530. We receive these for two reasons
556 * when in DMA mode. Firstly if we finished a packet transfer we get one
557 * and kick the next packet out. Secondly we may see a DCD change.
561 static void z8530_dma_status(struct z8530_channel
*chan
)
565 status
=read_zsreg(chan
, R0
);
566 altered
=chan
->status
^status
;
577 flags
=claim_dma_lock();
578 disable_dma(chan
->txdma
);
579 clear_dma_ff(chan
->txdma
);
581 release_dma_lock(flags
);
586 if (altered
& chan
->dcdcheck
)
588 if (status
& chan
->dcdcheck
) {
589 pr_info("%s: DCD raised\n", chan
->dev
->name
);
590 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
592 netif_carrier_on(chan
->netdevice
);
594 pr_info("%s: DCD lost\n", chan
->dev
->name
);
595 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
596 z8530_flush_fifo(chan
);
598 netif_carrier_off(chan
->netdevice
);
602 write_zsctrl(chan
, RES_EXT_INT
);
603 write_zsctrl(chan
, RES_H_IUS
);
606 static struct z8530_irqhandler z8530_dma_sync
= {
609 .status
= z8530_dma_status
,
612 static struct z8530_irqhandler z8530_txdma_sync
= {
615 .status
= z8530_dma_status
,
619 * z8530_rx_clear - Handle RX events from a stopped chip
620 * @c: Z8530 channel to shut up
622 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
623 * For machines with PCI Z85x30 cards, or level triggered interrupts
624 * (eg the MacII) we must clear the interrupt cause or die.
628 static void z8530_rx_clear(struct z8530_channel
*c
)
631 * Data and status bytes
636 stat
=read_zsreg(c
, R1
);
639 write_zsctrl(c
, RES_Rx_CRC
);
643 write_zsctrl(c
, ERR_RES
);
644 write_zsctrl(c
, RES_H_IUS
);
648 * z8530_tx_clear - Handle TX events from a stopped chip
649 * @c: Z8530 channel to shut up
651 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
652 * For machines with PCI Z85x30 cards, or level triggered interrupts
653 * (eg the MacII) we must clear the interrupt cause or die.
656 static void z8530_tx_clear(struct z8530_channel
*c
)
658 write_zsctrl(c
, RES_Tx_P
);
659 write_zsctrl(c
, RES_H_IUS
);
663 * z8530_status_clear - Handle status events from a stopped chip
664 * @chan: Z8530 channel to shut up
666 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
667 * For machines with PCI Z85x30 cards, or level triggered interrupts
668 * (eg the MacII) we must clear the interrupt cause or die.
671 static void z8530_status_clear(struct z8530_channel
*chan
)
673 u8 status
=read_zsreg(chan
, R0
);
675 write_zsctrl(chan
, ERR_RES
);
676 write_zsctrl(chan
, RES_EXT_INT
);
677 write_zsctrl(chan
, RES_H_IUS
);
680 struct z8530_irqhandler z8530_nop
= {
681 .rx
= z8530_rx_clear
,
682 .tx
= z8530_tx_clear
,
683 .status
= z8530_status_clear
,
687 EXPORT_SYMBOL(z8530_nop
);
690 * z8530_interrupt - Handle an interrupt from a Z8530
691 * @irq: Interrupt number
692 * @dev_id: The Z8530 device that is interrupting.
694 * A Z85[2]30 device has stuck its hand in the air for attention.
695 * We scan both the channels on the chip for events and then call
696 * the channel specific call backs for each channel that has events.
697 * We have to use callback functions because the two channels can be
698 * in different modes.
700 * Locking is done for the handlers. Note that locking is done
701 * at the chip level (the 5uS delay issue is per chip not per
702 * channel). c->lock for both channels points to dev->lock
705 irqreturn_t
z8530_interrupt(int irq
, void *dev_id
)
707 struct z8530_dev
*dev
=dev_id
;
708 u8
uninitialized_var(intr
);
709 static volatile int locker
=0;
711 struct z8530_irqhandler
*irqs
;
715 pr_err("IRQ re-enter\n");
720 spin_lock(&dev
->lock
);
725 intr
= read_zsreg(&dev
->chanA
, R3
);
726 if(!(intr
& (CHARxIP
|CHATxIP
|CHAEXT
|CHBRxIP
|CHBTxIP
|CHBEXT
)))
729 /* This holds the IRQ status. On the 8530 you must read it from chan
730 A even though it applies to the whole chip */
732 /* Now walk the chip and see what it is wanting - it may be
733 an IRQ for someone else remember */
735 irqs
=dev
->chanA
.irqs
;
737 if(intr
& (CHARxIP
|CHATxIP
|CHAEXT
))
740 irqs
->rx(&dev
->chanA
);
742 irqs
->tx(&dev
->chanA
);
744 irqs
->status(&dev
->chanA
);
747 irqs
=dev
->chanB
.irqs
;
749 if(intr
& (CHBRxIP
|CHBTxIP
|CHBEXT
))
752 irqs
->rx(&dev
->chanB
);
754 irqs
->tx(&dev
->chanB
);
756 irqs
->status(&dev
->chanB
);
759 spin_unlock(&dev
->lock
);
761 pr_err("%s: interrupt jammed - abort(0x%X)!\n",
768 EXPORT_SYMBOL(z8530_interrupt
);
770 static const u8 reg_init
[16]=
780 * z8530_sync_open - Open a Z8530 channel for PIO
781 * @dev: The network interface we are using
782 * @c: The Z8530 channel to open in synchronous PIO mode
784 * Switch a Z8530 into synchronous mode without DMA assist. We
785 * raise the RTS/DTR and commence network operation.
788 int z8530_sync_open(struct net_device
*dev
, struct z8530_channel
*c
)
792 spin_lock_irqsave(c
->lock
, flags
);
795 c
->mtu
= dev
->mtu
+64;
799 c
->irqs
= &z8530_sync
;
801 /* This loads the double buffer up */
802 z8530_rx_done(c
); /* Load the frame ring */
803 z8530_rx_done(c
); /* Load the backup frame */
806 c
->regs
[R1
]|=TxINT_ENAB
;
807 write_zsreg(c
, R1
, c
->regs
[R1
]);
808 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
810 spin_unlock_irqrestore(c
->lock
, flags
);
815 EXPORT_SYMBOL(z8530_sync_open
);
818 * z8530_sync_close - Close a PIO Z8530 channel
819 * @dev: Network device to close
820 * @c: Z8530 channel to disassociate and move to idle
822 * Close down a Z8530 interface and switch its interrupt handlers
823 * to discard future events.
826 int z8530_sync_close(struct net_device
*dev
, struct z8530_channel
*c
)
831 spin_lock_irqsave(c
->lock
, flags
);
832 c
->irqs
= &z8530_nop
;
836 chk
=read_zsreg(c
,R0
);
837 write_zsreg(c
, R3
, c
->regs
[R3
]);
840 spin_unlock_irqrestore(c
->lock
, flags
);
844 EXPORT_SYMBOL(z8530_sync_close
);
847 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
848 * @dev: The network device to attach
849 * @c: The Z8530 channel to configure in sync DMA mode.
851 * Set up a Z85x30 device for synchronous DMA in both directions. Two
852 * ISA DMA channels must be available for this to work. We assume ISA
853 * DMA driven I/O and PC limits on access.
856 int z8530_sync_dma_open(struct net_device
*dev
, struct z8530_channel
*c
)
858 unsigned long cflags
, dflags
;
861 c
->mtu
= dev
->mtu
+64;
866 * Load the DMA interfaces up
872 * Allocate the DMA flip buffers. Limit by page size.
873 * Everyone runs 1500 mtu or less on wan links so this
877 if(c
->mtu
> PAGE_SIZE
/2)
880 c
->rx_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
881 if(c
->rx_buf
[0]==NULL
)
883 c
->rx_buf
[1]=c
->rx_buf
[0]+PAGE_SIZE
/2;
885 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
886 if(c
->tx_dma_buf
[0]==NULL
)
888 free_page((unsigned long)c
->rx_buf
[0]);
892 c
->tx_dma_buf
[1]=c
->tx_dma_buf
[0]+PAGE_SIZE
/2;
900 * Enable DMA control mode
903 spin_lock_irqsave(c
->lock
, cflags
);
909 c
->regs
[R14
]|= DTRREQ
;
910 write_zsreg(c
, R14
, c
->regs
[R14
]);
912 c
->regs
[R1
]&= ~TxINT_ENAB
;
913 write_zsreg(c
, R1
, c
->regs
[R1
]);
919 c
->regs
[R1
]|= WT_FN_RDYFN
;
920 c
->regs
[R1
]|= WT_RDY_RT
;
921 c
->regs
[R1
]|= INT_ERR_Rx
;
922 c
->regs
[R1
]&= ~TxINT_ENAB
;
923 write_zsreg(c
, R1
, c
->regs
[R1
]);
924 c
->regs
[R1
]|= WT_RDY_ENAB
;
925 write_zsreg(c
, R1
, c
->regs
[R1
]);
932 * Set up the DMA configuration
935 dflags
=claim_dma_lock();
937 disable_dma(c
->rxdma
);
938 clear_dma_ff(c
->rxdma
);
939 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
940 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[0]));
941 set_dma_count(c
->rxdma
, c
->mtu
);
942 enable_dma(c
->rxdma
);
944 disable_dma(c
->txdma
);
945 clear_dma_ff(c
->txdma
);
946 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
947 disable_dma(c
->txdma
);
949 release_dma_lock(dflags
);
952 * Select the DMA interrupt handlers
959 c
->irqs
= &z8530_dma_sync
;
961 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
963 spin_unlock_irqrestore(c
->lock
, cflags
);
968 EXPORT_SYMBOL(z8530_sync_dma_open
);
971 * z8530_sync_dma_close - Close down DMA I/O
972 * @dev: Network device to detach
973 * @c: Z8530 channel to move into discard mode
975 * Shut down a DMA mode synchronous interface. Halt the DMA, and
979 int z8530_sync_dma_close(struct net_device
*dev
, struct z8530_channel
*c
)
984 c
->irqs
= &z8530_nop
;
989 * Disable the PC DMA channels
992 flags
=claim_dma_lock();
993 disable_dma(c
->rxdma
);
994 clear_dma_ff(c
->rxdma
);
998 disable_dma(c
->txdma
);
999 clear_dma_ff(c
->txdma
);
1000 release_dma_lock(flags
);
1005 spin_lock_irqsave(c
->lock
, flags
);
1008 * Disable DMA control mode
1011 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1012 write_zsreg(c
, R1
, c
->regs
[R1
]);
1013 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1014 c
->regs
[R1
]|= INT_ALL_Rx
;
1015 write_zsreg(c
, R1
, c
->regs
[R1
]);
1016 c
->regs
[R14
]&= ~DTRREQ
;
1017 write_zsreg(c
, R14
, c
->regs
[R14
]);
1021 free_page((unsigned long)c
->rx_buf
[0]);
1024 if(c
->tx_dma_buf
[0])
1026 free_page((unsigned long)c
->tx_dma_buf
[0]);
1027 c
->tx_dma_buf
[0]=NULL
;
1029 chk
=read_zsreg(c
,R0
);
1030 write_zsreg(c
, R3
, c
->regs
[R3
]);
1033 spin_unlock_irqrestore(c
->lock
, flags
);
1038 EXPORT_SYMBOL(z8530_sync_dma_close
);
1041 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1042 * @dev: The network device to attach
1043 * @c: The Z8530 channel to configure in sync DMA mode.
1045 * Set up a Z85x30 device for synchronous DMA transmission. One
1046 * ISA DMA channel must be available for this to work. The receive
1047 * side is run in PIO mode, but then it has the bigger FIFO.
1050 int z8530_sync_txdma_open(struct net_device
*dev
, struct z8530_channel
*c
)
1052 unsigned long cflags
, dflags
;
1054 printk("Opening sync interface for TX-DMA\n");
1056 c
->mtu
= dev
->mtu
+64;
1062 * Allocate the DMA flip buffers. Limit by page size.
1063 * Everyone runs 1500 mtu or less on wan links so this
1067 if(c
->mtu
> PAGE_SIZE
/2)
1070 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
1071 if(c
->tx_dma_buf
[0]==NULL
)
1074 c
->tx_dma_buf
[1] = c
->tx_dma_buf
[0] + PAGE_SIZE
/2;
1077 spin_lock_irqsave(c
->lock
, cflags
);
1080 * Load the PIO receive ring
1087 * Load the DMA interfaces up
1099 * Enable DMA control mode
1103 * TX DMA via DIR/REQ
1105 c
->regs
[R14
]|= DTRREQ
;
1106 write_zsreg(c
, R14
, c
->regs
[R14
]);
1108 c
->regs
[R1
]&= ~TxINT_ENAB
;
1109 write_zsreg(c
, R1
, c
->regs
[R1
]);
1112 * Set up the DMA configuration
1115 dflags
= claim_dma_lock();
1117 disable_dma(c
->txdma
);
1118 clear_dma_ff(c
->txdma
);
1119 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
1120 disable_dma(c
->txdma
);
1122 release_dma_lock(dflags
);
1125 * Select the DMA interrupt handlers
1132 c
->irqs
= &z8530_txdma_sync
;
1134 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1135 spin_unlock_irqrestore(c
->lock
, cflags
);
1140 EXPORT_SYMBOL(z8530_sync_txdma_open
);
1143 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1144 * @dev: Network device to detach
1145 * @c: Z8530 channel to move into discard mode
1147 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1148 * and free the buffers.
1151 int z8530_sync_txdma_close(struct net_device
*dev
, struct z8530_channel
*c
)
1153 unsigned long dflags
, cflags
;
1157 spin_lock_irqsave(c
->lock
, cflags
);
1159 c
->irqs
= &z8530_nop
;
1164 * Disable the PC DMA channels
1167 dflags
= claim_dma_lock();
1169 disable_dma(c
->txdma
);
1170 clear_dma_ff(c
->txdma
);
1174 release_dma_lock(dflags
);
1177 * Disable DMA control mode
1180 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1181 write_zsreg(c
, R1
, c
->regs
[R1
]);
1182 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1183 c
->regs
[R1
]|= INT_ALL_Rx
;
1184 write_zsreg(c
, R1
, c
->regs
[R1
]);
1185 c
->regs
[R14
]&= ~DTRREQ
;
1186 write_zsreg(c
, R14
, c
->regs
[R14
]);
1188 if(c
->tx_dma_buf
[0])
1190 free_page((unsigned long)c
->tx_dma_buf
[0]);
1191 c
->tx_dma_buf
[0]=NULL
;
1193 chk
=read_zsreg(c
,R0
);
1194 write_zsreg(c
, R3
, c
->regs
[R3
]);
1197 spin_unlock_irqrestore(c
->lock
, cflags
);
1202 EXPORT_SYMBOL(z8530_sync_txdma_close
);
1206 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1210 static const char *z8530_type_name
[]={
1217 * z8530_describe - Uniformly describe a Z8530 port
1218 * @dev: Z8530 device to describe
1219 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1220 * @io: the port value in question
1222 * Describe a Z8530 in a standard format. We must pass the I/O as
1223 * the port offset isn't predictable. The main reason for this function
1224 * is to try and get a common format of report.
1227 void z8530_describe(struct z8530_dev
*dev
, char *mapping
, unsigned long io
)
1229 pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1231 z8530_type_name
[dev
->type
],
1237 EXPORT_SYMBOL(z8530_describe
);
1240 * Locked operation part of the z8530 init code
1243 static inline int do_z8530_init(struct z8530_dev
*dev
)
1245 /* NOP the interrupt handlers first - we might get a
1246 floating IRQ transition when we reset the chip */
1247 dev
->chanA
.irqs
=&z8530_nop
;
1248 dev
->chanB
.irqs
=&z8530_nop
;
1249 dev
->chanA
.dcdcheck
=DCD
;
1250 dev
->chanB
.dcdcheck
=DCD
;
1252 /* Reset the chip */
1253 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1255 /* Now check its valid */
1256 write_zsreg(&dev
->chanA
, R12
, 0xAA);
1257 if(read_zsreg(&dev
->chanA
, R12
)!=0xAA)
1259 write_zsreg(&dev
->chanA
, R12
, 0x55);
1260 if(read_zsreg(&dev
->chanA
, R12
)!=0x55)
1266 * See the application note.
1269 write_zsreg(&dev
->chanA
, R15
, 0x01);
1272 * If we can set the low bit of R15 then
1273 * the chip is enhanced.
1276 if(read_zsreg(&dev
->chanA
, R15
)==0x01)
1278 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1279 /* Put a char in the fifo */
1280 write_zsreg(&dev
->chanA
, R8
, 0);
1281 if(read_zsreg(&dev
->chanA
, R0
)&Tx_BUF_EMP
)
1282 dev
->type
= Z85230
; /* Has a FIFO */
1284 dev
->type
= Z85C30
; /* Z85C30, 1 byte FIFO */
1288 * The code assumes R7' and friends are
1289 * off. Use write_zsext() for these and keep
1293 write_zsreg(&dev
->chanA
, R15
, 0);
1296 * At this point it looks like the chip is behaving
1299 memcpy(dev
->chanA
.regs
, reg_init
, 16);
1300 memcpy(dev
->chanB
.regs
, reg_init
,16);
1306 * z8530_init - Initialise a Z8530 device
1307 * @dev: Z8530 device to initialise.
1309 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1310 * is present, identify the type and then program it to hopefully
1311 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1312 * state will sometimes get into stupid modes generating 10Khz
1313 * interrupt streams and the like.
1315 * We set the interrupt handler up to discard any events, in case
1316 * we get them during reset or setp.
1318 * Return 0 for success, or a negative value indicating the problem
1322 int z8530_init(struct z8530_dev
*dev
)
1324 unsigned long flags
;
1327 /* Set up the chip level lock */
1328 spin_lock_init(&dev
->lock
);
1329 dev
->chanA
.lock
= &dev
->lock
;
1330 dev
->chanB
.lock
= &dev
->lock
;
1332 spin_lock_irqsave(&dev
->lock
, flags
);
1333 ret
= do_z8530_init(dev
);
1334 spin_unlock_irqrestore(&dev
->lock
, flags
);
1340 EXPORT_SYMBOL(z8530_init
);
1343 * z8530_shutdown - Shutdown a Z8530 device
1344 * @dev: The Z8530 chip to shutdown
1346 * We set the interrupt handlers to silence any interrupts. We then
1347 * reset the chip and wait 100uS to be sure the reset completed. Just
1348 * in case the caller then tries to do stuff.
1350 * This is called without the lock held
1353 int z8530_shutdown(struct z8530_dev
*dev
)
1355 unsigned long flags
;
1356 /* Reset the chip */
1358 spin_lock_irqsave(&dev
->lock
, flags
);
1359 dev
->chanA
.irqs
=&z8530_nop
;
1360 dev
->chanB
.irqs
=&z8530_nop
;
1361 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1362 /* We must lock the udelay, the chip is offlimits here */
1364 spin_unlock_irqrestore(&dev
->lock
, flags
);
1368 EXPORT_SYMBOL(z8530_shutdown
);
1371 * z8530_channel_load - Load channel data
1372 * @c: Z8530 channel to configure
1373 * @rtable: table of register, value pairs
1374 * FIXME: ioctl to allow user uploaded tables
1376 * Load a Z8530 channel up from the system data. We use +16 to
1377 * indicate the "prime" registers. The value 255 terminates the
1381 int z8530_channel_load(struct z8530_channel
*c
, u8
*rtable
)
1383 unsigned long flags
;
1385 spin_lock_irqsave(c
->lock
, flags
);
1391 write_zsreg(c
, R15
, c
->regs
[15]|1);
1392 write_zsreg(c
, reg
&0x0F, *rtable
);
1394 write_zsreg(c
, R15
, c
->regs
[15]&~1);
1395 c
->regs
[reg
]=*rtable
++;
1397 c
->rx_function
=z8530_null_rx
;
1400 c
->tx_next_skb
=NULL
;
1404 c
->status
=read_zsreg(c
, R0
);
1406 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1408 spin_unlock_irqrestore(c
->lock
, flags
);
1412 EXPORT_SYMBOL(z8530_channel_load
);
1416 * z8530_tx_begin - Begin packet transmission
1417 * @c: The Z8530 channel to kick
1419 * This is the speed sensitive side of transmission. If we are called
1420 * and no buffer is being transmitted we commence the next buffer. If
1421 * nothing is queued we idle the sync.
1423 * Note: We are handling this code path in the interrupt path, keep it
1424 * fast or bad things will happen.
1426 * Called with the lock held.
1429 static void z8530_tx_begin(struct z8530_channel
*c
)
1431 unsigned long flags
;
1435 c
->tx_skb
=c
->tx_next_skb
;
1436 c
->tx_next_skb
=NULL
;
1437 c
->tx_ptr
=c
->tx_next_ptr
;
1444 flags
=claim_dma_lock();
1445 disable_dma(c
->txdma
);
1447 * Check if we crapped out.
1449 if (get_dma_residue(c
->txdma
))
1451 c
->netdevice
->stats
.tx_dropped
++;
1452 c
->netdevice
->stats
.tx_fifo_errors
++;
1454 release_dma_lock(flags
);
1460 c
->txcount
=c
->tx_skb
->len
;
1466 * FIXME. DMA is broken for the original 8530,
1467 * on the older parts we need to set a flag and
1468 * wait for a further TX interrupt to fire this
1472 flags
=claim_dma_lock();
1473 disable_dma(c
->txdma
);
1476 * These two are needed by the 8530/85C30
1477 * and must be issued when idling.
1480 if(c
->dev
->type
!=Z85230
)
1482 write_zsctrl(c
, RES_Tx_CRC
);
1483 write_zsctrl(c
, RES_EOM_L
);
1485 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
1486 clear_dma_ff(c
->txdma
);
1487 set_dma_addr(c
->txdma
, virt_to_bus(c
->tx_ptr
));
1488 set_dma_count(c
->txdma
, c
->txcount
);
1489 enable_dma(c
->txdma
);
1490 release_dma_lock(flags
);
1491 write_zsctrl(c
, RES_EOM_L
);
1492 write_zsreg(c
, R5
, c
->regs
[R5
]|TxENAB
);
1498 write_zsreg(c
, R10
, c
->regs
[10]);
1499 write_zsctrl(c
, RES_Tx_CRC
);
1501 while(c
->txcount
&& (read_zsreg(c
,R0
)&Tx_BUF_EMP
))
1503 write_zsreg(c
, R8
, *c
->tx_ptr
++);
1510 * Since we emptied tx_skb we can ask for more
1512 netif_wake_queue(c
->netdevice
);
1516 * z8530_tx_done - TX complete callback
1517 * @c: The channel that completed a transmit.
1519 * This is called when we complete a packet send. We wake the queue,
1520 * start the next packet going and then free the buffer of the existing
1521 * packet. This code is fairly timing sensitive.
1523 * Called with the register lock held.
1526 static void z8530_tx_done(struct z8530_channel
*c
)
1528 struct sk_buff
*skb
;
1530 /* Actually this can happen.*/
1531 if (c
->tx_skb
== NULL
)
1537 c
->netdevice
->stats
.tx_packets
++;
1538 c
->netdevice
->stats
.tx_bytes
+= skb
->len
;
1539 dev_kfree_skb_irq(skb
);
1543 * z8530_null_rx - Discard a packet
1544 * @c: The channel the packet arrived on
1547 * We point the receive handler at this function when idle. Instead
1548 * of processing the frames we get to throw them away.
1551 void z8530_null_rx(struct z8530_channel
*c
, struct sk_buff
*skb
)
1553 dev_kfree_skb_any(skb
);
1556 EXPORT_SYMBOL(z8530_null_rx
);
1559 * z8530_rx_done - Receive completion callback
1560 * @c: The channel that completed a receive
1562 * A new packet is complete. Our goal here is to get back into receive
1563 * mode as fast as possible. On the Z85230 we could change to using
1564 * ESCC mode, but on the older chips we have no choice. We flip to the
1565 * new buffer immediately in DMA mode so that the DMA of the next
1566 * frame can occur while we are copying the previous buffer to an sk_buff
1568 * Called with the lock held
1571 static void z8530_rx_done(struct z8530_channel
*c
)
1573 struct sk_buff
*skb
;
1577 * Is our receive engine in DMA mode
1583 * Save the ready state and the buffer currently
1584 * being used as the DMA target
1587 int ready
=c
->dma_ready
;
1588 unsigned char *rxb
=c
->rx_buf
[c
->dma_num
];
1589 unsigned long flags
;
1592 * Complete this DMA. Necessary to find the length
1595 flags
=claim_dma_lock();
1597 disable_dma(c
->rxdma
);
1598 clear_dma_ff(c
->rxdma
);
1600 ct
=c
->mtu
-get_dma_residue(c
->rxdma
);
1602 ct
=2; /* Shit happens.. */
1606 * Normal case: the other slot is free, start the next DMA
1607 * into it immediately.
1613 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
1614 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[c
->dma_num
]));
1615 set_dma_count(c
->rxdma
, c
->mtu
);
1617 enable_dma(c
->rxdma
);
1618 /* Stop any frames that we missed the head of
1620 write_zsreg(c
, R0
, RES_Rx_CRC
);
1623 /* Can't occur as we dont reenable the DMA irq until
1624 after the flip is done */
1625 netdev_warn(c
->netdevice
, "DMA flip overrun!\n");
1627 release_dma_lock(flags
);
1630 * Shove the old buffer into an sk_buff. We can't DMA
1631 * directly into one on a PC - it might be above the 16Mb
1632 * boundary. Optimisation - we could check to see if we
1633 * can avoid the copy. Optimisation 2 - make the memcpy
1637 skb
= dev_alloc_skb(ct
);
1639 c
->netdevice
->stats
.rx_dropped
++;
1640 netdev_warn(c
->netdevice
, "Memory squeeze\n");
1643 skb_copy_to_linear_data(skb
, rxb
, ct
);
1644 c
->netdevice
->stats
.rx_packets
++;
1645 c
->netdevice
->stats
.rx_bytes
+= ct
;
1653 * The game we play for non DMA is similar. We want to
1654 * get the controller set up for the next packet as fast
1655 * as possible. We potentially only have one byte + the
1656 * fifo length for this. Thus we want to flip to the new
1657 * buffer and then mess around copying and allocating
1658 * things. For the current case it doesn't matter but
1659 * if you build a system where the sync irq isn't blocked
1660 * by the kernel IRQ disable then you need only block the
1661 * sync IRQ for the RT_LOCK area.
1670 c
->dptr
= c
->skb
->data
;
1678 c
->skb2
= dev_alloc_skb(c
->mtu
);
1679 if (c
->skb2
== NULL
)
1680 netdev_warn(c
->netdevice
, "memory squeeze\n");
1682 skb_put(c
->skb2
, c
->mtu
);
1683 c
->netdevice
->stats
.rx_packets
++;
1684 c
->netdevice
->stats
.rx_bytes
+= ct
;
1687 * If we received a frame we must now process it.
1691 c
->rx_function(c
, skb
);
1693 c
->netdevice
->stats
.rx_dropped
++;
1694 netdev_err(c
->netdevice
, "Lost a frame\n");
1699 * spans_boundary - Check a packet can be ISA DMA'd
1700 * @skb: The buffer to check
1702 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1703 * thing can only DMA within a 64K block not across the edges of it.
1706 static inline int spans_boundary(struct sk_buff
*skb
)
1708 unsigned long a
=(unsigned long)skb
->data
;
1710 if(a
&0x00010000) /* If the 64K bit is different.. */
1716 * z8530_queue_xmit - Queue a packet
1717 * @c: The channel to use
1718 * @skb: The packet to kick down the channel
1720 * Queue a packet for transmission. Because we have rather
1721 * hard to hit interrupt latencies for the Z85230 per packet
1722 * even in DMA mode we do the flip to DMA buffer if needed here
1725 * Called from the network code. The lock is not held at this
1729 netdev_tx_t
z8530_queue_xmit(struct z8530_channel
*c
, struct sk_buff
*skb
)
1731 unsigned long flags
;
1733 netif_stop_queue(c
->netdevice
);
1735 return NETDEV_TX_BUSY
;
1738 /* PC SPECIFIC - DMA limits */
1741 * If we will DMA the transmit and its gone over the ISA bus
1742 * limit, then copy to the flip buffer
1745 if(c
->dma_tx
&& ((unsigned long)(virt_to_bus(skb
->data
+skb
->len
))>=16*1024*1024 || spans_boundary(skb
)))
1748 * Send the flip buffer, and flip the flippy bit.
1749 * We don't care which is used when just so long as
1750 * we never use the same buffer twice in a row. Since
1751 * only one buffer can be going out at a time the other
1754 c
->tx_next_ptr
=c
->tx_dma_buf
[c
->tx_dma_used
];
1755 c
->tx_dma_used
^=1; /* Flip temp buffer */
1756 skb_copy_from_linear_data(skb
, c
->tx_next_ptr
, skb
->len
);
1759 c
->tx_next_ptr
=skb
->data
;
1764 spin_lock_irqsave(c
->lock
, flags
);
1766 spin_unlock_irqrestore(c
->lock
, flags
);
1768 return NETDEV_TX_OK
;
1771 EXPORT_SYMBOL(z8530_queue_xmit
);
1776 static const char banner
[] __initconst
=
1777 KERN_INFO
"Generic Z85C30/Z85230 interface driver v0.02\n";
1779 static int __init
z85230_init_driver(void)
1784 module_init(z85230_init_driver
);
1786 static void __exit
z85230_cleanup_driver(void)
1789 module_exit(z85230_cleanup_driver
);
1791 MODULE_AUTHOR("Red Hat Inc.");
1792 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1793 MODULE_LICENSE("GPL");