2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
38 [TRANS_STATE_RUNNING
] = 0U,
39 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
41 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
44 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
48 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
53 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
60 static void put_transaction(struct btrfs_transaction
*transaction
)
62 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
63 if (atomic_dec_and_test(&transaction
->use_count
)) {
64 BUG_ON(!list_empty(&transaction
->list
));
65 WARN_ON(transaction
->delayed_refs
.root
.rb_node
);
66 while (!list_empty(&transaction
->pending_chunks
)) {
67 struct extent_map
*em
;
69 em
= list_first_entry(&transaction
->pending_chunks
,
70 struct extent_map
, list
);
71 list_del_init(&em
->list
);
74 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
78 static noinline
void switch_commit_root(struct btrfs_root
*root
)
80 free_extent_buffer(root
->commit_root
);
81 root
->commit_root
= btrfs_root_node(root
);
84 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
87 if (type
& TRANS_EXTWRITERS
)
88 atomic_inc(&trans
->num_extwriters
);
91 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
94 if (type
& TRANS_EXTWRITERS
)
95 atomic_dec(&trans
->num_extwriters
);
98 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
101 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
104 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
106 return atomic_read(&trans
->num_extwriters
);
110 * either allocate a new transaction or hop into the existing one
112 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
114 struct btrfs_transaction
*cur_trans
;
115 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
117 spin_lock(&fs_info
->trans_lock
);
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
121 spin_unlock(&fs_info
->trans_lock
);
125 cur_trans
= fs_info
->running_transaction
;
127 if (cur_trans
->aborted
) {
128 spin_unlock(&fs_info
->trans_lock
);
129 return cur_trans
->aborted
;
131 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
132 spin_unlock(&fs_info
->trans_lock
);
135 atomic_inc(&cur_trans
->use_count
);
136 atomic_inc(&cur_trans
->num_writers
);
137 extwriter_counter_inc(cur_trans
, type
);
138 spin_unlock(&fs_info
->trans_lock
);
141 spin_unlock(&fs_info
->trans_lock
);
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
147 if (type
== TRANS_ATTACH
)
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
154 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
156 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
160 spin_lock(&fs_info
->trans_lock
);
161 if (fs_info
->running_transaction
) {
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
166 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
168 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
169 spin_unlock(&fs_info
->trans_lock
);
170 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
174 atomic_set(&cur_trans
->num_writers
, 1);
175 extwriter_counter_init(cur_trans
, type
);
176 init_waitqueue_head(&cur_trans
->writer_wait
);
177 init_waitqueue_head(&cur_trans
->commit_wait
);
178 cur_trans
->state
= TRANS_STATE_RUNNING
;
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
183 atomic_set(&cur_trans
->use_count
, 2);
184 cur_trans
->start_time
= get_seconds();
186 cur_trans
->delayed_refs
.root
= RB_ROOT
;
187 cur_trans
->delayed_refs
.num_entries
= 0;
188 cur_trans
->delayed_refs
.num_heads_ready
= 0;
189 cur_trans
->delayed_refs
.num_heads
= 0;
190 cur_trans
->delayed_refs
.flushing
= 0;
191 cur_trans
->delayed_refs
.run_delayed_start
= 0;
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
198 if (!list_empty(&fs_info
->tree_mod_seq_list
))
199 WARN(1, KERN_ERR
"btrfs: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
202 WARN(1, KERN_ERR
"btrfs: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info
->tree_mod_seq
, 0);
206 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
207 atomic_set(&cur_trans
->delayed_refs
.procs_running_refs
, 0);
208 atomic_set(&cur_trans
->delayed_refs
.ref_seq
, 0);
209 init_waitqueue_head(&cur_trans
->delayed_refs
.wait
);
211 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
212 INIT_LIST_HEAD(&cur_trans
->ordered_operations
);
213 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
214 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
215 extent_io_tree_init(&cur_trans
->dirty_pages
,
216 fs_info
->btree_inode
->i_mapping
);
217 fs_info
->generation
++;
218 cur_trans
->transid
= fs_info
->generation
;
219 fs_info
->running_transaction
= cur_trans
;
220 cur_trans
->aborted
= 0;
221 spin_unlock(&fs_info
->trans_lock
);
227 * this does all the record keeping required to make sure that a reference
228 * counted root is properly recorded in a given transaction. This is required
229 * to make sure the old root from before we joined the transaction is deleted
230 * when the transaction commits
232 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
233 struct btrfs_root
*root
)
235 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
236 WARN_ON(root
== root
->fs_info
->extent_root
);
237 WARN_ON(root
->commit_root
!= root
->node
);
240 * see below for in_trans_setup usage rules
241 * we have the reloc mutex held now, so there
242 * is only one writer in this function
244 root
->in_trans_setup
= 1;
246 /* make sure readers find in_trans_setup before
247 * they find our root->last_trans update
251 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
252 if (root
->last_trans
== trans
->transid
) {
253 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
256 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
257 (unsigned long)root
->root_key
.objectid
,
258 BTRFS_ROOT_TRANS_TAG
);
259 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
260 root
->last_trans
= trans
->transid
;
262 /* this is pretty tricky. We don't want to
263 * take the relocation lock in btrfs_record_root_in_trans
264 * unless we're really doing the first setup for this root in
267 * Normally we'd use root->last_trans as a flag to decide
268 * if we want to take the expensive mutex.
270 * But, we have to set root->last_trans before we
271 * init the relocation root, otherwise, we trip over warnings
272 * in ctree.c. The solution used here is to flag ourselves
273 * with root->in_trans_setup. When this is 1, we're still
274 * fixing up the reloc trees and everyone must wait.
276 * When this is zero, they can trust root->last_trans and fly
277 * through btrfs_record_root_in_trans without having to take the
278 * lock. smp_wmb() makes sure that all the writes above are
279 * done before we pop in the zero below
281 btrfs_init_reloc_root(trans
, root
);
283 root
->in_trans_setup
= 0;
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
290 struct btrfs_root
*root
)
296 * see record_root_in_trans for comments about in_trans_setup usage
300 if (root
->last_trans
== trans
->transid
&&
301 !root
->in_trans_setup
)
304 mutex_lock(&root
->fs_info
->reloc_mutex
);
305 record_root_in_trans(trans
, root
);
306 mutex_unlock(&root
->fs_info
->reloc_mutex
);
311 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
313 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
314 trans
->state
< TRANS_STATE_UNBLOCKED
&&
318 /* wait for commit against the current transaction to become unblocked
319 * when this is done, it is safe to start a new transaction, but the current
320 * transaction might not be fully on disk.
322 static void wait_current_trans(struct btrfs_root
*root
)
324 struct btrfs_transaction
*cur_trans
;
326 spin_lock(&root
->fs_info
->trans_lock
);
327 cur_trans
= root
->fs_info
->running_transaction
;
328 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
329 atomic_inc(&cur_trans
->use_count
);
330 spin_unlock(&root
->fs_info
->trans_lock
);
332 wait_event(root
->fs_info
->transaction_wait
,
333 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
335 put_transaction(cur_trans
);
337 spin_unlock(&root
->fs_info
->trans_lock
);
341 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
343 if (root
->fs_info
->log_root_recovering
)
346 if (type
== TRANS_USERSPACE
)
349 if (type
== TRANS_START
&&
350 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
356 static struct btrfs_trans_handle
*
357 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
358 enum btrfs_reserve_flush_enum flush
)
360 struct btrfs_trans_handle
*h
;
361 struct btrfs_transaction
*cur_trans
;
364 u64 qgroup_reserved
= 0;
366 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
367 return ERR_PTR(-EROFS
);
369 if (current
->journal_info
) {
370 WARN_ON(type
& TRANS_EXTWRITERS
);
371 h
= current
->journal_info
;
373 WARN_ON(h
->use_count
> 2);
374 h
->orig_rsv
= h
->block_rsv
;
380 * Do the reservation before we join the transaction so we can do all
381 * the appropriate flushing if need be.
383 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
384 if (root
->fs_info
->quota_enabled
&&
385 is_fstree(root
->root_key
.objectid
)) {
386 qgroup_reserved
= num_items
* root
->leafsize
;
387 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
392 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
393 ret
= btrfs_block_rsv_add(root
,
394 &root
->fs_info
->trans_block_rsv
,
400 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
407 * If we are JOIN_NOLOCK we're already committing a transaction and
408 * waiting on this guy, so we don't need to do the sb_start_intwrite
409 * because we're already holding a ref. We need this because we could
410 * have raced in and did an fsync() on a file which can kick a commit
411 * and then we deadlock with somebody doing a freeze.
413 * If we are ATTACH, it means we just want to catch the current
414 * transaction and commit it, so we needn't do sb_start_intwrite().
416 if (type
& __TRANS_FREEZABLE
)
417 sb_start_intwrite(root
->fs_info
->sb
);
419 if (may_wait_transaction(root
, type
))
420 wait_current_trans(root
);
423 ret
= join_transaction(root
, type
);
425 wait_current_trans(root
);
426 if (unlikely(type
== TRANS_ATTACH
))
429 } while (ret
== -EBUSY
);
432 /* We must get the transaction if we are JOIN_NOLOCK. */
433 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
437 cur_trans
= root
->fs_info
->running_transaction
;
439 h
->transid
= cur_trans
->transid
;
440 h
->transaction
= cur_trans
;
442 h
->bytes_reserved
= 0;
444 h
->delayed_ref_updates
= 0;
450 h
->qgroup_reserved
= 0;
451 h
->delayed_ref_elem
.seq
= 0;
453 h
->allocating_chunk
= false;
454 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
455 INIT_LIST_HEAD(&h
->new_bgs
);
458 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
459 may_wait_transaction(root
, type
)) {
460 btrfs_commit_transaction(h
, root
);
465 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
466 h
->transid
, num_bytes
, 1);
467 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
468 h
->bytes_reserved
= num_bytes
;
470 h
->qgroup_reserved
= qgroup_reserved
;
473 btrfs_record_root_in_trans(h
, root
);
475 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
476 current
->journal_info
= h
;
480 if (type
& __TRANS_FREEZABLE
)
481 sb_end_intwrite(root
->fs_info
->sb
);
482 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
485 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
489 btrfs_qgroup_free(root
, qgroup_reserved
);
493 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
496 return start_transaction(root
, num_items
, TRANS_START
,
497 BTRFS_RESERVE_FLUSH_ALL
);
500 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
501 struct btrfs_root
*root
, int num_items
)
503 return start_transaction(root
, num_items
, TRANS_START
,
504 BTRFS_RESERVE_FLUSH_LIMIT
);
507 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
509 return start_transaction(root
, 0, TRANS_JOIN
, 0);
512 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
514 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
517 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
519 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
523 * btrfs_attach_transaction() - catch the running transaction
525 * It is used when we want to commit the current the transaction, but
526 * don't want to start a new one.
528 * Note: If this function return -ENOENT, it just means there is no
529 * running transaction. But it is possible that the inactive transaction
530 * is still in the memory, not fully on disk. If you hope there is no
531 * inactive transaction in the fs when -ENOENT is returned, you should
533 * btrfs_attach_transaction_barrier()
535 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
537 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
541 * btrfs_attach_transaction_barrier() - catch the running transaction
543 * It is similar to the above function, the differentia is this one
544 * will wait for all the inactive transactions until they fully
547 struct btrfs_trans_handle
*
548 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
550 struct btrfs_trans_handle
*trans
;
552 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
553 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
554 btrfs_wait_for_commit(root
, 0);
559 /* wait for a transaction commit to be fully complete */
560 static noinline
void wait_for_commit(struct btrfs_root
*root
,
561 struct btrfs_transaction
*commit
)
563 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
566 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
568 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
572 if (transid
<= root
->fs_info
->last_trans_committed
)
576 /* find specified transaction */
577 spin_lock(&root
->fs_info
->trans_lock
);
578 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
579 if (t
->transid
== transid
) {
581 atomic_inc(&cur_trans
->use_count
);
585 if (t
->transid
> transid
) {
590 spin_unlock(&root
->fs_info
->trans_lock
);
591 /* The specified transaction doesn't exist */
595 /* find newest transaction that is committing | committed */
596 spin_lock(&root
->fs_info
->trans_lock
);
597 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
599 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
600 if (t
->state
== TRANS_STATE_COMPLETED
)
603 atomic_inc(&cur_trans
->use_count
);
607 spin_unlock(&root
->fs_info
->trans_lock
);
609 goto out
; /* nothing committing|committed */
612 wait_for_commit(root
, cur_trans
);
613 put_transaction(cur_trans
);
618 void btrfs_throttle(struct btrfs_root
*root
)
620 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
621 wait_current_trans(root
);
624 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
625 struct btrfs_root
*root
)
627 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
628 btrfs_should_throttle_delayed_refs(trans
, root
))
631 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
634 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
635 struct btrfs_root
*root
)
637 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
642 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
643 cur_trans
->delayed_refs
.flushing
)
646 updates
= trans
->delayed_ref_updates
;
647 trans
->delayed_ref_updates
= 0;
649 err
= btrfs_run_delayed_refs(trans
, root
, updates
);
650 if (err
) /* Error code will also eval true */
654 return should_end_transaction(trans
, root
);
657 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
658 struct btrfs_root
*root
, int throttle
)
660 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
661 struct btrfs_fs_info
*info
= root
->fs_info
;
662 unsigned long cur
= trans
->delayed_ref_updates
;
663 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
666 if (--trans
->use_count
) {
667 trans
->block_rsv
= trans
->orig_rsv
;
672 * do the qgroup accounting as early as possible
674 err
= btrfs_delayed_refs_qgroup_accounting(trans
, info
);
676 btrfs_trans_release_metadata(trans
, root
);
677 trans
->block_rsv
= NULL
;
679 if (trans
->qgroup_reserved
) {
681 * the same root has to be passed here between start_transaction
682 * and end_transaction. Subvolume quota depends on this.
684 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
685 trans
->qgroup_reserved
= 0;
688 if (!list_empty(&trans
->new_bgs
))
689 btrfs_create_pending_block_groups(trans
, root
);
691 trans
->delayed_ref_updates
= 0;
692 if (btrfs_should_throttle_delayed_refs(trans
, root
)) {
693 cur
= max_t(unsigned long, cur
, 1);
694 trans
->delayed_ref_updates
= 0;
695 btrfs_run_delayed_refs(trans
, root
, cur
);
698 btrfs_trans_release_metadata(trans
, root
);
699 trans
->block_rsv
= NULL
;
701 if (!list_empty(&trans
->new_bgs
))
702 btrfs_create_pending_block_groups(trans
, root
);
704 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
705 should_end_transaction(trans
, root
) &&
706 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
707 spin_lock(&info
->trans_lock
);
708 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
709 cur_trans
->state
= TRANS_STATE_BLOCKED
;
710 spin_unlock(&info
->trans_lock
);
713 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
716 * We may race with somebody else here so end up having
717 * to call end_transaction on ourselves again, so inc
721 return btrfs_commit_transaction(trans
, root
);
723 wake_up_process(info
->transaction_kthread
);
727 if (trans
->type
& __TRANS_FREEZABLE
)
728 sb_end_intwrite(root
->fs_info
->sb
);
730 WARN_ON(cur_trans
!= info
->running_transaction
);
731 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
732 atomic_dec(&cur_trans
->num_writers
);
733 extwriter_counter_dec(cur_trans
, trans
->type
);
736 if (waitqueue_active(&cur_trans
->writer_wait
))
737 wake_up(&cur_trans
->writer_wait
);
738 put_transaction(cur_trans
);
740 if (current
->journal_info
== trans
)
741 current
->journal_info
= NULL
;
744 btrfs_run_delayed_iputs(root
);
746 if (trans
->aborted
||
747 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
749 assert_qgroups_uptodate(trans
);
751 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
755 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
756 struct btrfs_root
*root
)
758 return __btrfs_end_transaction(trans
, root
, 0);
761 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
762 struct btrfs_root
*root
)
764 return __btrfs_end_transaction(trans
, root
, 1);
767 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle
*trans
,
768 struct btrfs_root
*root
)
770 return __btrfs_end_transaction(trans
, root
, 1);
774 * when btree blocks are allocated, they have some corresponding bits set for
775 * them in one of two extent_io trees. This is used to make sure all of
776 * those extents are sent to disk but does not wait on them
778 int btrfs_write_marked_extents(struct btrfs_root
*root
,
779 struct extent_io_tree
*dirty_pages
, int mark
)
783 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
784 struct extent_state
*cached_state
= NULL
;
788 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
789 mark
, &cached_state
)) {
790 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
791 mark
, &cached_state
, GFP_NOFS
);
793 err
= filemap_fdatawrite_range(mapping
, start
, end
);
805 * when btree blocks are allocated, they have some corresponding bits set for
806 * them in one of two extent_io trees. This is used to make sure all of
807 * those extents are on disk for transaction or log commit. We wait
808 * on all the pages and clear them from the dirty pages state tree
810 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
811 struct extent_io_tree
*dirty_pages
, int mark
)
815 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
816 struct extent_state
*cached_state
= NULL
;
820 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
821 EXTENT_NEED_WAIT
, &cached_state
)) {
822 clear_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
823 0, 0, &cached_state
, GFP_NOFS
);
824 err
= filemap_fdatawait_range(mapping
, start
, end
);
836 * when btree blocks are allocated, they have some corresponding bits set for
837 * them in one of two extent_io trees. This is used to make sure all of
838 * those extents are on disk for transaction or log commit
840 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
841 struct extent_io_tree
*dirty_pages
, int mark
)
845 struct blk_plug plug
;
847 blk_start_plug(&plug
);
848 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
849 blk_finish_plug(&plug
);
850 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
859 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
860 struct btrfs_root
*root
)
862 if (!trans
|| !trans
->transaction
) {
863 struct inode
*btree_inode
;
864 btree_inode
= root
->fs_info
->btree_inode
;
865 return filemap_write_and_wait(btree_inode
->i_mapping
);
867 return btrfs_write_and_wait_marked_extents(root
,
868 &trans
->transaction
->dirty_pages
,
873 * this is used to update the root pointer in the tree of tree roots.
875 * But, in the case of the extent allocation tree, updating the root
876 * pointer may allocate blocks which may change the root of the extent
879 * So, this loops and repeats and makes sure the cowonly root didn't
880 * change while the root pointer was being updated in the metadata.
882 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
883 struct btrfs_root
*root
)
888 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
890 old_root_used
= btrfs_root_used(&root
->root_item
);
891 btrfs_write_dirty_block_groups(trans
, root
);
894 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
895 if (old_root_bytenr
== root
->node
->start
&&
896 old_root_used
== btrfs_root_used(&root
->root_item
))
899 btrfs_set_root_node(&root
->root_item
, root
->node
);
900 ret
= btrfs_update_root(trans
, tree_root
,
906 old_root_used
= btrfs_root_used(&root
->root_item
);
907 ret
= btrfs_write_dirty_block_groups(trans
, root
);
912 if (root
!= root
->fs_info
->extent_root
)
913 switch_commit_root(root
);
919 * update all the cowonly tree roots on disk
921 * The error handling in this function may not be obvious. Any of the
922 * failures will cause the file system to go offline. We still need
923 * to clean up the delayed refs.
925 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
926 struct btrfs_root
*root
)
928 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
929 struct list_head
*next
;
930 struct extent_buffer
*eb
;
933 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
937 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
938 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
940 btrfs_tree_unlock(eb
);
941 free_extent_buffer(eb
);
946 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
950 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
952 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
955 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
958 /* run_qgroups might have added some more refs */
959 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
962 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
963 next
= fs_info
->dirty_cowonly_roots
.next
;
965 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
967 ret
= update_cowonly_root(trans
, root
);
972 down_write(&fs_info
->extent_commit_sem
);
973 switch_commit_root(fs_info
->extent_root
);
974 up_write(&fs_info
->extent_commit_sem
);
976 btrfs_after_dev_replace_commit(fs_info
);
982 * dead roots are old snapshots that need to be deleted. This allocates
983 * a dirty root struct and adds it into the list of dead roots that need to
986 void btrfs_add_dead_root(struct btrfs_root
*root
)
988 spin_lock(&root
->fs_info
->trans_lock
);
989 if (list_empty(&root
->root_list
))
990 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
991 spin_unlock(&root
->fs_info
->trans_lock
);
995 * update all the cowonly tree roots on disk
997 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
998 struct btrfs_root
*root
)
1000 struct btrfs_root
*gang
[8];
1001 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1006 spin_lock(&fs_info
->fs_roots_radix_lock
);
1008 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1011 BTRFS_ROOT_TRANS_TAG
);
1014 for (i
= 0; i
< ret
; i
++) {
1016 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1017 (unsigned long)root
->root_key
.objectid
,
1018 BTRFS_ROOT_TRANS_TAG
);
1019 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1021 btrfs_free_log(trans
, root
);
1022 btrfs_update_reloc_root(trans
, root
);
1023 btrfs_orphan_commit_root(trans
, root
);
1025 btrfs_save_ino_cache(root
, trans
);
1027 /* see comments in should_cow_block() */
1028 root
->force_cow
= 0;
1031 if (root
->commit_root
!= root
->node
) {
1032 mutex_lock(&root
->fs_commit_mutex
);
1033 switch_commit_root(root
);
1034 btrfs_unpin_free_ino(root
);
1035 mutex_unlock(&root
->fs_commit_mutex
);
1037 btrfs_set_root_node(&root
->root_item
,
1041 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1044 spin_lock(&fs_info
->fs_roots_radix_lock
);
1049 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1054 * defrag a given btree.
1055 * Every leaf in the btree is read and defragged.
1057 int btrfs_defrag_root(struct btrfs_root
*root
)
1059 struct btrfs_fs_info
*info
= root
->fs_info
;
1060 struct btrfs_trans_handle
*trans
;
1063 if (xchg(&root
->defrag_running
, 1))
1067 trans
= btrfs_start_transaction(root
, 0);
1069 return PTR_ERR(trans
);
1071 ret
= btrfs_defrag_leaves(trans
, root
);
1073 btrfs_end_transaction(trans
, root
);
1074 btrfs_btree_balance_dirty(info
->tree_root
);
1077 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1080 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1081 printk(KERN_DEBUG
"btrfs: defrag_root cancelled\n");
1086 root
->defrag_running
= 0;
1091 * new snapshots need to be created at a very specific time in the
1092 * transaction commit. This does the actual creation.
1095 * If the error which may affect the commitment of the current transaction
1096 * happens, we should return the error number. If the error which just affect
1097 * the creation of the pending snapshots, just return 0.
1099 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1100 struct btrfs_fs_info
*fs_info
,
1101 struct btrfs_pending_snapshot
*pending
)
1103 struct btrfs_key key
;
1104 struct btrfs_root_item
*new_root_item
;
1105 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1106 struct btrfs_root
*root
= pending
->root
;
1107 struct btrfs_root
*parent_root
;
1108 struct btrfs_block_rsv
*rsv
;
1109 struct inode
*parent_inode
;
1110 struct btrfs_path
*path
;
1111 struct btrfs_dir_item
*dir_item
;
1112 struct dentry
*dentry
;
1113 struct extent_buffer
*tmp
;
1114 struct extent_buffer
*old
;
1115 struct timespec cur_time
= CURRENT_TIME
;
1123 path
= btrfs_alloc_path();
1125 pending
->error
= -ENOMEM
;
1129 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1130 if (!new_root_item
) {
1131 pending
->error
= -ENOMEM
;
1132 goto root_item_alloc_fail
;
1135 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1137 goto no_free_objectid
;
1139 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1141 if (to_reserve
> 0) {
1142 pending
->error
= btrfs_block_rsv_add(root
,
1143 &pending
->block_rsv
,
1145 BTRFS_RESERVE_NO_FLUSH
);
1147 goto no_free_objectid
;
1150 pending
->error
= btrfs_qgroup_inherit(trans
, fs_info
,
1151 root
->root_key
.objectid
,
1152 objectid
, pending
->inherit
);
1154 goto no_free_objectid
;
1156 key
.objectid
= objectid
;
1157 key
.offset
= (u64
)-1;
1158 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1160 rsv
= trans
->block_rsv
;
1161 trans
->block_rsv
= &pending
->block_rsv
;
1162 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1164 dentry
= pending
->dentry
;
1165 parent_inode
= pending
->dir
;
1166 parent_root
= BTRFS_I(parent_inode
)->root
;
1167 record_root_in_trans(trans
, parent_root
);
1170 * insert the directory item
1172 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1173 BUG_ON(ret
); /* -ENOMEM */
1175 /* check if there is a file/dir which has the same name. */
1176 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1177 btrfs_ino(parent_inode
),
1178 dentry
->d_name
.name
,
1179 dentry
->d_name
.len
, 0);
1180 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1181 pending
->error
= -EEXIST
;
1182 goto dir_item_existed
;
1183 } else if (IS_ERR(dir_item
)) {
1184 ret
= PTR_ERR(dir_item
);
1185 btrfs_abort_transaction(trans
, root
, ret
);
1188 btrfs_release_path(path
);
1191 * pull in the delayed directory update
1192 * and the delayed inode item
1193 * otherwise we corrupt the FS during
1196 ret
= btrfs_run_delayed_items(trans
, root
);
1197 if (ret
) { /* Transaction aborted */
1198 btrfs_abort_transaction(trans
, root
, ret
);
1202 record_root_in_trans(trans
, root
);
1203 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1204 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1205 btrfs_check_and_init_root_item(new_root_item
);
1207 root_flags
= btrfs_root_flags(new_root_item
);
1208 if (pending
->readonly
)
1209 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1211 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1212 btrfs_set_root_flags(new_root_item
, root_flags
);
1214 btrfs_set_root_generation_v2(new_root_item
,
1216 uuid_le_gen(&new_uuid
);
1217 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1218 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1220 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1221 memset(new_root_item
->received_uuid
, 0,
1222 sizeof(new_root_item
->received_uuid
));
1223 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1224 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1225 btrfs_set_root_stransid(new_root_item
, 0);
1226 btrfs_set_root_rtransid(new_root_item
, 0);
1228 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1229 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1230 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1232 old
= btrfs_lock_root_node(root
);
1233 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1235 btrfs_tree_unlock(old
);
1236 free_extent_buffer(old
);
1237 btrfs_abort_transaction(trans
, root
, ret
);
1241 btrfs_set_lock_blocking(old
);
1243 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1244 /* clean up in any case */
1245 btrfs_tree_unlock(old
);
1246 free_extent_buffer(old
);
1248 btrfs_abort_transaction(trans
, root
, ret
);
1252 /* see comments in should_cow_block() */
1253 root
->force_cow
= 1;
1256 btrfs_set_root_node(new_root_item
, tmp
);
1257 /* record when the snapshot was created in key.offset */
1258 key
.offset
= trans
->transid
;
1259 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1260 btrfs_tree_unlock(tmp
);
1261 free_extent_buffer(tmp
);
1263 btrfs_abort_transaction(trans
, root
, ret
);
1268 * insert root back/forward references
1270 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1271 parent_root
->root_key
.objectid
,
1272 btrfs_ino(parent_inode
), index
,
1273 dentry
->d_name
.name
, dentry
->d_name
.len
);
1275 btrfs_abort_transaction(trans
, root
, ret
);
1279 key
.offset
= (u64
)-1;
1280 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1281 if (IS_ERR(pending
->snap
)) {
1282 ret
= PTR_ERR(pending
->snap
);
1283 btrfs_abort_transaction(trans
, root
, ret
);
1287 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1289 btrfs_abort_transaction(trans
, root
, ret
);
1293 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1295 btrfs_abort_transaction(trans
, root
, ret
);
1299 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1300 dentry
->d_name
.name
, dentry
->d_name
.len
,
1302 BTRFS_FT_DIR
, index
);
1303 /* We have check then name at the beginning, so it is impossible. */
1304 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1306 btrfs_abort_transaction(trans
, root
, ret
);
1310 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1311 dentry
->d_name
.len
* 2);
1312 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1313 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1315 btrfs_abort_transaction(trans
, root
, ret
);
1318 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1319 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1321 btrfs_abort_transaction(trans
, root
, ret
);
1324 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1325 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1326 new_root_item
->received_uuid
,
1327 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1329 if (ret
&& ret
!= -EEXIST
) {
1330 btrfs_abort_transaction(trans
, root
, ret
);
1335 pending
->error
= ret
;
1337 trans
->block_rsv
= rsv
;
1338 trans
->bytes_reserved
= 0;
1340 kfree(new_root_item
);
1341 root_item_alloc_fail
:
1342 btrfs_free_path(path
);
1347 * create all the snapshots we've scheduled for creation
1349 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1350 struct btrfs_fs_info
*fs_info
)
1352 struct btrfs_pending_snapshot
*pending
, *next
;
1353 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1356 list_for_each_entry_safe(pending
, next
, head
, list
) {
1357 list_del(&pending
->list
);
1358 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1365 static void update_super_roots(struct btrfs_root
*root
)
1367 struct btrfs_root_item
*root_item
;
1368 struct btrfs_super_block
*super
;
1370 super
= root
->fs_info
->super_copy
;
1372 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1373 super
->chunk_root
= root_item
->bytenr
;
1374 super
->chunk_root_generation
= root_item
->generation
;
1375 super
->chunk_root_level
= root_item
->level
;
1377 root_item
= &root
->fs_info
->tree_root
->root_item
;
1378 super
->root
= root_item
->bytenr
;
1379 super
->generation
= root_item
->generation
;
1380 super
->root_level
= root_item
->level
;
1381 if (btrfs_test_opt(root
, SPACE_CACHE
))
1382 super
->cache_generation
= root_item
->generation
;
1383 if (root
->fs_info
->update_uuid_tree_gen
)
1384 super
->uuid_tree_generation
= root_item
->generation
;
1387 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1389 struct btrfs_transaction
*trans
;
1392 spin_lock(&info
->trans_lock
);
1393 trans
= info
->running_transaction
;
1395 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1396 spin_unlock(&info
->trans_lock
);
1400 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1402 struct btrfs_transaction
*trans
;
1405 spin_lock(&info
->trans_lock
);
1406 trans
= info
->running_transaction
;
1408 ret
= is_transaction_blocked(trans
);
1409 spin_unlock(&info
->trans_lock
);
1414 * wait for the current transaction commit to start and block subsequent
1417 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1418 struct btrfs_transaction
*trans
)
1420 wait_event(root
->fs_info
->transaction_blocked_wait
,
1421 trans
->state
>= TRANS_STATE_COMMIT_START
||
1426 * wait for the current transaction to start and then become unblocked.
1429 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1430 struct btrfs_transaction
*trans
)
1432 wait_event(root
->fs_info
->transaction_wait
,
1433 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1438 * commit transactions asynchronously. once btrfs_commit_transaction_async
1439 * returns, any subsequent transaction will not be allowed to join.
1441 struct btrfs_async_commit
{
1442 struct btrfs_trans_handle
*newtrans
;
1443 struct btrfs_root
*root
;
1444 struct work_struct work
;
1447 static void do_async_commit(struct work_struct
*work
)
1449 struct btrfs_async_commit
*ac
=
1450 container_of(work
, struct btrfs_async_commit
, work
);
1453 * We've got freeze protection passed with the transaction.
1454 * Tell lockdep about it.
1456 if (ac
->newtrans
->type
< TRANS_JOIN_NOLOCK
)
1458 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1461 current
->journal_info
= ac
->newtrans
;
1463 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1467 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1468 struct btrfs_root
*root
,
1469 int wait_for_unblock
)
1471 struct btrfs_async_commit
*ac
;
1472 struct btrfs_transaction
*cur_trans
;
1474 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1478 INIT_WORK(&ac
->work
, do_async_commit
);
1480 ac
->newtrans
= btrfs_join_transaction(root
);
1481 if (IS_ERR(ac
->newtrans
)) {
1482 int err
= PTR_ERR(ac
->newtrans
);
1487 /* take transaction reference */
1488 cur_trans
= trans
->transaction
;
1489 atomic_inc(&cur_trans
->use_count
);
1491 btrfs_end_transaction(trans
, root
);
1494 * Tell lockdep we've released the freeze rwsem, since the
1495 * async commit thread will be the one to unlock it.
1497 if (trans
->type
< TRANS_JOIN_NOLOCK
)
1499 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1502 schedule_work(&ac
->work
);
1504 /* wait for transaction to start and unblock */
1505 if (wait_for_unblock
)
1506 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1508 wait_current_trans_commit_start(root
, cur_trans
);
1510 if (current
->journal_info
== trans
)
1511 current
->journal_info
= NULL
;
1513 put_transaction(cur_trans
);
1518 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1519 struct btrfs_root
*root
, int err
)
1521 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1524 WARN_ON(trans
->use_count
> 1);
1526 btrfs_abort_transaction(trans
, root
, err
);
1528 spin_lock(&root
->fs_info
->trans_lock
);
1531 * If the transaction is removed from the list, it means this
1532 * transaction has been committed successfully, so it is impossible
1533 * to call the cleanup function.
1535 BUG_ON(list_empty(&cur_trans
->list
));
1537 list_del_init(&cur_trans
->list
);
1538 if (cur_trans
== root
->fs_info
->running_transaction
) {
1539 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1540 spin_unlock(&root
->fs_info
->trans_lock
);
1541 wait_event(cur_trans
->writer_wait
,
1542 atomic_read(&cur_trans
->num_writers
) == 1);
1544 spin_lock(&root
->fs_info
->trans_lock
);
1546 spin_unlock(&root
->fs_info
->trans_lock
);
1548 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1550 spin_lock(&root
->fs_info
->trans_lock
);
1551 if (cur_trans
== root
->fs_info
->running_transaction
)
1552 root
->fs_info
->running_transaction
= NULL
;
1553 spin_unlock(&root
->fs_info
->trans_lock
);
1555 put_transaction(cur_trans
);
1556 put_transaction(cur_trans
);
1558 trace_btrfs_transaction_commit(root
);
1560 btrfs_scrub_continue(root
);
1562 if (current
->journal_info
== trans
)
1563 current
->journal_info
= NULL
;
1565 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1568 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle
*trans
,
1569 struct btrfs_root
*root
)
1573 ret
= btrfs_run_delayed_items(trans
, root
);
1578 * running the delayed items may have added new refs. account
1579 * them now so that they hinder processing of more delayed refs
1580 * as little as possible.
1582 btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
1585 * rename don't use btrfs_join_transaction, so, once we
1586 * set the transaction to blocked above, we aren't going
1587 * to get any new ordered operations. We can safely run
1588 * it here and no for sure that nothing new will be added
1591 ret
= btrfs_run_ordered_operations(trans
, root
, 1);
1596 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1598 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1599 return btrfs_start_all_delalloc_inodes(fs_info
, 1);
1603 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1605 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1606 btrfs_wait_all_ordered_extents(fs_info
);
1609 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1610 struct btrfs_root
*root
)
1612 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1613 struct btrfs_transaction
*prev_trans
= NULL
;
1616 ret
= btrfs_run_ordered_operations(trans
, root
, 0);
1618 btrfs_abort_transaction(trans
, root
, ret
);
1619 btrfs_end_transaction(trans
, root
);
1623 /* Stop the commit early if ->aborted is set */
1624 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1625 ret
= cur_trans
->aborted
;
1626 btrfs_end_transaction(trans
, root
);
1630 /* make a pass through all the delayed refs we have so far
1631 * any runnings procs may add more while we are here
1633 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1635 btrfs_end_transaction(trans
, root
);
1639 btrfs_trans_release_metadata(trans
, root
);
1640 trans
->block_rsv
= NULL
;
1641 if (trans
->qgroup_reserved
) {
1642 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1643 trans
->qgroup_reserved
= 0;
1646 cur_trans
= trans
->transaction
;
1649 * set the flushing flag so procs in this transaction have to
1650 * start sending their work down.
1652 cur_trans
->delayed_refs
.flushing
= 1;
1655 if (!list_empty(&trans
->new_bgs
))
1656 btrfs_create_pending_block_groups(trans
, root
);
1658 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1660 btrfs_end_transaction(trans
, root
);
1664 spin_lock(&root
->fs_info
->trans_lock
);
1665 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1666 spin_unlock(&root
->fs_info
->trans_lock
);
1667 atomic_inc(&cur_trans
->use_count
);
1668 ret
= btrfs_end_transaction(trans
, root
);
1670 wait_for_commit(root
, cur_trans
);
1672 put_transaction(cur_trans
);
1677 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1678 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1680 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1681 prev_trans
= list_entry(cur_trans
->list
.prev
,
1682 struct btrfs_transaction
, list
);
1683 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1684 atomic_inc(&prev_trans
->use_count
);
1685 spin_unlock(&root
->fs_info
->trans_lock
);
1687 wait_for_commit(root
, prev_trans
);
1689 put_transaction(prev_trans
);
1691 spin_unlock(&root
->fs_info
->trans_lock
);
1694 spin_unlock(&root
->fs_info
->trans_lock
);
1697 extwriter_counter_dec(cur_trans
, trans
->type
);
1699 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1701 goto cleanup_transaction
;
1703 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1705 goto cleanup_transaction
;
1707 wait_event(cur_trans
->writer_wait
,
1708 extwriter_counter_read(cur_trans
) == 0);
1710 /* some pending stuffs might be added after the previous flush. */
1711 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1713 goto cleanup_transaction
;
1715 btrfs_wait_delalloc_flush(root
->fs_info
);
1717 * Ok now we need to make sure to block out any other joins while we
1718 * commit the transaction. We could have started a join before setting
1719 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1721 spin_lock(&root
->fs_info
->trans_lock
);
1722 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1723 spin_unlock(&root
->fs_info
->trans_lock
);
1724 wait_event(cur_trans
->writer_wait
,
1725 atomic_read(&cur_trans
->num_writers
) == 1);
1727 /* ->aborted might be set after the previous check, so check it */
1728 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1729 ret
= cur_trans
->aborted
;
1730 goto cleanup_transaction
;
1733 * the reloc mutex makes sure that we stop
1734 * the balancing code from coming in and moving
1735 * extents around in the middle of the commit
1737 mutex_lock(&root
->fs_info
->reloc_mutex
);
1740 * We needn't worry about the delayed items because we will
1741 * deal with them in create_pending_snapshot(), which is the
1742 * core function of the snapshot creation.
1744 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1746 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1747 goto cleanup_transaction
;
1751 * We insert the dir indexes of the snapshots and update the inode
1752 * of the snapshots' parents after the snapshot creation, so there
1753 * are some delayed items which are not dealt with. Now deal with
1756 * We needn't worry that this operation will corrupt the snapshots,
1757 * because all the tree which are snapshoted will be forced to COW
1758 * the nodes and leaves.
1760 ret
= btrfs_run_delayed_items(trans
, root
);
1762 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1763 goto cleanup_transaction
;
1766 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1768 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1769 goto cleanup_transaction
;
1773 * make sure none of the code above managed to slip in a
1776 btrfs_assert_delayed_root_empty(root
);
1778 WARN_ON(cur_trans
!= trans
->transaction
);
1780 btrfs_scrub_pause(root
);
1781 /* btrfs_commit_tree_roots is responsible for getting the
1782 * various roots consistent with each other. Every pointer
1783 * in the tree of tree roots has to point to the most up to date
1784 * root for every subvolume and other tree. So, we have to keep
1785 * the tree logging code from jumping in and changing any
1788 * At this point in the commit, there can't be any tree-log
1789 * writers, but a little lower down we drop the trans mutex
1790 * and let new people in. By holding the tree_log_mutex
1791 * from now until after the super is written, we avoid races
1792 * with the tree-log code.
1794 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1796 ret
= commit_fs_roots(trans
, root
);
1798 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1799 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1800 goto cleanup_transaction
;
1803 /* commit_fs_roots gets rid of all the tree log roots, it is now
1804 * safe to free the root of tree log roots
1806 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1808 ret
= commit_cowonly_roots(trans
, root
);
1810 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1811 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1812 goto cleanup_transaction
;
1816 * The tasks which save the space cache and inode cache may also
1817 * update ->aborted, check it.
1819 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1820 ret
= cur_trans
->aborted
;
1821 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1822 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1823 goto cleanup_transaction
;
1826 btrfs_prepare_extent_commit(trans
, root
);
1828 cur_trans
= root
->fs_info
->running_transaction
;
1830 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1831 root
->fs_info
->tree_root
->node
);
1832 switch_commit_root(root
->fs_info
->tree_root
);
1834 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1835 root
->fs_info
->chunk_root
->node
);
1836 switch_commit_root(root
->fs_info
->chunk_root
);
1838 assert_qgroups_uptodate(trans
);
1839 update_super_roots(root
);
1841 if (!root
->fs_info
->log_root_recovering
) {
1842 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1843 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1846 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1847 sizeof(*root
->fs_info
->super_copy
));
1849 spin_lock(&root
->fs_info
->trans_lock
);
1850 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
1851 root
->fs_info
->running_transaction
= NULL
;
1852 spin_unlock(&root
->fs_info
->trans_lock
);
1853 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1855 wake_up(&root
->fs_info
->transaction_wait
);
1857 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1859 btrfs_error(root
->fs_info
, ret
,
1860 "Error while writing out transaction");
1861 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1862 goto cleanup_transaction
;
1865 ret
= write_ctree_super(trans
, root
, 0);
1867 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1868 goto cleanup_transaction
;
1872 * the super is written, we can safely allow the tree-loggers
1873 * to go about their business
1875 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1877 btrfs_finish_extent_commit(trans
, root
);
1879 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1881 * We needn't acquire the lock here because there is no other task
1882 * which can change it.
1884 cur_trans
->state
= TRANS_STATE_COMPLETED
;
1885 wake_up(&cur_trans
->commit_wait
);
1887 spin_lock(&root
->fs_info
->trans_lock
);
1888 list_del_init(&cur_trans
->list
);
1889 spin_unlock(&root
->fs_info
->trans_lock
);
1891 put_transaction(cur_trans
);
1892 put_transaction(cur_trans
);
1894 if (trans
->type
& __TRANS_FREEZABLE
)
1895 sb_end_intwrite(root
->fs_info
->sb
);
1897 trace_btrfs_transaction_commit(root
);
1899 btrfs_scrub_continue(root
);
1901 if (current
->journal_info
== trans
)
1902 current
->journal_info
= NULL
;
1904 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1906 if (current
!= root
->fs_info
->transaction_kthread
)
1907 btrfs_run_delayed_iputs(root
);
1911 cleanup_transaction
:
1912 btrfs_trans_release_metadata(trans
, root
);
1913 trans
->block_rsv
= NULL
;
1914 if (trans
->qgroup_reserved
) {
1915 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1916 trans
->qgroup_reserved
= 0;
1918 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
1919 if (current
->journal_info
== trans
)
1920 current
->journal_info
= NULL
;
1921 cleanup_transaction(trans
, root
, ret
);
1927 * return < 0 if error
1928 * 0 if there are no more dead_roots at the time of call
1929 * 1 there are more to be processed, call me again
1931 * The return value indicates there are certainly more snapshots to delete, but
1932 * if there comes a new one during processing, it may return 0. We don't mind,
1933 * because btrfs_commit_super will poke cleaner thread and it will process it a
1934 * few seconds later.
1936 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
1939 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1941 spin_lock(&fs_info
->trans_lock
);
1942 if (list_empty(&fs_info
->dead_roots
)) {
1943 spin_unlock(&fs_info
->trans_lock
);
1946 root
= list_first_entry(&fs_info
->dead_roots
,
1947 struct btrfs_root
, root_list
);
1948 list_del_init(&root
->root_list
);
1949 spin_unlock(&fs_info
->trans_lock
);
1951 pr_debug("btrfs: cleaner removing %llu\n", root
->objectid
);
1953 btrfs_kill_all_delayed_nodes(root
);
1955 if (btrfs_header_backref_rev(root
->node
) <
1956 BTRFS_MIXED_BACKREF_REV
)
1957 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
1959 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
1961 * If we encounter a transaction abort during snapshot cleaning, we
1962 * don't want to crash here
1964 return (ret
< 0) ? 0 : 1;