1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
23 #include <linux/memcontrol.h>
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/kmem.h>
30 enum slab_state slab_state
;
31 LIST_HEAD(slab_caches
);
32 DEFINE_MUTEX(slab_mutex
);
33 struct kmem_cache
*kmem_cache
;
35 #ifdef CONFIG_HARDENED_USERCOPY
36 bool usercopy_fallback __ro_after_init
=
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK
);
38 module_param(usercopy_fallback
, bool, 0400);
39 MODULE_PARM_DESC(usercopy_fallback
,
40 "WARN instead of reject usercopy whitelist violations");
43 static LIST_HEAD(slab_caches_to_rcu_destroy
);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
46 slab_caches_to_rcu_destroy_workfn
);
49 * Set of flags that will prevent slab merging
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59 * Merge control. If this is set then no merging of slab caches will occur.
61 static bool slab_nomerge
= !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT
);
63 static int __init
setup_slab_nomerge(char *str
)
70 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
73 __setup("slab_nomerge", setup_slab_nomerge
);
76 * Determine the size of a slab object
78 unsigned int kmem_cache_size(struct kmem_cache
*s
)
80 return s
->object_size
;
82 EXPORT_SYMBOL(kmem_cache_size
);
84 #ifdef CONFIG_DEBUG_VM
85 static int kmem_cache_sanity_check(const char *name
, unsigned int size
)
87 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
88 size
> KMALLOC_MAX_SIZE
) {
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
93 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
97 static inline int kmem_cache_sanity_check(const char *name
, unsigned int size
)
103 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
107 for (i
= 0; i
< nr
; i
++) {
109 kmem_cache_free(s
, p
[i
]);
115 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
120 for (i
= 0; i
< nr
; i
++) {
121 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
123 __kmem_cache_free_bulk(s
, i
, p
);
130 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
132 LIST_HEAD(slab_root_caches
);
134 void slab_init_memcg_params(struct kmem_cache
*s
)
136 s
->memcg_params
.root_cache
= NULL
;
137 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
138 INIT_LIST_HEAD(&s
->memcg_params
.children
);
139 s
->memcg_params
.dying
= false;
142 static int init_memcg_params(struct kmem_cache
*s
,
143 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
145 struct memcg_cache_array
*arr
;
148 s
->memcg_params
.root_cache
= root_cache
;
149 s
->memcg_params
.memcg
= memcg
;
150 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
151 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
155 slab_init_memcg_params(s
);
157 if (!memcg_nr_cache_ids
)
160 arr
= kvzalloc(sizeof(struct memcg_cache_array
) +
161 memcg_nr_cache_ids
* sizeof(void *),
166 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
170 static void destroy_memcg_params(struct kmem_cache
*s
)
172 if (is_root_cache(s
))
173 kvfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
176 static void free_memcg_params(struct rcu_head
*rcu
)
178 struct memcg_cache_array
*old
;
180 old
= container_of(rcu
, struct memcg_cache_array
, rcu
);
184 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
186 struct memcg_cache_array
*old
, *new;
188 new = kvzalloc(sizeof(struct memcg_cache_array
) +
189 new_array_size
* sizeof(void *), GFP_KERNEL
);
193 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
194 lockdep_is_held(&slab_mutex
));
196 memcpy(new->entries
, old
->entries
,
197 memcg_nr_cache_ids
* sizeof(void *));
199 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
201 call_rcu(&old
->rcu
, free_memcg_params
);
205 int memcg_update_all_caches(int num_memcgs
)
207 struct kmem_cache
*s
;
210 mutex_lock(&slab_mutex
);
211 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
212 ret
= update_memcg_params(s
, num_memcgs
);
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
220 mutex_unlock(&slab_mutex
);
224 void memcg_link_cache(struct kmem_cache
*s
)
226 if (is_root_cache(s
)) {
227 list_add(&s
->root_caches_node
, &slab_root_caches
);
229 list_add(&s
->memcg_params
.children_node
,
230 &s
->memcg_params
.root_cache
->memcg_params
.children
);
231 list_add(&s
->memcg_params
.kmem_caches_node
,
232 &s
->memcg_params
.memcg
->kmem_caches
);
236 static void memcg_unlink_cache(struct kmem_cache
*s
)
238 if (is_root_cache(s
)) {
239 list_del(&s
->root_caches_node
);
241 list_del(&s
->memcg_params
.children_node
);
242 list_del(&s
->memcg_params
.kmem_caches_node
);
246 static inline int init_memcg_params(struct kmem_cache
*s
,
247 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
252 static inline void destroy_memcg_params(struct kmem_cache
*s
)
256 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
259 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
262 * Figure out what the alignment of the objects will be given a set of
263 * flags, a user specified alignment and the size of the objects.
265 static unsigned int calculate_alignment(slab_flags_t flags
,
266 unsigned int align
, unsigned int size
)
269 * If the user wants hardware cache aligned objects then follow that
270 * suggestion if the object is sufficiently large.
272 * The hardware cache alignment cannot override the specified
273 * alignment though. If that is greater then use it.
275 if (flags
& SLAB_HWCACHE_ALIGN
) {
278 ralign
= cache_line_size();
279 while (size
<= ralign
/ 2)
281 align
= max(align
, ralign
);
284 if (align
< ARCH_SLAB_MINALIGN
)
285 align
= ARCH_SLAB_MINALIGN
;
287 return ALIGN(align
, sizeof(void *));
291 * Find a mergeable slab cache
293 int slab_unmergeable(struct kmem_cache
*s
)
295 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
298 if (!is_root_cache(s
))
308 * We may have set a slab to be unmergeable during bootstrap.
316 struct kmem_cache
*find_mergeable(unsigned int size
, unsigned int align
,
317 slab_flags_t flags
, const char *name
, void (*ctor
)(void *))
319 struct kmem_cache
*s
;
327 size
= ALIGN(size
, sizeof(void *));
328 align
= calculate_alignment(flags
, align
, size
);
329 size
= ALIGN(size
, align
);
330 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
332 if (flags
& SLAB_NEVER_MERGE
)
335 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
336 if (slab_unmergeable(s
))
342 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
345 * Check if alignment is compatible.
346 * Courtesy of Adrian Drzewiecki
348 if ((s
->size
& ~(align
- 1)) != s
->size
)
351 if (s
->size
- size
>= sizeof(void *))
354 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
355 (align
> s
->align
|| s
->align
% align
))
363 static struct kmem_cache
*create_cache(const char *name
,
364 unsigned int object_size
, unsigned int align
,
365 slab_flags_t flags
, unsigned int useroffset
,
366 unsigned int usersize
, void (*ctor
)(void *),
367 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
369 struct kmem_cache
*s
;
372 if (WARN_ON(useroffset
+ usersize
> object_size
))
373 useroffset
= usersize
= 0;
376 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
381 s
->size
= s
->object_size
= object_size
;
384 s
->useroffset
= useroffset
;
385 s
->usersize
= usersize
;
387 err
= init_memcg_params(s
, memcg
, root_cache
);
391 err
= __kmem_cache_create(s
, flags
);
396 list_add(&s
->list
, &slab_caches
);
404 destroy_memcg_params(s
);
405 kmem_cache_free(kmem_cache
, s
);
410 * kmem_cache_create_usercopy - Create a cache.
411 * @name: A string which is used in /proc/slabinfo to identify this cache.
412 * @size: The size of objects to be created in this cache.
413 * @align: The required alignment for the objects.
415 * @useroffset: Usercopy region offset
416 * @usersize: Usercopy region size
417 * @ctor: A constructor for the objects.
419 * Returns a ptr to the cache on success, NULL on failure.
420 * Cannot be called within a interrupt, but can be interrupted.
421 * The @ctor is run when new pages are allocated by the cache.
425 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
426 * to catch references to uninitialised memory.
428 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
429 * for buffer overruns.
431 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
432 * cacheline. This can be beneficial if you're counting cycles as closely
436 kmem_cache_create_usercopy(const char *name
,
437 unsigned int size
, unsigned int align
,
439 unsigned int useroffset
, unsigned int usersize
,
440 void (*ctor
)(void *))
442 struct kmem_cache
*s
= NULL
;
443 const char *cache_name
;
448 memcg_get_cache_ids();
450 mutex_lock(&slab_mutex
);
452 err
= kmem_cache_sanity_check(name
, size
);
457 /* Refuse requests with allocator specific flags */
458 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
464 * Some allocators will constraint the set of valid flags to a subset
465 * of all flags. We expect them to define CACHE_CREATE_MASK in this
466 * case, and we'll just provide them with a sanitized version of the
469 flags
&= CACHE_CREATE_MASK
;
471 /* Fail closed on bad usersize of useroffset values. */
472 if (WARN_ON(!usersize
&& useroffset
) ||
473 WARN_ON(size
< usersize
|| size
- usersize
< useroffset
))
474 usersize
= useroffset
= 0;
477 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
481 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
487 s
= create_cache(cache_name
, size
,
488 calculate_alignment(flags
, align
, size
),
489 flags
, useroffset
, usersize
, ctor
, NULL
, NULL
);
492 kfree_const(cache_name
);
496 mutex_unlock(&slab_mutex
);
498 memcg_put_cache_ids();
503 if (flags
& SLAB_PANIC
)
504 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
507 pr_warn("kmem_cache_create(%s) failed with error %d\n",
515 EXPORT_SYMBOL(kmem_cache_create_usercopy
);
518 kmem_cache_create(const char *name
, unsigned int size
, unsigned int align
,
519 slab_flags_t flags
, void (*ctor
)(void *))
521 return kmem_cache_create_usercopy(name
, size
, align
, flags
, 0, 0,
524 EXPORT_SYMBOL(kmem_cache_create
);
526 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
528 LIST_HEAD(to_destroy
);
529 struct kmem_cache
*s
, *s2
;
532 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
533 * @slab_caches_to_rcu_destroy list. The slab pages are freed
534 * through RCU and and the associated kmem_cache are dereferenced
535 * while freeing the pages, so the kmem_caches should be freed only
536 * after the pending RCU operations are finished. As rcu_barrier()
537 * is a pretty slow operation, we batch all pending destructions
540 mutex_lock(&slab_mutex
);
541 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
542 mutex_unlock(&slab_mutex
);
544 if (list_empty(&to_destroy
))
549 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
550 #ifdef SLAB_SUPPORTS_SYSFS
551 sysfs_slab_release(s
);
553 slab_kmem_cache_release(s
);
558 static int shutdown_cache(struct kmem_cache
*s
)
560 /* free asan quarantined objects */
561 kasan_cache_shutdown(s
);
563 if (__kmem_cache_shutdown(s
) != 0)
566 memcg_unlink_cache(s
);
569 if (s
->flags
& SLAB_TYPESAFE_BY_RCU
) {
570 #ifdef SLAB_SUPPORTS_SYSFS
571 sysfs_slab_unlink(s
);
573 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
574 schedule_work(&slab_caches_to_rcu_destroy_work
);
576 #ifdef SLAB_SUPPORTS_SYSFS
577 sysfs_slab_unlink(s
);
578 sysfs_slab_release(s
);
580 slab_kmem_cache_release(s
);
587 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
589 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
590 * @memcg: The memory cgroup the new cache is for.
591 * @root_cache: The parent of the new cache.
593 * This function attempts to create a kmem cache that will serve allocation
594 * requests going from @memcg to @root_cache. The new cache inherits properties
597 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
598 struct kmem_cache
*root_cache
)
600 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
601 struct cgroup_subsys_state
*css
= &memcg
->css
;
602 struct memcg_cache_array
*arr
;
603 struct kmem_cache
*s
= NULL
;
610 mutex_lock(&slab_mutex
);
613 * The memory cgroup could have been offlined while the cache
614 * creation work was pending.
616 if (memcg
->kmem_state
!= KMEM_ONLINE
|| root_cache
->memcg_params
.dying
)
619 idx
= memcg_cache_id(memcg
);
620 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
621 lockdep_is_held(&slab_mutex
));
624 * Since per-memcg caches are created asynchronously on first
625 * allocation (see memcg_kmem_get_cache()), several threads can try to
626 * create the same cache, but only one of them may succeed.
628 if (arr
->entries
[idx
])
631 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
632 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
633 css
->serial_nr
, memcg_name_buf
);
637 s
= create_cache(cache_name
, root_cache
->object_size
,
639 root_cache
->flags
& CACHE_CREATE_MASK
,
640 root_cache
->useroffset
, root_cache
->usersize
,
641 root_cache
->ctor
, memcg
, root_cache
);
643 * If we could not create a memcg cache, do not complain, because
644 * that's not critical at all as we can always proceed with the root
653 * Since readers won't lock (see cache_from_memcg_idx()), we need a
654 * barrier here to ensure nobody will see the kmem_cache partially
658 arr
->entries
[idx
] = s
;
661 mutex_unlock(&slab_mutex
);
667 static void kmemcg_deactivate_workfn(struct work_struct
*work
)
669 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
670 memcg_params
.deact_work
);
675 mutex_lock(&slab_mutex
);
677 s
->memcg_params
.deact_fn(s
);
679 mutex_unlock(&slab_mutex
);
684 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
685 css_put(&s
->memcg_params
.memcg
->css
);
688 static void kmemcg_deactivate_rcufn(struct rcu_head
*head
)
690 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
691 memcg_params
.deact_rcu_head
);
694 * We need to grab blocking locks. Bounce to ->deact_work. The
695 * work item shares the space with the RCU head and can't be
696 * initialized eariler.
698 INIT_WORK(&s
->memcg_params
.deact_work
, kmemcg_deactivate_workfn
);
699 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.deact_work
);
703 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
704 * sched RCU grace period
705 * @s: target kmem_cache
706 * @deact_fn: deactivation function to call
708 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
709 * held after a sched RCU grace period. The slab is guaranteed to stay
710 * alive until @deact_fn is finished. This is to be used from
711 * __kmemcg_cache_deactivate().
713 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache
*s
,
714 void (*deact_fn
)(struct kmem_cache
*))
716 if (WARN_ON_ONCE(is_root_cache(s
)) ||
717 WARN_ON_ONCE(s
->memcg_params
.deact_fn
))
720 if (s
->memcg_params
.root_cache
->memcg_params
.dying
)
723 /* pin memcg so that @s doesn't get destroyed in the middle */
724 css_get(&s
->memcg_params
.memcg
->css
);
726 s
->memcg_params
.deact_fn
= deact_fn
;
727 call_rcu_sched(&s
->memcg_params
.deact_rcu_head
, kmemcg_deactivate_rcufn
);
730 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
733 struct memcg_cache_array
*arr
;
734 struct kmem_cache
*s
, *c
;
736 idx
= memcg_cache_id(memcg
);
741 mutex_lock(&slab_mutex
);
742 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
743 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
744 lockdep_is_held(&slab_mutex
));
745 c
= arr
->entries
[idx
];
749 __kmemcg_cache_deactivate(c
);
750 arr
->entries
[idx
] = NULL
;
752 mutex_unlock(&slab_mutex
);
758 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
760 struct kmem_cache
*s
, *s2
;
765 mutex_lock(&slab_mutex
);
766 list_for_each_entry_safe(s
, s2
, &memcg
->kmem_caches
,
767 memcg_params
.kmem_caches_node
) {
769 * The cgroup is about to be freed and therefore has no charges
770 * left. Hence, all its caches must be empty by now.
772 BUG_ON(shutdown_cache(s
));
774 mutex_unlock(&slab_mutex
);
780 static int shutdown_memcg_caches(struct kmem_cache
*s
)
782 struct memcg_cache_array
*arr
;
783 struct kmem_cache
*c
, *c2
;
787 BUG_ON(!is_root_cache(s
));
790 * First, shutdown active caches, i.e. caches that belong to online
793 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
794 lockdep_is_held(&slab_mutex
));
795 for_each_memcg_cache_index(i
) {
799 if (shutdown_cache(c
))
801 * The cache still has objects. Move it to a temporary
802 * list so as not to try to destroy it for a second
803 * time while iterating over inactive caches below.
805 list_move(&c
->memcg_params
.children_node
, &busy
);
808 * The cache is empty and will be destroyed soon. Clear
809 * the pointer to it in the memcg_caches array so that
810 * it will never be accessed even if the root cache
813 arr
->entries
[i
] = NULL
;
817 * Second, shutdown all caches left from memory cgroups that are now
820 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
821 memcg_params
.children_node
)
824 list_splice(&busy
, &s
->memcg_params
.children
);
827 * A cache being destroyed must be empty. In particular, this means
828 * that all per memcg caches attached to it must be empty too.
830 if (!list_empty(&s
->memcg_params
.children
))
835 static void flush_memcg_workqueue(struct kmem_cache
*s
)
837 mutex_lock(&slab_mutex
);
838 s
->memcg_params
.dying
= true;
839 mutex_unlock(&slab_mutex
);
842 * SLUB deactivates the kmem_caches through call_rcu_sched. Make
843 * sure all registered rcu callbacks have been invoked.
845 if (IS_ENABLED(CONFIG_SLUB
))
849 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
850 * deactivates the memcg kmem_caches through workqueue. Make sure all
851 * previous workitems on workqueue are processed.
853 flush_workqueue(memcg_kmem_cache_wq
);
856 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
861 static inline void flush_memcg_workqueue(struct kmem_cache
*s
)
864 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
866 void slab_kmem_cache_release(struct kmem_cache
*s
)
868 __kmem_cache_release(s
);
869 destroy_memcg_params(s
);
870 kfree_const(s
->name
);
871 kmem_cache_free(kmem_cache
, s
);
874 void kmem_cache_destroy(struct kmem_cache
*s
)
881 flush_memcg_workqueue(s
);
886 mutex_lock(&slab_mutex
);
892 err
= shutdown_memcg_caches(s
);
894 err
= shutdown_cache(s
);
897 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
902 mutex_unlock(&slab_mutex
);
907 EXPORT_SYMBOL(kmem_cache_destroy
);
910 * kmem_cache_shrink - Shrink a cache.
911 * @cachep: The cache to shrink.
913 * Releases as many slabs as possible for a cache.
914 * To help debugging, a zero exit status indicates all slabs were released.
916 int kmem_cache_shrink(struct kmem_cache
*cachep
)
922 kasan_cache_shrink(cachep
);
923 ret
= __kmem_cache_shrink(cachep
);
928 EXPORT_SYMBOL(kmem_cache_shrink
);
930 bool slab_is_available(void)
932 return slab_state
>= UP
;
936 /* Create a cache during boot when no slab services are available yet */
937 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
,
938 unsigned int size
, slab_flags_t flags
,
939 unsigned int useroffset
, unsigned int usersize
)
944 s
->size
= s
->object_size
= size
;
945 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
946 s
->useroffset
= useroffset
;
947 s
->usersize
= usersize
;
949 slab_init_memcg_params(s
);
951 err
= __kmem_cache_create(s
, flags
);
954 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
957 s
->refcount
= -1; /* Exempt from merging for now */
960 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
961 unsigned int size
, slab_flags_t flags
,
962 unsigned int useroffset
, unsigned int usersize
)
964 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
967 panic("Out of memory when creating slab %s\n", name
);
969 create_boot_cache(s
, name
, size
, flags
, useroffset
, usersize
);
970 list_add(&s
->list
, &slab_caches
);
976 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1] __ro_after_init
;
977 EXPORT_SYMBOL(kmalloc_caches
);
979 #ifdef CONFIG_ZONE_DMA
980 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1] __ro_after_init
;
981 EXPORT_SYMBOL(kmalloc_dma_caches
);
985 * Conversion table for small slabs sizes / 8 to the index in the
986 * kmalloc array. This is necessary for slabs < 192 since we have non power
987 * of two cache sizes there. The size of larger slabs can be determined using
990 static u8 size_index
[24] __ro_after_init
= {
1017 static inline unsigned int size_index_elem(unsigned int bytes
)
1019 return (bytes
- 1) / 8;
1023 * Find the kmem_cache structure that serves a given size of
1026 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
1030 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
1031 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
1037 return ZERO_SIZE_PTR
;
1039 index
= size_index
[size_index_elem(size
)];
1041 index
= fls(size
- 1);
1043 #ifdef CONFIG_ZONE_DMA
1044 if (unlikely((flags
& GFP_DMA
)))
1045 return kmalloc_dma_caches
[index
];
1048 return kmalloc_caches
[index
];
1052 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1053 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1056 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
1057 {NULL
, 0}, {"kmalloc-96", 96},
1058 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1059 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1060 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1061 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1062 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1063 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1064 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1065 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1066 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1067 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1068 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1069 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1070 {"kmalloc-67108864", 67108864}
1074 * Patch up the size_index table if we have strange large alignment
1075 * requirements for the kmalloc array. This is only the case for
1076 * MIPS it seems. The standard arches will not generate any code here.
1078 * Largest permitted alignment is 256 bytes due to the way we
1079 * handle the index determination for the smaller caches.
1081 * Make sure that nothing crazy happens if someone starts tinkering
1082 * around with ARCH_KMALLOC_MINALIGN
1084 void __init
setup_kmalloc_cache_index_table(void)
1088 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1089 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1091 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1092 unsigned int elem
= size_index_elem(i
);
1094 if (elem
>= ARRAY_SIZE(size_index
))
1096 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1099 if (KMALLOC_MIN_SIZE
>= 64) {
1101 * The 96 byte size cache is not used if the alignment
1104 for (i
= 64 + 8; i
<= 96; i
+= 8)
1105 size_index
[size_index_elem(i
)] = 7;
1109 if (KMALLOC_MIN_SIZE
>= 128) {
1111 * The 192 byte sized cache is not used if the alignment
1112 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1115 for (i
= 128 + 8; i
<= 192; i
+= 8)
1116 size_index
[size_index_elem(i
)] = 8;
1120 static void __init
new_kmalloc_cache(int idx
, slab_flags_t flags
)
1122 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
1123 kmalloc_info
[idx
].size
, flags
, 0,
1124 kmalloc_info
[idx
].size
);
1128 * Create the kmalloc array. Some of the regular kmalloc arrays
1129 * may already have been created because they were needed to
1130 * enable allocations for slab creation.
1132 void __init
create_kmalloc_caches(slab_flags_t flags
)
1136 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1137 if (!kmalloc_caches
[i
])
1138 new_kmalloc_cache(i
, flags
);
1141 * Caches that are not of the two-to-the-power-of size.
1142 * These have to be created immediately after the
1143 * earlier power of two caches
1145 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
1146 new_kmalloc_cache(1, flags
);
1147 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
1148 new_kmalloc_cache(2, flags
);
1151 /* Kmalloc array is now usable */
1154 #ifdef CONFIG_ZONE_DMA
1155 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1156 struct kmem_cache
*s
= kmalloc_caches
[i
];
1159 unsigned int size
= kmalloc_size(i
);
1160 char *n
= kasprintf(GFP_NOWAIT
,
1161 "dma-kmalloc-%u", size
);
1164 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
1165 size
, SLAB_CACHE_DMA
| flags
, 0, 0);
1170 #endif /* !CONFIG_SLOB */
1173 * To avoid unnecessary overhead, we pass through large allocation requests
1174 * directly to the page allocator. We use __GFP_COMP, because we will need to
1175 * know the allocation order to free the pages properly in kfree.
1177 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1182 flags
|= __GFP_COMP
;
1183 page
= alloc_pages(flags
, order
);
1184 ret
= page
? page_address(page
) : NULL
;
1185 kmemleak_alloc(ret
, size
, 1, flags
);
1186 kasan_kmalloc_large(ret
, size
, flags
);
1189 EXPORT_SYMBOL(kmalloc_order
);
1191 #ifdef CONFIG_TRACING
1192 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1194 void *ret
= kmalloc_order(size
, flags
, order
);
1195 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1198 EXPORT_SYMBOL(kmalloc_order_trace
);
1201 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1202 /* Randomize a generic freelist */
1203 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1209 for (i
= 0; i
< count
; i
++)
1212 /* Fisher-Yates shuffle */
1213 for (i
= count
- 1; i
> 0; i
--) {
1214 rand
= prandom_u32_state(state
);
1216 swap(list
[i
], list
[rand
]);
1220 /* Create a random sequence per cache */
1221 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1224 struct rnd_state state
;
1226 if (count
< 2 || cachep
->random_seq
)
1229 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1230 if (!cachep
->random_seq
)
1233 /* Get best entropy at this stage of boot */
1234 prandom_seed_state(&state
, get_random_long());
1236 freelist_randomize(&state
, cachep
->random_seq
, count
);
1240 /* Destroy the per-cache random freelist sequence */
1241 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1243 kfree(cachep
->random_seq
);
1244 cachep
->random_seq
= NULL
;
1246 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1248 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1250 #define SLABINFO_RIGHTS (0600)
1252 #define SLABINFO_RIGHTS (0400)
1255 static void print_slabinfo_header(struct seq_file
*m
)
1258 * Output format version, so at least we can change it
1259 * without _too_ many complaints.
1261 #ifdef CONFIG_DEBUG_SLAB
1262 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1264 seq_puts(m
, "slabinfo - version: 2.1\n");
1266 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1267 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1268 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1269 #ifdef CONFIG_DEBUG_SLAB
1270 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1271 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1276 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1278 mutex_lock(&slab_mutex
);
1279 return seq_list_start(&slab_root_caches
, *pos
);
1282 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1284 return seq_list_next(p
, &slab_root_caches
, pos
);
1287 void slab_stop(struct seq_file
*m
, void *p
)
1289 mutex_unlock(&slab_mutex
);
1293 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1295 struct kmem_cache
*c
;
1296 struct slabinfo sinfo
;
1298 if (!is_root_cache(s
))
1301 for_each_memcg_cache(c
, s
) {
1302 memset(&sinfo
, 0, sizeof(sinfo
));
1303 get_slabinfo(c
, &sinfo
);
1305 info
->active_slabs
+= sinfo
.active_slabs
;
1306 info
->num_slabs
+= sinfo
.num_slabs
;
1307 info
->shared_avail
+= sinfo
.shared_avail
;
1308 info
->active_objs
+= sinfo
.active_objs
;
1309 info
->num_objs
+= sinfo
.num_objs
;
1313 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1315 struct slabinfo sinfo
;
1317 memset(&sinfo
, 0, sizeof(sinfo
));
1318 get_slabinfo(s
, &sinfo
);
1320 memcg_accumulate_slabinfo(s
, &sinfo
);
1322 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1323 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1324 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1326 seq_printf(m
, " : tunables %4u %4u %4u",
1327 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1328 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1329 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1330 slabinfo_show_stats(m
, s
);
1334 static int slab_show(struct seq_file
*m
, void *p
)
1336 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1338 if (p
== slab_root_caches
.next
)
1339 print_slabinfo_header(m
);
1344 void dump_unreclaimable_slab(void)
1346 struct kmem_cache
*s
, *s2
;
1347 struct slabinfo sinfo
;
1350 * Here acquiring slab_mutex is risky since we don't prefer to get
1351 * sleep in oom path. But, without mutex hold, it may introduce a
1353 * Use mutex_trylock to protect the list traverse, dump nothing
1354 * without acquiring the mutex.
1356 if (!mutex_trylock(&slab_mutex
)) {
1357 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1361 pr_info("Unreclaimable slab info:\n");
1362 pr_info("Name Used Total\n");
1364 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
1365 if (!is_root_cache(s
) || (s
->flags
& SLAB_RECLAIM_ACCOUNT
))
1368 get_slabinfo(s
, &sinfo
);
1370 if (sinfo
.num_objs
> 0)
1371 pr_info("%-17s %10luKB %10luKB\n", cache_name(s
),
1372 (sinfo
.active_objs
* s
->size
) / 1024,
1373 (sinfo
.num_objs
* s
->size
) / 1024);
1375 mutex_unlock(&slab_mutex
);
1378 #if defined(CONFIG_MEMCG)
1379 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1381 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1383 mutex_lock(&slab_mutex
);
1384 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1387 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1389 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1391 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1394 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1396 mutex_unlock(&slab_mutex
);
1399 int memcg_slab_show(struct seq_file
*m
, void *p
)
1401 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1402 memcg_params
.kmem_caches_node
);
1403 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1405 if (p
== memcg
->kmem_caches
.next
)
1406 print_slabinfo_header(m
);
1413 * slabinfo_op - iterator that generates /proc/slabinfo
1422 * num-pages-per-slab
1423 * + further values on SMP and with statistics enabled
1425 static const struct seq_operations slabinfo_op
= {
1426 .start
= slab_start
,
1432 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1434 return seq_open(file
, &slabinfo_op
);
1437 static const struct file_operations proc_slabinfo_operations
= {
1438 .open
= slabinfo_open
,
1440 .write
= slabinfo_write
,
1441 .llseek
= seq_lseek
,
1442 .release
= seq_release
,
1445 static int __init
slab_proc_init(void)
1447 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1448 &proc_slabinfo_operations
);
1451 module_init(slab_proc_init
);
1452 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1454 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1463 if (ks
>= new_size
) {
1464 kasan_krealloc((void *)p
, new_size
, flags
);
1468 ret
= kmalloc_track_caller(new_size
, flags
);
1476 * __krealloc - like krealloc() but don't free @p.
1477 * @p: object to reallocate memory for.
1478 * @new_size: how many bytes of memory are required.
1479 * @flags: the type of memory to allocate.
1481 * This function is like krealloc() except it never frees the originally
1482 * allocated buffer. Use this if you don't want to free the buffer immediately
1483 * like, for example, with RCU.
1485 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1487 if (unlikely(!new_size
))
1488 return ZERO_SIZE_PTR
;
1490 return __do_krealloc(p
, new_size
, flags
);
1493 EXPORT_SYMBOL(__krealloc
);
1496 * krealloc - reallocate memory. The contents will remain unchanged.
1497 * @p: object to reallocate memory for.
1498 * @new_size: how many bytes of memory are required.
1499 * @flags: the type of memory to allocate.
1501 * The contents of the object pointed to are preserved up to the
1502 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1503 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1504 * %NULL pointer, the object pointed to is freed.
1506 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1510 if (unlikely(!new_size
)) {
1512 return ZERO_SIZE_PTR
;
1515 ret
= __do_krealloc(p
, new_size
, flags
);
1516 if (ret
&& p
!= ret
)
1521 EXPORT_SYMBOL(krealloc
);
1524 * kzfree - like kfree but zero memory
1525 * @p: object to free memory of
1527 * The memory of the object @p points to is zeroed before freed.
1528 * If @p is %NULL, kzfree() does nothing.
1530 * Note: this function zeroes the whole allocated buffer which can be a good
1531 * deal bigger than the requested buffer size passed to kmalloc(). So be
1532 * careful when using this function in performance sensitive code.
1534 void kzfree(const void *p
)
1537 void *mem
= (void *)p
;
1539 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1545 EXPORT_SYMBOL(kzfree
);
1547 /* Tracepoints definitions. */
1548 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1549 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1550 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1551 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1552 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1553 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);
1555 int should_failslab(struct kmem_cache
*s
, gfp_t gfpflags
)
1557 if (__should_failslab(s
, gfpflags
))
1561 ALLOW_ERROR_INJECTION(should_failslab
, ERRNO
);