2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dma-direct.h>
32 #include <linux/iommu-helper.h>
33 #include <linux/iommu.h>
34 #include <linux/delay.h>
35 #include <linux/amd-iommu.h>
36 #include <linux/notifier.h>
37 #include <linux/export.h>
38 #include <linux/irq.h>
39 #include <linux/msi.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/irqdomain.h>
42 #include <linux/percpu.h>
43 #include <linux/iova.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/io_apic.h>
47 #include <asm/hw_irq.h>
48 #include <asm/msidef.h>
49 #include <asm/proto.h>
50 #include <asm/iommu.h>
54 #include "amd_iommu_proto.h"
55 #include "amd_iommu_types.h"
56 #include "irq_remapping.h"
58 #define AMD_IOMMU_MAPPING_ERROR 0
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
62 #define LOOP_TIMEOUT 100000
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN (1)
66 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
80 * 512GB Pages are not supported due to a hardware bug
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock
);
85 static DEFINE_SPINLOCK(pd_bitmap_lock
);
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list
);
90 LIST_HEAD(ioapic_map
);
92 LIST_HEAD(acpihid_map
);
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
98 const struct iommu_ops amd_iommu_ops
;
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
101 int amd_iommu_max_glx_val
= -1;
103 static const struct dma_map_ops amd_iommu_dma_ops
;
106 * general struct to manage commands send to an IOMMU
112 struct kmem_cache
*amd_iommu_irq_cache
;
114 static void update_domain(struct protection_domain
*domain
);
115 static int protection_domain_init(struct protection_domain
*domain
);
116 static void detach_device(struct device
*dev
);
117 static void iova_domain_flush_tlb(struct iova_domain
*iovad
);
120 * Data container for a dma_ops specific protection domain
122 struct dma_ops_domain
{
123 /* generic protection domain information */
124 struct protection_domain domain
;
127 struct iova_domain iovad
;
130 static struct iova_domain reserved_iova_ranges
;
131 static struct lock_class_key reserved_rbtree_key
;
133 /****************************************************************************
137 ****************************************************************************/
139 static inline int match_hid_uid(struct device
*dev
,
140 struct acpihid_map_entry
*entry
)
142 const char *hid
, *uid
;
144 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
145 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
151 return strcmp(hid
, entry
->hid
);
154 return strcmp(hid
, entry
->hid
);
156 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
159 static inline u16
get_pci_device_id(struct device
*dev
)
161 struct pci_dev
*pdev
= to_pci_dev(dev
);
163 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
166 static inline int get_acpihid_device_id(struct device
*dev
,
167 struct acpihid_map_entry
**entry
)
169 struct acpihid_map_entry
*p
;
171 list_for_each_entry(p
, &acpihid_map
, list
) {
172 if (!match_hid_uid(dev
, p
)) {
181 static inline int get_device_id(struct device
*dev
)
186 devid
= get_pci_device_id(dev
);
188 devid
= get_acpihid_device_id(dev
, NULL
);
193 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
195 return container_of(dom
, struct protection_domain
, domain
);
198 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
200 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
201 return container_of(domain
, struct dma_ops_domain
, domain
);
204 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
206 struct iommu_dev_data
*dev_data
;
208 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
212 dev_data
->devid
= devid
;
213 ratelimit_default_init(&dev_data
->rs
);
215 llist_add(&dev_data
->dev_data_list
, &dev_data_list
);
219 static struct iommu_dev_data
*search_dev_data(u16 devid
)
221 struct iommu_dev_data
*dev_data
;
222 struct llist_node
*node
;
224 if (llist_empty(&dev_data_list
))
227 node
= dev_data_list
.first
;
228 llist_for_each_entry(dev_data
, node
, dev_data_list
) {
229 if (dev_data
->devid
== devid
)
236 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
238 *(u16
*)data
= alias
;
242 static u16
get_alias(struct device
*dev
)
244 struct pci_dev
*pdev
= to_pci_dev(dev
);
245 u16 devid
, ivrs_alias
, pci_alias
;
247 /* The callers make sure that get_device_id() does not fail here */
248 devid
= get_device_id(dev
);
250 /* For ACPI HID devices, we simply return the devid as such */
251 if (!dev_is_pci(dev
))
254 ivrs_alias
= amd_iommu_alias_table
[devid
];
256 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
258 if (ivrs_alias
== pci_alias
)
264 * The IVRS is fairly reliable in telling us about aliases, but it
265 * can't know about every screwy device. If we don't have an IVRS
266 * reported alias, use the PCI reported alias. In that case we may
267 * still need to initialize the rlookup and dev_table entries if the
268 * alias is to a non-existent device.
270 if (ivrs_alias
== devid
) {
271 if (!amd_iommu_rlookup_table
[pci_alias
]) {
272 amd_iommu_rlookup_table
[pci_alias
] =
273 amd_iommu_rlookup_table
[devid
];
274 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
275 amd_iommu_dev_table
[devid
].data
,
276 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
282 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
283 "for device %s[%04x:%04x], kernel reported alias "
284 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
285 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
286 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
287 PCI_FUNC(pci_alias
));
290 * If we don't have a PCI DMA alias and the IVRS alias is on the same
291 * bus, then the IVRS table may know about a quirk that we don't.
293 if (pci_alias
== devid
&&
294 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
295 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
296 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
297 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
304 static struct iommu_dev_data
*find_dev_data(u16 devid
)
306 struct iommu_dev_data
*dev_data
;
307 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
309 dev_data
= search_dev_data(devid
);
311 if (dev_data
== NULL
) {
312 dev_data
= alloc_dev_data(devid
);
316 if (translation_pre_enabled(iommu
))
317 dev_data
->defer_attach
= true;
323 struct iommu_dev_data
*get_dev_data(struct device
*dev
)
325 return dev
->archdata
.iommu
;
327 EXPORT_SYMBOL(get_dev_data
);
330 * Find or create an IOMMU group for a acpihid device.
332 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
334 struct acpihid_map_entry
*p
, *entry
= NULL
;
337 devid
= get_acpihid_device_id(dev
, &entry
);
339 return ERR_PTR(devid
);
341 list_for_each_entry(p
, &acpihid_map
, list
) {
342 if ((devid
== p
->devid
) && p
->group
)
343 entry
->group
= p
->group
;
347 entry
->group
= generic_device_group(dev
);
349 iommu_group_ref_get(entry
->group
);
354 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
356 static const int caps
[] = {
359 PCI_EXT_CAP_ID_PASID
,
363 if (pci_ats_disabled())
366 for (i
= 0; i
< 3; ++i
) {
367 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
375 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
377 struct iommu_dev_data
*dev_data
;
379 dev_data
= get_dev_data(&pdev
->dev
);
381 return dev_data
->errata
& (1 << erratum
) ? true : false;
385 * This function checks if the driver got a valid device from the caller to
386 * avoid dereferencing invalid pointers.
388 static bool check_device(struct device
*dev
)
392 if (!dev
|| !dev
->dma_mask
)
395 devid
= get_device_id(dev
);
399 /* Out of our scope? */
400 if (devid
> amd_iommu_last_bdf
)
403 if (amd_iommu_rlookup_table
[devid
] == NULL
)
409 static void init_iommu_group(struct device
*dev
)
411 struct iommu_group
*group
;
413 group
= iommu_group_get_for_dev(dev
);
417 iommu_group_put(group
);
420 static int iommu_init_device(struct device
*dev
)
422 struct iommu_dev_data
*dev_data
;
423 struct amd_iommu
*iommu
;
426 if (dev
->archdata
.iommu
)
429 devid
= get_device_id(dev
);
433 iommu
= amd_iommu_rlookup_table
[devid
];
435 dev_data
= find_dev_data(devid
);
439 dev_data
->alias
= get_alias(dev
);
441 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
442 struct amd_iommu
*iommu
;
444 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
445 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
448 dev
->archdata
.iommu
= dev_data
;
450 iommu_device_link(&iommu
->iommu
, dev
);
455 static void iommu_ignore_device(struct device
*dev
)
460 devid
= get_device_id(dev
);
464 alias
= get_alias(dev
);
466 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
467 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
469 amd_iommu_rlookup_table
[devid
] = NULL
;
470 amd_iommu_rlookup_table
[alias
] = NULL
;
473 static void iommu_uninit_device(struct device
*dev
)
475 struct iommu_dev_data
*dev_data
;
476 struct amd_iommu
*iommu
;
479 devid
= get_device_id(dev
);
483 iommu
= amd_iommu_rlookup_table
[devid
];
485 dev_data
= search_dev_data(devid
);
489 if (dev_data
->domain
)
492 iommu_device_unlink(&iommu
->iommu
, dev
);
494 iommu_group_remove_device(dev
);
500 * We keep dev_data around for unplugged devices and reuse it when the
501 * device is re-plugged - not doing so would introduce a ton of races.
505 /****************************************************************************
507 * Interrupt handling functions
509 ****************************************************************************/
511 static void dump_dte_entry(u16 devid
)
515 for (i
= 0; i
< 4; ++i
)
516 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
517 amd_iommu_dev_table
[devid
].data
[i
]);
520 static void dump_command(unsigned long phys_addr
)
522 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
525 for (i
= 0; i
< 4; ++i
)
526 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
529 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
530 u64 address
, int flags
)
532 struct iommu_dev_data
*dev_data
= NULL
;
533 struct pci_dev
*pdev
;
535 pdev
= pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid
),
538 dev_data
= get_dev_data(&pdev
->dev
);
540 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
541 dev_err(&pdev
->dev
, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
542 domain_id
, address
, flags
);
543 } else if (printk_ratelimit()) {
544 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
545 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
546 domain_id
, address
, flags
);
553 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
555 struct device
*dev
= iommu
->iommu
.dev
;
556 int type
, devid
, pasid
, flags
, tag
;
557 volatile u32
*event
= __evt
;
562 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
563 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
564 pasid
= PPR_PASID(*(u64
*)&event
[0]);
565 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
566 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
569 /* Did we hit the erratum? */
570 if (++count
== LOOP_TIMEOUT
) {
571 pr_err("AMD-Vi: No event written to event log\n");
578 if (type
== EVENT_TYPE_IO_FAULT
) {
579 amd_iommu_report_page_fault(devid
, pasid
, address
, flags
);
582 dev_err(dev
, "AMD-Vi: Event logged [");
586 case EVENT_TYPE_ILL_DEV
:
587 dev_err(dev
, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
588 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
589 pasid
, address
, flags
);
590 dump_dte_entry(devid
);
592 case EVENT_TYPE_DEV_TAB_ERR
:
593 dev_err(dev
, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
594 "address=0x%016llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
598 case EVENT_TYPE_PAGE_TAB_ERR
:
599 dev_err(dev
, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
601 pasid
, address
, flags
);
603 case EVENT_TYPE_ILL_CMD
:
604 dev_err(dev
, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
605 dump_command(address
);
607 case EVENT_TYPE_CMD_HARD_ERR
:
608 dev_err(dev
, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
611 case EVENT_TYPE_IOTLB_INV_TO
:
612 dev_err(dev
, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
613 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
616 case EVENT_TYPE_INV_DEV_REQ
:
617 dev_err(dev
, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
618 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
619 pasid
, address
, flags
);
621 case EVENT_TYPE_INV_PPR_REQ
:
622 pasid
= ((event
[0] >> 16) & 0xFFFF)
623 | ((event
[1] << 6) & 0xF0000);
624 tag
= event
[1] & 0x03FF;
625 dev_err(dev
, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
626 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
627 pasid
, address
, flags
);
630 dev_err(dev
, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
631 event
[0], event
[1], event
[2], event
[3]);
634 memset(__evt
, 0, 4 * sizeof(u32
));
637 static void iommu_poll_events(struct amd_iommu
*iommu
)
641 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
642 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
644 while (head
!= tail
) {
645 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
646 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
649 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
652 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
654 struct amd_iommu_fault fault
;
656 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
657 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
661 fault
.address
= raw
[1];
662 fault
.pasid
= PPR_PASID(raw
[0]);
663 fault
.device_id
= PPR_DEVID(raw
[0]);
664 fault
.tag
= PPR_TAG(raw
[0]);
665 fault
.flags
= PPR_FLAGS(raw
[0]);
667 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
670 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
674 if (iommu
->ppr_log
== NULL
)
677 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
678 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
680 while (head
!= tail
) {
685 raw
= (u64
*)(iommu
->ppr_log
+ head
);
688 * Hardware bug: Interrupt may arrive before the entry is
689 * written to memory. If this happens we need to wait for the
692 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
693 if (PPR_REQ_TYPE(raw
[0]) != 0)
698 /* Avoid memcpy function-call overhead */
703 * To detect the hardware bug we need to clear the entry
706 raw
[0] = raw
[1] = 0UL;
708 /* Update head pointer of hardware ring-buffer */
709 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
710 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
712 /* Handle PPR entry */
713 iommu_handle_ppr_entry(iommu
, entry
);
715 /* Refresh ring-buffer information */
716 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
717 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
721 #ifdef CONFIG_IRQ_REMAP
722 static int (*iommu_ga_log_notifier
)(u32
);
724 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
726 iommu_ga_log_notifier
= notifier
;
730 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
732 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
734 u32 head
, tail
, cnt
= 0;
736 if (iommu
->ga_log
== NULL
)
739 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
740 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
742 while (head
!= tail
) {
746 raw
= (u64
*)(iommu
->ga_log
+ head
);
749 /* Avoid memcpy function-call overhead */
752 /* Update head pointer of hardware ring-buffer */
753 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
754 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
756 /* Handle GA entry */
757 switch (GA_REQ_TYPE(log_entry
)) {
759 if (!iommu_ga_log_notifier
)
762 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
763 __func__
, GA_DEVID(log_entry
),
766 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
767 pr_err("AMD-Vi: GA log notifier failed.\n");
774 #endif /* CONFIG_IRQ_REMAP */
776 #define AMD_IOMMU_INT_MASK \
777 (MMIO_STATUS_EVT_INT_MASK | \
778 MMIO_STATUS_PPR_INT_MASK | \
779 MMIO_STATUS_GALOG_INT_MASK)
781 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
783 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
784 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
786 while (status
& AMD_IOMMU_INT_MASK
) {
787 /* Enable EVT and PPR and GA interrupts again */
788 writel(AMD_IOMMU_INT_MASK
,
789 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
791 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
792 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
793 iommu_poll_events(iommu
);
796 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
797 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
798 iommu_poll_ppr_log(iommu
);
801 #ifdef CONFIG_IRQ_REMAP
802 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
803 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
804 iommu_poll_ga_log(iommu
);
809 * Hardware bug: ERBT1312
810 * When re-enabling interrupt (by writing 1
811 * to clear the bit), the hardware might also try to set
812 * the interrupt bit in the event status register.
813 * In this scenario, the bit will be set, and disable
814 * subsequent interrupts.
816 * Workaround: The IOMMU driver should read back the
817 * status register and check if the interrupt bits are cleared.
818 * If not, driver will need to go through the interrupt handler
819 * again and re-clear the bits
821 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
826 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
828 return IRQ_WAKE_THREAD
;
831 /****************************************************************************
833 * IOMMU command queuing functions
835 ****************************************************************************/
837 static int wait_on_sem(volatile u64
*sem
)
841 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
846 if (i
== LOOP_TIMEOUT
) {
847 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
854 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
855 struct iommu_cmd
*cmd
)
859 target
= iommu
->cmd_buf
+ iommu
->cmd_buf_tail
;
861 iommu
->cmd_buf_tail
+= sizeof(*cmd
);
862 iommu
->cmd_buf_tail
%= CMD_BUFFER_SIZE
;
864 /* Copy command to buffer */
865 memcpy(target
, cmd
, sizeof(*cmd
));
867 /* Tell the IOMMU about it */
868 writel(iommu
->cmd_buf_tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
871 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
873 u64 paddr
= iommu_virt_to_phys((void *)address
);
875 WARN_ON(address
& 0x7ULL
);
877 memset(cmd
, 0, sizeof(*cmd
));
878 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
879 cmd
->data
[1] = upper_32_bits(paddr
);
881 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
884 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
886 memset(cmd
, 0, sizeof(*cmd
));
887 cmd
->data
[0] = devid
;
888 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
891 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
892 size_t size
, u16 domid
, int pde
)
897 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
902 * If we have to flush more than one page, flush all
903 * TLB entries for this domain
905 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
909 address
&= PAGE_MASK
;
911 memset(cmd
, 0, sizeof(*cmd
));
912 cmd
->data
[1] |= domid
;
913 cmd
->data
[2] = lower_32_bits(address
);
914 cmd
->data
[3] = upper_32_bits(address
);
915 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
916 if (s
) /* size bit - we flush more than one 4kb page */
917 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
918 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
919 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
922 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
923 u64 address
, size_t size
)
928 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
933 * If we have to flush more than one page, flush all
934 * TLB entries for this domain
936 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
940 address
&= PAGE_MASK
;
942 memset(cmd
, 0, sizeof(*cmd
));
943 cmd
->data
[0] = devid
;
944 cmd
->data
[0] |= (qdep
& 0xff) << 24;
945 cmd
->data
[1] = devid
;
946 cmd
->data
[2] = lower_32_bits(address
);
947 cmd
->data
[3] = upper_32_bits(address
);
948 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
950 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
953 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
954 u64 address
, bool size
)
956 memset(cmd
, 0, sizeof(*cmd
));
958 address
&= ~(0xfffULL
);
960 cmd
->data
[0] = pasid
;
961 cmd
->data
[1] = domid
;
962 cmd
->data
[2] = lower_32_bits(address
);
963 cmd
->data
[3] = upper_32_bits(address
);
964 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
965 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
967 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
968 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
971 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
972 int qdep
, u64 address
, bool size
)
974 memset(cmd
, 0, sizeof(*cmd
));
976 address
&= ~(0xfffULL
);
978 cmd
->data
[0] = devid
;
979 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
980 cmd
->data
[0] |= (qdep
& 0xff) << 24;
981 cmd
->data
[1] = devid
;
982 cmd
->data
[1] |= (pasid
& 0xff) << 16;
983 cmd
->data
[2] = lower_32_bits(address
);
984 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
985 cmd
->data
[3] = upper_32_bits(address
);
987 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
988 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
991 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
992 int status
, int tag
, bool gn
)
994 memset(cmd
, 0, sizeof(*cmd
));
996 cmd
->data
[0] = devid
;
998 cmd
->data
[1] = pasid
;
999 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
1001 cmd
->data
[3] = tag
& 0x1ff;
1002 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
1004 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
1007 static void build_inv_all(struct iommu_cmd
*cmd
)
1009 memset(cmd
, 0, sizeof(*cmd
));
1010 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1013 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1015 memset(cmd
, 0, sizeof(*cmd
));
1016 cmd
->data
[0] = devid
;
1017 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1021 * Writes the command to the IOMMUs command buffer and informs the
1022 * hardware about the new command.
1024 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1025 struct iommu_cmd
*cmd
,
1028 unsigned int count
= 0;
1029 u32 left
, next_tail
;
1031 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1033 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
1036 /* Skip udelay() the first time around */
1038 if (count
== LOOP_TIMEOUT
) {
1039 pr_err("AMD-Vi: Command buffer timeout\n");
1046 /* Update head and recheck remaining space */
1047 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1048 MMIO_CMD_HEAD_OFFSET
);
1053 copy_cmd_to_buffer(iommu
, cmd
);
1055 /* Do we need to make sure all commands are processed? */
1056 iommu
->need_sync
= sync
;
1061 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1062 struct iommu_cmd
*cmd
,
1065 unsigned long flags
;
1068 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1069 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1070 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1075 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1077 return iommu_queue_command_sync(iommu
, cmd
, true);
1081 * This function queues a completion wait command into the command
1082 * buffer of an IOMMU
1084 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1086 struct iommu_cmd cmd
;
1087 unsigned long flags
;
1090 if (!iommu
->need_sync
)
1094 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1096 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1100 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1104 ret
= wait_on_sem(&iommu
->cmd_sem
);
1107 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1112 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1114 struct iommu_cmd cmd
;
1116 build_inv_dte(&cmd
, devid
);
1118 return iommu_queue_command(iommu
, &cmd
);
1121 static void amd_iommu_flush_dte_all(struct amd_iommu
*iommu
)
1125 for (devid
= 0; devid
<= 0xffff; ++devid
)
1126 iommu_flush_dte(iommu
, devid
);
1128 iommu_completion_wait(iommu
);
1132 * This function uses heavy locking and may disable irqs for some time. But
1133 * this is no issue because it is only called during resume.
1135 static void amd_iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1139 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1140 struct iommu_cmd cmd
;
1141 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1143 iommu_queue_command(iommu
, &cmd
);
1146 iommu_completion_wait(iommu
);
1149 static void amd_iommu_flush_all(struct amd_iommu
*iommu
)
1151 struct iommu_cmd cmd
;
1153 build_inv_all(&cmd
);
1155 iommu_queue_command(iommu
, &cmd
);
1156 iommu_completion_wait(iommu
);
1159 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1161 struct iommu_cmd cmd
;
1163 build_inv_irt(&cmd
, devid
);
1165 iommu_queue_command(iommu
, &cmd
);
1168 static void amd_iommu_flush_irt_all(struct amd_iommu
*iommu
)
1172 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1173 iommu_flush_irt(iommu
, devid
);
1175 iommu_completion_wait(iommu
);
1178 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1180 if (iommu_feature(iommu
, FEATURE_IA
)) {
1181 amd_iommu_flush_all(iommu
);
1183 amd_iommu_flush_dte_all(iommu
);
1184 amd_iommu_flush_irt_all(iommu
);
1185 amd_iommu_flush_tlb_all(iommu
);
1190 * Command send function for flushing on-device TLB
1192 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1193 u64 address
, size_t size
)
1195 struct amd_iommu
*iommu
;
1196 struct iommu_cmd cmd
;
1199 qdep
= dev_data
->ats
.qdep
;
1200 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1202 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1204 return iommu_queue_command(iommu
, &cmd
);
1208 * Command send function for invalidating a device table entry
1210 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1212 struct amd_iommu
*iommu
;
1216 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1217 alias
= dev_data
->alias
;
1219 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1220 if (!ret
&& alias
!= dev_data
->devid
)
1221 ret
= iommu_flush_dte(iommu
, alias
);
1225 if (dev_data
->ats
.enabled
)
1226 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1232 * TLB invalidation function which is called from the mapping functions.
1233 * It invalidates a single PTE if the range to flush is within a single
1234 * page. Otherwise it flushes the whole TLB of the IOMMU.
1236 static void __domain_flush_pages(struct protection_domain
*domain
,
1237 u64 address
, size_t size
, int pde
)
1239 struct iommu_dev_data
*dev_data
;
1240 struct iommu_cmd cmd
;
1243 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1245 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1246 if (!domain
->dev_iommu
[i
])
1250 * Devices of this domain are behind this IOMMU
1251 * We need a TLB flush
1253 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1256 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1258 if (!dev_data
->ats
.enabled
)
1261 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1267 static void domain_flush_pages(struct protection_domain
*domain
,
1268 u64 address
, size_t size
)
1270 __domain_flush_pages(domain
, address
, size
, 0);
1273 /* Flush the whole IO/TLB for a given protection domain */
1274 static void domain_flush_tlb(struct protection_domain
*domain
)
1276 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1279 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1280 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1282 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1285 static void domain_flush_complete(struct protection_domain
*domain
)
1289 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1290 if (domain
&& !domain
->dev_iommu
[i
])
1294 * Devices of this domain are behind this IOMMU
1295 * We need to wait for completion of all commands.
1297 iommu_completion_wait(amd_iommus
[i
]);
1303 * This function flushes the DTEs for all devices in domain
1305 static void domain_flush_devices(struct protection_domain
*domain
)
1307 struct iommu_dev_data
*dev_data
;
1309 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1310 device_flush_dte(dev_data
);
1313 /****************************************************************************
1315 * The functions below are used the create the page table mappings for
1316 * unity mapped regions.
1318 ****************************************************************************/
1321 * This function is used to add another level to an IO page table. Adding
1322 * another level increases the size of the address space by 9 bits to a size up
1325 static bool increase_address_space(struct protection_domain
*domain
,
1330 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1331 /* address space already 64 bit large */
1334 pte
= (void *)get_zeroed_page(gfp
);
1338 *pte
= PM_LEVEL_PDE(domain
->mode
,
1339 iommu_virt_to_phys(domain
->pt_root
));
1340 domain
->pt_root
= pte
;
1342 domain
->updated
= true;
1347 static u64
*alloc_pte(struct protection_domain
*domain
,
1348 unsigned long address
,
1349 unsigned long page_size
,
1356 BUG_ON(!is_power_of_2(page_size
));
1358 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1359 increase_address_space(domain
, gfp
);
1361 level
= domain
->mode
- 1;
1362 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1363 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1364 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1366 while (level
> end_lvl
) {
1371 if (!IOMMU_PTE_PRESENT(__pte
)) {
1372 page
= (u64
*)get_zeroed_page(gfp
);
1376 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1378 /* pte could have been changed somewhere. */
1379 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1380 free_page((unsigned long)page
);
1385 /* No level skipping support yet */
1386 if (PM_PTE_LEVEL(*pte
) != level
)
1391 pte
= IOMMU_PTE_PAGE(*pte
);
1393 if (pte_page
&& level
== end_lvl
)
1396 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1403 * This function checks if there is a PTE for a given dma address. If
1404 * there is one, it returns the pointer to it.
1406 static u64
*fetch_pte(struct protection_domain
*domain
,
1407 unsigned long address
,
1408 unsigned long *page_size
)
1415 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1418 level
= domain
->mode
- 1;
1419 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1420 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1425 if (!IOMMU_PTE_PRESENT(*pte
))
1429 if (PM_PTE_LEVEL(*pte
) == 7 ||
1430 PM_PTE_LEVEL(*pte
) == 0)
1433 /* No level skipping support yet */
1434 if (PM_PTE_LEVEL(*pte
) != level
)
1439 /* Walk to the next level */
1440 pte
= IOMMU_PTE_PAGE(*pte
);
1441 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1442 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1445 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1446 unsigned long pte_mask
;
1449 * If we have a series of large PTEs, make
1450 * sure to return a pointer to the first one.
1452 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1453 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1454 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1461 * Generic mapping functions. It maps a physical address into a DMA
1462 * address space. It allocates the page table pages if necessary.
1463 * In the future it can be extended to a generic mapping function
1464 * supporting all features of AMD IOMMU page tables like level skipping
1465 * and full 64 bit address spaces.
1467 static int iommu_map_page(struct protection_domain
*dom
,
1468 unsigned long bus_addr
,
1469 unsigned long phys_addr
,
1470 unsigned long page_size
,
1477 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1478 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1480 if (!(prot
& IOMMU_PROT_MASK
))
1483 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1484 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1489 for (i
= 0; i
< count
; ++i
)
1490 if (IOMMU_PTE_PRESENT(pte
[i
]))
1494 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1495 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1497 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1499 if (prot
& IOMMU_PROT_IR
)
1500 __pte
|= IOMMU_PTE_IR
;
1501 if (prot
& IOMMU_PROT_IW
)
1502 __pte
|= IOMMU_PTE_IW
;
1504 for (i
= 0; i
< count
; ++i
)
1512 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1513 unsigned long bus_addr
,
1514 unsigned long page_size
)
1516 unsigned long long unmapped
;
1517 unsigned long unmap_size
;
1520 BUG_ON(!is_power_of_2(page_size
));
1524 while (unmapped
< page_size
) {
1526 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1531 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1532 for (i
= 0; i
< count
; i
++)
1536 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1537 unmapped
+= unmap_size
;
1540 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1545 /****************************************************************************
1547 * The next functions belong to the address allocator for the dma_ops
1548 * interface functions.
1550 ****************************************************************************/
1553 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1554 struct dma_ops_domain
*dma_dom
,
1555 unsigned int pages
, u64 dma_mask
)
1557 unsigned long pfn
= 0;
1559 pages
= __roundup_pow_of_two(pages
);
1561 if (dma_mask
> DMA_BIT_MASK(32))
1562 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1563 IOVA_PFN(DMA_BIT_MASK(32)), false);
1566 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1567 IOVA_PFN(dma_mask
), true);
1569 return (pfn
<< PAGE_SHIFT
);
1572 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1573 unsigned long address
,
1576 pages
= __roundup_pow_of_two(pages
);
1577 address
>>= PAGE_SHIFT
;
1579 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1582 /****************************************************************************
1584 * The next functions belong to the domain allocation. A domain is
1585 * allocated for every IOMMU as the default domain. If device isolation
1586 * is enabled, every device get its own domain. The most important thing
1587 * about domains is the page table mapping the DMA address space they
1590 ****************************************************************************/
1593 * This function adds a protection domain to the global protection domain list
1595 static void add_domain_to_list(struct protection_domain
*domain
)
1597 unsigned long flags
;
1599 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1600 list_add(&domain
->list
, &amd_iommu_pd_list
);
1601 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1605 * This function removes a protection domain to the global
1606 * protection domain list
1608 static void del_domain_from_list(struct protection_domain
*domain
)
1610 unsigned long flags
;
1612 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1613 list_del(&domain
->list
);
1614 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1617 static u16
domain_id_alloc(void)
1621 spin_lock(&pd_bitmap_lock
);
1622 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1624 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1625 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1628 spin_unlock(&pd_bitmap_lock
);
1633 static void domain_id_free(int id
)
1635 spin_lock(&pd_bitmap_lock
);
1636 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1637 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1638 spin_unlock(&pd_bitmap_lock
);
1641 #define DEFINE_FREE_PT_FN(LVL, FN) \
1642 static void free_pt_##LVL (unsigned long __pt) \
1650 for (i = 0; i < 512; ++i) { \
1651 /* PTE present? */ \
1652 if (!IOMMU_PTE_PRESENT(pt[i])) \
1656 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1657 PM_PTE_LEVEL(pt[i]) == 7) \
1660 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1663 free_page((unsigned long)pt); \
1666 DEFINE_FREE_PT_FN(l2
, free_page
)
1667 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1668 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1669 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1670 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1672 static void free_pagetable(struct protection_domain
*domain
)
1674 unsigned long root
= (unsigned long)domain
->pt_root
;
1676 switch (domain
->mode
) {
1677 case PAGE_MODE_NONE
:
1679 case PAGE_MODE_1_LEVEL
:
1682 case PAGE_MODE_2_LEVEL
:
1685 case PAGE_MODE_3_LEVEL
:
1688 case PAGE_MODE_4_LEVEL
:
1691 case PAGE_MODE_5_LEVEL
:
1694 case PAGE_MODE_6_LEVEL
:
1702 static void free_gcr3_tbl_level1(u64
*tbl
)
1707 for (i
= 0; i
< 512; ++i
) {
1708 if (!(tbl
[i
] & GCR3_VALID
))
1711 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1713 free_page((unsigned long)ptr
);
1717 static void free_gcr3_tbl_level2(u64
*tbl
)
1722 for (i
= 0; i
< 512; ++i
) {
1723 if (!(tbl
[i
] & GCR3_VALID
))
1726 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1728 free_gcr3_tbl_level1(ptr
);
1732 static void free_gcr3_table(struct protection_domain
*domain
)
1734 if (domain
->glx
== 2)
1735 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1736 else if (domain
->glx
== 1)
1737 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1739 BUG_ON(domain
->glx
!= 0);
1741 free_page((unsigned long)domain
->gcr3_tbl
);
1744 static void dma_ops_domain_flush_tlb(struct dma_ops_domain
*dom
)
1746 domain_flush_tlb(&dom
->domain
);
1747 domain_flush_complete(&dom
->domain
);
1750 static void iova_domain_flush_tlb(struct iova_domain
*iovad
)
1752 struct dma_ops_domain
*dom
;
1754 dom
= container_of(iovad
, struct dma_ops_domain
, iovad
);
1756 dma_ops_domain_flush_tlb(dom
);
1760 * Free a domain, only used if something went wrong in the
1761 * allocation path and we need to free an already allocated page table
1763 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1768 del_domain_from_list(&dom
->domain
);
1770 put_iova_domain(&dom
->iovad
);
1772 free_pagetable(&dom
->domain
);
1775 domain_id_free(dom
->domain
.id
);
1781 * Allocates a new protection domain usable for the dma_ops functions.
1782 * It also initializes the page table and the address allocator data
1783 * structures required for the dma_ops interface
1785 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1787 struct dma_ops_domain
*dma_dom
;
1789 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1793 if (protection_domain_init(&dma_dom
->domain
))
1796 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1797 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1798 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1799 if (!dma_dom
->domain
.pt_root
)
1802 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
, IOVA_START_PFN
);
1804 if (init_iova_flush_queue(&dma_dom
->iovad
, iova_domain_flush_tlb
, NULL
))
1807 /* Initialize reserved ranges */
1808 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1810 add_domain_to_list(&dma_dom
->domain
);
1815 dma_ops_domain_free(dma_dom
);
1821 * little helper function to check whether a given protection domain is a
1824 static bool dma_ops_domain(struct protection_domain
*domain
)
1826 return domain
->flags
& PD_DMA_OPS_MASK
;
1829 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
,
1835 if (domain
->mode
!= PAGE_MODE_NONE
)
1836 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
1838 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1839 << DEV_ENTRY_MODE_SHIFT
;
1840 pte_root
|= DTE_FLAG_IR
| DTE_FLAG_IW
| DTE_FLAG_V
| DTE_FLAG_TV
;
1842 flags
= amd_iommu_dev_table
[devid
].data
[1];
1845 flags
|= DTE_FLAG_IOTLB
;
1848 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1850 if (iommu_feature(iommu
, FEATURE_EPHSUP
))
1851 pte_root
|= 1ULL << DEV_ENTRY_PPR
;
1854 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1855 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
1856 u64 glx
= domain
->glx
;
1859 pte_root
|= DTE_FLAG_GV
;
1860 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1862 /* First mask out possible old values for GCR3 table */
1863 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1866 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1869 /* Encode GCR3 table into DTE */
1870 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1873 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1876 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1880 flags
&= ~DEV_DOMID_MASK
;
1881 flags
|= domain
->id
;
1883 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1884 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1887 static void clear_dte_entry(u16 devid
)
1889 /* remove entry from the device table seen by the hardware */
1890 amd_iommu_dev_table
[devid
].data
[0] = DTE_FLAG_V
| DTE_FLAG_TV
;
1891 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1893 amd_iommu_apply_erratum_63(devid
);
1896 static void do_attach(struct iommu_dev_data
*dev_data
,
1897 struct protection_domain
*domain
)
1899 struct amd_iommu
*iommu
;
1903 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1904 alias
= dev_data
->alias
;
1905 ats
= dev_data
->ats
.enabled
;
1907 /* Update data structures */
1908 dev_data
->domain
= domain
;
1909 list_add(&dev_data
->list
, &domain
->dev_list
);
1911 /* Do reference counting */
1912 domain
->dev_iommu
[iommu
->index
] += 1;
1913 domain
->dev_cnt
+= 1;
1915 /* Update device table */
1916 set_dte_entry(dev_data
->devid
, domain
, ats
, dev_data
->iommu_v2
);
1917 if (alias
!= dev_data
->devid
)
1918 set_dte_entry(alias
, domain
, ats
, dev_data
->iommu_v2
);
1920 device_flush_dte(dev_data
);
1923 static void do_detach(struct iommu_dev_data
*dev_data
)
1925 struct amd_iommu
*iommu
;
1928 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1929 alias
= dev_data
->alias
;
1931 /* decrease reference counters */
1932 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1933 dev_data
->domain
->dev_cnt
-= 1;
1935 /* Update data structures */
1936 dev_data
->domain
= NULL
;
1937 list_del(&dev_data
->list
);
1938 clear_dte_entry(dev_data
->devid
);
1939 if (alias
!= dev_data
->devid
)
1940 clear_dte_entry(alias
);
1942 /* Flush the DTE entry */
1943 device_flush_dte(dev_data
);
1947 * If a device is not yet associated with a domain, this function makes the
1948 * device visible in the domain
1950 static int __attach_device(struct iommu_dev_data
*dev_data
,
1951 struct protection_domain
*domain
)
1956 spin_lock(&domain
->lock
);
1959 if (dev_data
->domain
!= NULL
)
1962 /* Attach alias group root */
1963 do_attach(dev_data
, domain
);
1970 spin_unlock(&domain
->lock
);
1976 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1978 pci_disable_ats(pdev
);
1979 pci_disable_pri(pdev
);
1980 pci_disable_pasid(pdev
);
1983 /* FIXME: Change generic reset-function to do the same */
1984 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1989 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1993 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1994 control
|= PCI_PRI_CTRL_RESET
;
1995 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2000 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2005 /* FIXME: Hardcode number of outstanding requests for now */
2007 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2009 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2011 /* Only allow access to user-accessible pages */
2012 ret
= pci_enable_pasid(pdev
, 0);
2016 /* First reset the PRI state of the device */
2017 ret
= pci_reset_pri(pdev
);
2022 ret
= pci_enable_pri(pdev
, reqs
);
2027 ret
= pri_reset_while_enabled(pdev
);
2032 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2039 pci_disable_pri(pdev
);
2040 pci_disable_pasid(pdev
);
2045 /* FIXME: Move this to PCI code */
2046 #define PCI_PRI_TLP_OFF (1 << 15)
2048 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2053 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2057 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2059 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2063 * If a device is not yet associated with a domain, this function makes the
2064 * device visible in the domain
2066 static int attach_device(struct device
*dev
,
2067 struct protection_domain
*domain
)
2069 struct pci_dev
*pdev
;
2070 struct iommu_dev_data
*dev_data
;
2071 unsigned long flags
;
2074 dev_data
= get_dev_data(dev
);
2076 if (!dev_is_pci(dev
))
2077 goto skip_ats_check
;
2079 pdev
= to_pci_dev(dev
);
2080 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2081 if (!dev_data
->passthrough
)
2084 if (dev_data
->iommu_v2
) {
2085 if (pdev_iommuv2_enable(pdev
) != 0)
2088 dev_data
->ats
.enabled
= true;
2089 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2090 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2092 } else if (amd_iommu_iotlb_sup
&&
2093 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2094 dev_data
->ats
.enabled
= true;
2095 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2099 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2100 ret
= __attach_device(dev_data
, domain
);
2101 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2104 * We might boot into a crash-kernel here. The crashed kernel
2105 * left the caches in the IOMMU dirty. So we have to flush
2106 * here to evict all dirty stuff.
2108 domain_flush_tlb_pde(domain
);
2114 * Removes a device from a protection domain (unlocked)
2116 static void __detach_device(struct iommu_dev_data
*dev_data
)
2118 struct protection_domain
*domain
;
2120 domain
= dev_data
->domain
;
2122 spin_lock(&domain
->lock
);
2124 do_detach(dev_data
);
2126 spin_unlock(&domain
->lock
);
2130 * Removes a device from a protection domain (with devtable_lock held)
2132 static void detach_device(struct device
*dev
)
2134 struct protection_domain
*domain
;
2135 struct iommu_dev_data
*dev_data
;
2136 unsigned long flags
;
2138 dev_data
= get_dev_data(dev
);
2139 domain
= dev_data
->domain
;
2142 * First check if the device is still attached. It might already
2143 * be detached from its domain because the generic
2144 * iommu_detach_group code detached it and we try again here in
2145 * our alias handling.
2147 if (WARN_ON(!dev_data
->domain
))
2150 /* lock device table */
2151 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2152 __detach_device(dev_data
);
2153 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2155 if (!dev_is_pci(dev
))
2158 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2159 pdev_iommuv2_disable(to_pci_dev(dev
));
2160 else if (dev_data
->ats
.enabled
)
2161 pci_disable_ats(to_pci_dev(dev
));
2163 dev_data
->ats
.enabled
= false;
2166 static int amd_iommu_add_device(struct device
*dev
)
2168 struct iommu_dev_data
*dev_data
;
2169 struct iommu_domain
*domain
;
2170 struct amd_iommu
*iommu
;
2173 if (!check_device(dev
) || get_dev_data(dev
))
2176 devid
= get_device_id(dev
);
2180 iommu
= amd_iommu_rlookup_table
[devid
];
2182 ret
= iommu_init_device(dev
);
2184 if (ret
!= -ENOTSUPP
)
2185 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2188 iommu_ignore_device(dev
);
2189 dev
->dma_ops
= &dma_direct_ops
;
2192 init_iommu_group(dev
);
2194 dev_data
= get_dev_data(dev
);
2198 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2199 iommu_request_dm_for_dev(dev
);
2201 /* Domains are initialized for this device - have a look what we ended up with */
2202 domain
= iommu_get_domain_for_dev(dev
);
2203 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2204 dev_data
->passthrough
= true;
2206 dev
->dma_ops
= &amd_iommu_dma_ops
;
2209 iommu_completion_wait(iommu
);
2214 static void amd_iommu_remove_device(struct device
*dev
)
2216 struct amd_iommu
*iommu
;
2219 if (!check_device(dev
))
2222 devid
= get_device_id(dev
);
2226 iommu
= amd_iommu_rlookup_table
[devid
];
2228 iommu_uninit_device(dev
);
2229 iommu_completion_wait(iommu
);
2232 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2234 if (dev_is_pci(dev
))
2235 return pci_device_group(dev
);
2237 return acpihid_device_group(dev
);
2240 /*****************************************************************************
2242 * The next functions belong to the dma_ops mapping/unmapping code.
2244 *****************************************************************************/
2247 * In the dma_ops path we only have the struct device. This function
2248 * finds the corresponding IOMMU, the protection domain and the
2249 * requestor id for a given device.
2250 * If the device is not yet associated with a domain this is also done
2253 static struct protection_domain
*get_domain(struct device
*dev
)
2255 struct protection_domain
*domain
;
2256 struct iommu_domain
*io_domain
;
2258 if (!check_device(dev
))
2259 return ERR_PTR(-EINVAL
);
2261 domain
= get_dev_data(dev
)->domain
;
2262 if (domain
== NULL
&& get_dev_data(dev
)->defer_attach
) {
2263 get_dev_data(dev
)->defer_attach
= false;
2264 io_domain
= iommu_get_domain_for_dev(dev
);
2265 domain
= to_pdomain(io_domain
);
2266 attach_device(dev
, domain
);
2269 return ERR_PTR(-EBUSY
);
2271 if (!dma_ops_domain(domain
))
2272 return ERR_PTR(-EBUSY
);
2277 static void update_device_table(struct protection_domain
*domain
)
2279 struct iommu_dev_data
*dev_data
;
2281 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2282 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
,
2283 dev_data
->iommu_v2
);
2285 if (dev_data
->devid
== dev_data
->alias
)
2288 /* There is an alias, update device table entry for it */
2289 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
,
2290 dev_data
->iommu_v2
);
2294 static void update_domain(struct protection_domain
*domain
)
2296 if (!domain
->updated
)
2299 update_device_table(domain
);
2301 domain_flush_devices(domain
);
2302 domain_flush_tlb_pde(domain
);
2304 domain
->updated
= false;
2307 static int dir2prot(enum dma_data_direction direction
)
2309 if (direction
== DMA_TO_DEVICE
)
2310 return IOMMU_PROT_IR
;
2311 else if (direction
== DMA_FROM_DEVICE
)
2312 return IOMMU_PROT_IW
;
2313 else if (direction
== DMA_BIDIRECTIONAL
)
2314 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2320 * This function contains common code for mapping of a physically
2321 * contiguous memory region into DMA address space. It is used by all
2322 * mapping functions provided with this IOMMU driver.
2323 * Must be called with the domain lock held.
2325 static dma_addr_t
__map_single(struct device
*dev
,
2326 struct dma_ops_domain
*dma_dom
,
2329 enum dma_data_direction direction
,
2332 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2333 dma_addr_t address
, start
, ret
;
2338 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2341 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2342 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2345 prot
= dir2prot(direction
);
2348 for (i
= 0; i
< pages
; ++i
) {
2349 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2350 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2359 if (unlikely(amd_iommu_np_cache
)) {
2360 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2361 domain_flush_complete(&dma_dom
->domain
);
2369 for (--i
; i
>= 0; --i
) {
2371 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2374 domain_flush_tlb(&dma_dom
->domain
);
2375 domain_flush_complete(&dma_dom
->domain
);
2377 dma_ops_free_iova(dma_dom
, address
, pages
);
2379 return AMD_IOMMU_MAPPING_ERROR
;
2383 * Does the reverse of the __map_single function. Must be called with
2384 * the domain lock held too
2386 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2387 dma_addr_t dma_addr
,
2391 dma_addr_t i
, start
;
2394 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2395 dma_addr
&= PAGE_MASK
;
2398 for (i
= 0; i
< pages
; ++i
) {
2399 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2403 if (amd_iommu_unmap_flush
) {
2404 domain_flush_tlb(&dma_dom
->domain
);
2405 domain_flush_complete(&dma_dom
->domain
);
2406 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2408 pages
= __roundup_pow_of_two(pages
);
2409 queue_iova(&dma_dom
->iovad
, dma_addr
>> PAGE_SHIFT
, pages
, 0);
2414 * The exported map_single function for dma_ops.
2416 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2417 unsigned long offset
, size_t size
,
2418 enum dma_data_direction dir
,
2419 unsigned long attrs
)
2421 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2422 struct protection_domain
*domain
;
2423 struct dma_ops_domain
*dma_dom
;
2426 domain
= get_domain(dev
);
2427 if (PTR_ERR(domain
) == -EINVAL
)
2428 return (dma_addr_t
)paddr
;
2429 else if (IS_ERR(domain
))
2430 return AMD_IOMMU_MAPPING_ERROR
;
2432 dma_mask
= *dev
->dma_mask
;
2433 dma_dom
= to_dma_ops_domain(domain
);
2435 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2439 * The exported unmap_single function for dma_ops.
2441 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2442 enum dma_data_direction dir
, unsigned long attrs
)
2444 struct protection_domain
*domain
;
2445 struct dma_ops_domain
*dma_dom
;
2447 domain
= get_domain(dev
);
2451 dma_dom
= to_dma_ops_domain(domain
);
2453 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2456 static int sg_num_pages(struct device
*dev
,
2457 struct scatterlist
*sglist
,
2460 unsigned long mask
, boundary_size
;
2461 struct scatterlist
*s
;
2464 mask
= dma_get_seg_boundary(dev
);
2465 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2466 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2468 for_each_sg(sglist
, s
, nelems
, i
) {
2471 s
->dma_address
= npages
<< PAGE_SHIFT
;
2472 p
= npages
% boundary_size
;
2473 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2474 if (p
+ n
> boundary_size
)
2475 npages
+= boundary_size
- p
;
2483 * The exported map_sg function for dma_ops (handles scatter-gather
2486 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2487 int nelems
, enum dma_data_direction direction
,
2488 unsigned long attrs
)
2490 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2491 struct protection_domain
*domain
;
2492 struct dma_ops_domain
*dma_dom
;
2493 struct scatterlist
*s
;
2494 unsigned long address
;
2497 domain
= get_domain(dev
);
2501 dma_dom
= to_dma_ops_domain(domain
);
2502 dma_mask
= *dev
->dma_mask
;
2504 npages
= sg_num_pages(dev
, sglist
, nelems
);
2506 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2507 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2510 prot
= dir2prot(direction
);
2512 /* Map all sg entries */
2513 for_each_sg(sglist
, s
, nelems
, i
) {
2514 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2516 for (j
= 0; j
< pages
; ++j
) {
2517 unsigned long bus_addr
, phys_addr
;
2520 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2521 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2522 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2530 /* Everything is mapped - write the right values into s->dma_address */
2531 for_each_sg(sglist
, s
, nelems
, i
) {
2532 s
->dma_address
+= address
+ s
->offset
;
2533 s
->dma_length
= s
->length
;
2539 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2540 dev_name(dev
), npages
);
2542 for_each_sg(sglist
, s
, nelems
, i
) {
2543 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2545 for (j
= 0; j
< pages
; ++j
) {
2546 unsigned long bus_addr
;
2548 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2549 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2557 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2564 * The exported map_sg function for dma_ops (handles scatter-gather
2567 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2568 int nelems
, enum dma_data_direction dir
,
2569 unsigned long attrs
)
2571 struct protection_domain
*domain
;
2572 struct dma_ops_domain
*dma_dom
;
2573 unsigned long startaddr
;
2576 domain
= get_domain(dev
);
2580 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2581 dma_dom
= to_dma_ops_domain(domain
);
2582 npages
= sg_num_pages(dev
, sglist
, nelems
);
2584 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2588 * The exported alloc_coherent function for dma_ops.
2590 static void *alloc_coherent(struct device
*dev
, size_t size
,
2591 dma_addr_t
*dma_addr
, gfp_t flag
,
2592 unsigned long attrs
)
2594 u64 dma_mask
= dev
->coherent_dma_mask
;
2595 struct protection_domain
*domain
;
2596 struct dma_ops_domain
*dma_dom
;
2599 domain
= get_domain(dev
);
2600 if (PTR_ERR(domain
) == -EINVAL
) {
2601 page
= alloc_pages(flag
, get_order(size
));
2602 *dma_addr
= page_to_phys(page
);
2603 return page_address(page
);
2604 } else if (IS_ERR(domain
))
2607 dma_dom
= to_dma_ops_domain(domain
);
2608 size
= PAGE_ALIGN(size
);
2609 dma_mask
= dev
->coherent_dma_mask
;
2610 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2613 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2615 if (!gfpflags_allow_blocking(flag
))
2618 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2619 get_order(size
), flag
& __GFP_NOWARN
);
2625 dma_mask
= *dev
->dma_mask
;
2627 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2628 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2630 if (*dma_addr
== AMD_IOMMU_MAPPING_ERROR
)
2633 return page_address(page
);
2637 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2638 __free_pages(page
, get_order(size
));
2644 * The exported free_coherent function for dma_ops.
2646 static void free_coherent(struct device
*dev
, size_t size
,
2647 void *virt_addr
, dma_addr_t dma_addr
,
2648 unsigned long attrs
)
2650 struct protection_domain
*domain
;
2651 struct dma_ops_domain
*dma_dom
;
2654 page
= virt_to_page(virt_addr
);
2655 size
= PAGE_ALIGN(size
);
2657 domain
= get_domain(dev
);
2661 dma_dom
= to_dma_ops_domain(domain
);
2663 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2666 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2667 __free_pages(page
, get_order(size
));
2671 * This function is called by the DMA layer to find out if we can handle a
2672 * particular device. It is part of the dma_ops.
2674 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2676 if (!dma_direct_supported(dev
, mask
))
2678 return check_device(dev
);
2681 static int amd_iommu_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2683 return dma_addr
== AMD_IOMMU_MAPPING_ERROR
;
2686 static const struct dma_map_ops amd_iommu_dma_ops
= {
2687 .alloc
= alloc_coherent
,
2688 .free
= free_coherent
,
2689 .map_page
= map_page
,
2690 .unmap_page
= unmap_page
,
2692 .unmap_sg
= unmap_sg
,
2693 .dma_supported
= amd_iommu_dma_supported
,
2694 .mapping_error
= amd_iommu_mapping_error
,
2697 static int init_reserved_iova_ranges(void)
2699 struct pci_dev
*pdev
= NULL
;
2702 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
, IOVA_START_PFN
);
2704 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2705 &reserved_rbtree_key
);
2707 /* MSI memory range */
2708 val
= reserve_iova(&reserved_iova_ranges
,
2709 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2711 pr_err("Reserving MSI range failed\n");
2715 /* HT memory range */
2716 val
= reserve_iova(&reserved_iova_ranges
,
2717 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2719 pr_err("Reserving HT range failed\n");
2724 * Memory used for PCI resources
2725 * FIXME: Check whether we can reserve the PCI-hole completly
2727 for_each_pci_dev(pdev
) {
2730 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2731 struct resource
*r
= &pdev
->resource
[i
];
2733 if (!(r
->flags
& IORESOURCE_MEM
))
2736 val
= reserve_iova(&reserved_iova_ranges
,
2740 pr_err("Reserve pci-resource range failed\n");
2749 int __init
amd_iommu_init_api(void)
2753 ret
= iova_cache_get();
2757 ret
= init_reserved_iova_ranges();
2761 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2764 #ifdef CONFIG_ARM_AMBA
2765 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2769 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2776 int __init
amd_iommu_init_dma_ops(void)
2778 swiotlb
= (iommu_pass_through
|| sme_me_mask
) ? 1 : 0;
2782 * In case we don't initialize SWIOTLB (actually the common case
2783 * when AMD IOMMU is enabled and SME is not active), make sure there
2784 * are global dma_ops set as a fall-back for devices not handled by
2785 * this driver (for example non-PCI devices). When SME is active,
2786 * make sure that swiotlb variable remains set so the global dma_ops
2787 * continue to be SWIOTLB.
2790 dma_ops
= &dma_direct_ops
;
2792 if (amd_iommu_unmap_flush
)
2793 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2795 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2801 /*****************************************************************************
2803 * The following functions belong to the exported interface of AMD IOMMU
2805 * This interface allows access to lower level functions of the IOMMU
2806 * like protection domain handling and assignement of devices to domains
2807 * which is not possible with the dma_ops interface.
2809 *****************************************************************************/
2811 static void cleanup_domain(struct protection_domain
*domain
)
2813 struct iommu_dev_data
*entry
;
2814 unsigned long flags
;
2816 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2818 while (!list_empty(&domain
->dev_list
)) {
2819 entry
= list_first_entry(&domain
->dev_list
,
2820 struct iommu_dev_data
, list
);
2821 BUG_ON(!entry
->domain
);
2822 __detach_device(entry
);
2825 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2828 static void protection_domain_free(struct protection_domain
*domain
)
2833 del_domain_from_list(domain
);
2836 domain_id_free(domain
->id
);
2841 static int protection_domain_init(struct protection_domain
*domain
)
2843 spin_lock_init(&domain
->lock
);
2844 mutex_init(&domain
->api_lock
);
2845 domain
->id
= domain_id_alloc();
2848 INIT_LIST_HEAD(&domain
->dev_list
);
2853 static struct protection_domain
*protection_domain_alloc(void)
2855 struct protection_domain
*domain
;
2857 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2861 if (protection_domain_init(domain
))
2864 add_domain_to_list(domain
);
2874 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2876 struct protection_domain
*pdomain
;
2877 struct dma_ops_domain
*dma_domain
;
2880 case IOMMU_DOMAIN_UNMANAGED
:
2881 pdomain
= protection_domain_alloc();
2885 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2886 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2887 if (!pdomain
->pt_root
) {
2888 protection_domain_free(pdomain
);
2892 pdomain
->domain
.geometry
.aperture_start
= 0;
2893 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2894 pdomain
->domain
.geometry
.force_aperture
= true;
2897 case IOMMU_DOMAIN_DMA
:
2898 dma_domain
= dma_ops_domain_alloc();
2900 pr_err("AMD-Vi: Failed to allocate\n");
2903 pdomain
= &dma_domain
->domain
;
2905 case IOMMU_DOMAIN_IDENTITY
:
2906 pdomain
= protection_domain_alloc();
2910 pdomain
->mode
= PAGE_MODE_NONE
;
2916 return &pdomain
->domain
;
2919 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2921 struct protection_domain
*domain
;
2922 struct dma_ops_domain
*dma_dom
;
2924 domain
= to_pdomain(dom
);
2926 if (domain
->dev_cnt
> 0)
2927 cleanup_domain(domain
);
2929 BUG_ON(domain
->dev_cnt
!= 0);
2934 switch (dom
->type
) {
2935 case IOMMU_DOMAIN_DMA
:
2936 /* Now release the domain */
2937 dma_dom
= to_dma_ops_domain(domain
);
2938 dma_ops_domain_free(dma_dom
);
2941 if (domain
->mode
!= PAGE_MODE_NONE
)
2942 free_pagetable(domain
);
2944 if (domain
->flags
& PD_IOMMUV2_MASK
)
2945 free_gcr3_table(domain
);
2947 protection_domain_free(domain
);
2952 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2955 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2956 struct amd_iommu
*iommu
;
2959 if (!check_device(dev
))
2962 devid
= get_device_id(dev
);
2966 if (dev_data
->domain
!= NULL
)
2969 iommu
= amd_iommu_rlookup_table
[devid
];
2973 #ifdef CONFIG_IRQ_REMAP
2974 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
2975 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
2976 dev_data
->use_vapic
= 0;
2979 iommu_completion_wait(iommu
);
2982 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2985 struct protection_domain
*domain
= to_pdomain(dom
);
2986 struct iommu_dev_data
*dev_data
;
2987 struct amd_iommu
*iommu
;
2990 if (!check_device(dev
))
2993 dev_data
= dev
->archdata
.iommu
;
2995 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2999 if (dev_data
->domain
)
3002 ret
= attach_device(dev
, domain
);
3004 #ifdef CONFIG_IRQ_REMAP
3005 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3006 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3007 dev_data
->use_vapic
= 1;
3009 dev_data
->use_vapic
= 0;
3013 iommu_completion_wait(iommu
);
3018 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3019 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3021 struct protection_domain
*domain
= to_pdomain(dom
);
3025 if (domain
->mode
== PAGE_MODE_NONE
)
3028 if (iommu_prot
& IOMMU_READ
)
3029 prot
|= IOMMU_PROT_IR
;
3030 if (iommu_prot
& IOMMU_WRITE
)
3031 prot
|= IOMMU_PROT_IW
;
3033 mutex_lock(&domain
->api_lock
);
3034 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3035 mutex_unlock(&domain
->api_lock
);
3040 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3043 struct protection_domain
*domain
= to_pdomain(dom
);
3046 if (domain
->mode
== PAGE_MODE_NONE
)
3049 mutex_lock(&domain
->api_lock
);
3050 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3051 mutex_unlock(&domain
->api_lock
);
3056 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3059 struct protection_domain
*domain
= to_pdomain(dom
);
3060 unsigned long offset_mask
, pte_pgsize
;
3063 if (domain
->mode
== PAGE_MODE_NONE
)
3066 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3068 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3071 offset_mask
= pte_pgsize
- 1;
3072 __pte
= __sme_clr(*pte
& PM_ADDR_MASK
);
3074 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3077 static bool amd_iommu_capable(enum iommu_cap cap
)
3080 case IOMMU_CAP_CACHE_COHERENCY
:
3082 case IOMMU_CAP_INTR_REMAP
:
3083 return (irq_remapping_enabled
== 1);
3084 case IOMMU_CAP_NOEXEC
:
3093 static void amd_iommu_get_resv_regions(struct device
*dev
,
3094 struct list_head
*head
)
3096 struct iommu_resv_region
*region
;
3097 struct unity_map_entry
*entry
;
3100 devid
= get_device_id(dev
);
3104 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3108 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3111 length
= entry
->address_end
- entry
->address_start
;
3112 if (entry
->prot
& IOMMU_PROT_IR
)
3114 if (entry
->prot
& IOMMU_PROT_IW
)
3115 prot
|= IOMMU_WRITE
;
3117 region
= iommu_alloc_resv_region(entry
->address_start
,
3121 pr_err("Out of memory allocating dm-regions for %s\n",
3125 list_add_tail(®ion
->list
, head
);
3128 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
3129 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
3133 list_add_tail(®ion
->list
, head
);
3135 region
= iommu_alloc_resv_region(HT_RANGE_START
,
3136 HT_RANGE_END
- HT_RANGE_START
+ 1,
3137 0, IOMMU_RESV_RESERVED
);
3140 list_add_tail(®ion
->list
, head
);
3143 static void amd_iommu_put_resv_regions(struct device
*dev
,
3144 struct list_head
*head
)
3146 struct iommu_resv_region
*entry
, *next
;
3148 list_for_each_entry_safe(entry
, next
, head
, list
)
3152 static void amd_iommu_apply_resv_region(struct device
*dev
,
3153 struct iommu_domain
*domain
,
3154 struct iommu_resv_region
*region
)
3156 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3157 unsigned long start
, end
;
3159 start
= IOVA_PFN(region
->start
);
3160 end
= IOVA_PFN(region
->start
+ region
->length
- 1);
3162 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3165 static bool amd_iommu_is_attach_deferred(struct iommu_domain
*domain
,
3168 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3169 return dev_data
->defer_attach
;
3172 static void amd_iommu_flush_iotlb_all(struct iommu_domain
*domain
)
3174 struct protection_domain
*dom
= to_pdomain(domain
);
3176 domain_flush_tlb_pde(dom
);
3177 domain_flush_complete(dom
);
3180 static void amd_iommu_iotlb_range_add(struct iommu_domain
*domain
,
3181 unsigned long iova
, size_t size
)
3185 const struct iommu_ops amd_iommu_ops
= {
3186 .capable
= amd_iommu_capable
,
3187 .domain_alloc
= amd_iommu_domain_alloc
,
3188 .domain_free
= amd_iommu_domain_free
,
3189 .attach_dev
= amd_iommu_attach_device
,
3190 .detach_dev
= amd_iommu_detach_device
,
3191 .map
= amd_iommu_map
,
3192 .unmap
= amd_iommu_unmap
,
3193 .iova_to_phys
= amd_iommu_iova_to_phys
,
3194 .add_device
= amd_iommu_add_device
,
3195 .remove_device
= amd_iommu_remove_device
,
3196 .device_group
= amd_iommu_device_group
,
3197 .get_resv_regions
= amd_iommu_get_resv_regions
,
3198 .put_resv_regions
= amd_iommu_put_resv_regions
,
3199 .apply_resv_region
= amd_iommu_apply_resv_region
,
3200 .is_attach_deferred
= amd_iommu_is_attach_deferred
,
3201 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3202 .flush_iotlb_all
= amd_iommu_flush_iotlb_all
,
3203 .iotlb_range_add
= amd_iommu_iotlb_range_add
,
3204 .iotlb_sync
= amd_iommu_flush_iotlb_all
,
3207 /*****************************************************************************
3209 * The next functions do a basic initialization of IOMMU for pass through
3212 * In passthrough mode the IOMMU is initialized and enabled but not used for
3213 * DMA-API translation.
3215 *****************************************************************************/
3217 /* IOMMUv2 specific functions */
3218 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3220 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3222 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3224 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3226 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3228 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3230 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3232 struct protection_domain
*domain
= to_pdomain(dom
);
3233 unsigned long flags
;
3235 spin_lock_irqsave(&domain
->lock
, flags
);
3237 /* Update data structure */
3238 domain
->mode
= PAGE_MODE_NONE
;
3239 domain
->updated
= true;
3241 /* Make changes visible to IOMMUs */
3242 update_domain(domain
);
3244 /* Page-table is not visible to IOMMU anymore, so free it */
3245 free_pagetable(domain
);
3247 spin_unlock_irqrestore(&domain
->lock
, flags
);
3249 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3251 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3253 struct protection_domain
*domain
= to_pdomain(dom
);
3254 unsigned long flags
;
3257 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3260 /* Number of GCR3 table levels required */
3261 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3264 if (levels
> amd_iommu_max_glx_val
)
3267 spin_lock_irqsave(&domain
->lock
, flags
);
3270 * Save us all sanity checks whether devices already in the
3271 * domain support IOMMUv2. Just force that the domain has no
3272 * devices attached when it is switched into IOMMUv2 mode.
3275 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3279 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3280 if (domain
->gcr3_tbl
== NULL
)
3283 domain
->glx
= levels
;
3284 domain
->flags
|= PD_IOMMUV2_MASK
;
3285 domain
->updated
= true;
3287 update_domain(domain
);
3292 spin_unlock_irqrestore(&domain
->lock
, flags
);
3296 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3298 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3299 u64 address
, bool size
)
3301 struct iommu_dev_data
*dev_data
;
3302 struct iommu_cmd cmd
;
3305 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3308 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3311 * IOMMU TLB needs to be flushed before Device TLB to
3312 * prevent device TLB refill from IOMMU TLB
3314 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
3315 if (domain
->dev_iommu
[i
] == 0)
3318 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3323 /* Wait until IOMMU TLB flushes are complete */
3324 domain_flush_complete(domain
);
3326 /* Now flush device TLBs */
3327 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3328 struct amd_iommu
*iommu
;
3332 There might be non-IOMMUv2 capable devices in an IOMMUv2
3335 if (!dev_data
->ats
.enabled
)
3338 qdep
= dev_data
->ats
.qdep
;
3339 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3341 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3342 qdep
, address
, size
);
3344 ret
= iommu_queue_command(iommu
, &cmd
);
3349 /* Wait until all device TLBs are flushed */
3350 domain_flush_complete(domain
);
3359 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3362 return __flush_pasid(domain
, pasid
, address
, false);
3365 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3368 struct protection_domain
*domain
= to_pdomain(dom
);
3369 unsigned long flags
;
3372 spin_lock_irqsave(&domain
->lock
, flags
);
3373 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3374 spin_unlock_irqrestore(&domain
->lock
, flags
);
3378 EXPORT_SYMBOL(amd_iommu_flush_page
);
3380 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3382 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3386 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3388 struct protection_domain
*domain
= to_pdomain(dom
);
3389 unsigned long flags
;
3392 spin_lock_irqsave(&domain
->lock
, flags
);
3393 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3394 spin_unlock_irqrestore(&domain
->lock
, flags
);
3398 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3400 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3407 index
= (pasid
>> (9 * level
)) & 0x1ff;
3413 if (!(*pte
& GCR3_VALID
)) {
3417 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3421 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
3424 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
3432 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3437 if (domain
->mode
!= PAGE_MODE_NONE
)
3440 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3444 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3446 return __amd_iommu_flush_tlb(domain
, pasid
);
3449 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3453 if (domain
->mode
!= PAGE_MODE_NONE
)
3456 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3462 return __amd_iommu_flush_tlb(domain
, pasid
);
3465 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3468 struct protection_domain
*domain
= to_pdomain(dom
);
3469 unsigned long flags
;
3472 spin_lock_irqsave(&domain
->lock
, flags
);
3473 ret
= __set_gcr3(domain
, pasid
, cr3
);
3474 spin_unlock_irqrestore(&domain
->lock
, flags
);
3478 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3480 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3482 struct protection_domain
*domain
= to_pdomain(dom
);
3483 unsigned long flags
;
3486 spin_lock_irqsave(&domain
->lock
, flags
);
3487 ret
= __clear_gcr3(domain
, pasid
);
3488 spin_unlock_irqrestore(&domain
->lock
, flags
);
3492 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3494 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3495 int status
, int tag
)
3497 struct iommu_dev_data
*dev_data
;
3498 struct amd_iommu
*iommu
;
3499 struct iommu_cmd cmd
;
3501 dev_data
= get_dev_data(&pdev
->dev
);
3502 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3504 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3505 tag
, dev_data
->pri_tlp
);
3507 return iommu_queue_command(iommu
, &cmd
);
3509 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3511 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3513 struct protection_domain
*pdomain
;
3515 pdomain
= get_domain(&pdev
->dev
);
3516 if (IS_ERR(pdomain
))
3519 /* Only return IOMMUv2 domains */
3520 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3523 return &pdomain
->domain
;
3525 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3527 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3529 struct iommu_dev_data
*dev_data
;
3531 if (!amd_iommu_v2_supported())
3534 dev_data
= get_dev_data(&pdev
->dev
);
3535 dev_data
->errata
|= (1 << erratum
);
3537 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3539 int amd_iommu_device_info(struct pci_dev
*pdev
,
3540 struct amd_iommu_device_info
*info
)
3545 if (pdev
== NULL
|| info
== NULL
)
3548 if (!amd_iommu_v2_supported())
3551 memset(info
, 0, sizeof(*info
));
3553 if (!pci_ats_disabled()) {
3554 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3556 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3559 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3561 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3563 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3567 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3568 max_pasids
= min(max_pasids
, (1 << 20));
3570 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3571 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3573 features
= pci_pasid_features(pdev
);
3574 if (features
& PCI_PASID_CAP_EXEC
)
3575 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3576 if (features
& PCI_PASID_CAP_PRIV
)
3577 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3582 EXPORT_SYMBOL(amd_iommu_device_info
);
3584 #ifdef CONFIG_IRQ_REMAP
3586 /*****************************************************************************
3588 * Interrupt Remapping Implementation
3590 *****************************************************************************/
3592 static struct irq_chip amd_ir_chip
;
3593 static DEFINE_SPINLOCK(iommu_table_lock
);
3595 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3599 dte
= amd_iommu_dev_table
[devid
].data
[2];
3600 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3601 dte
|= iommu_virt_to_phys(table
->table
);
3602 dte
|= DTE_IRQ_REMAP_INTCTL
;
3603 dte
|= DTE_IRQ_TABLE_LEN
;
3604 dte
|= DTE_IRQ_REMAP_ENABLE
;
3606 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3609 static struct irq_remap_table
*get_irq_table(u16 devid
)
3611 struct irq_remap_table
*table
;
3613 if (WARN_ONCE(!amd_iommu_rlookup_table
[devid
],
3614 "%s: no iommu for devid %x\n", __func__
, devid
))
3617 table
= irq_lookup_table
[devid
];
3618 if (WARN_ONCE(!table
, "%s: no table for devid %x\n", __func__
, devid
))
3624 static struct irq_remap_table
*__alloc_irq_table(void)
3626 struct irq_remap_table
*table
;
3628 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3632 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_KERNEL
);
3633 if (!table
->table
) {
3637 raw_spin_lock_init(&table
->lock
);
3639 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3640 memset(table
->table
, 0,
3641 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3643 memset(table
->table
, 0,
3644 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3648 static void set_remap_table_entry(struct amd_iommu
*iommu
, u16 devid
,
3649 struct irq_remap_table
*table
)
3651 irq_lookup_table
[devid
] = table
;
3652 set_dte_irq_entry(devid
, table
);
3653 iommu_flush_dte(iommu
, devid
);
3656 static struct irq_remap_table
*alloc_irq_table(u16 devid
)
3658 struct irq_remap_table
*table
= NULL
;
3659 struct irq_remap_table
*new_table
= NULL
;
3660 struct amd_iommu
*iommu
;
3661 unsigned long flags
;
3664 spin_lock_irqsave(&iommu_table_lock
, flags
);
3666 iommu
= amd_iommu_rlookup_table
[devid
];
3670 table
= irq_lookup_table
[devid
];
3674 alias
= amd_iommu_alias_table
[devid
];
3675 table
= irq_lookup_table
[alias
];
3677 set_remap_table_entry(iommu
, devid
, table
);
3680 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3682 /* Nothing there yet, allocate new irq remapping table */
3683 new_table
= __alloc_irq_table();
3687 spin_lock_irqsave(&iommu_table_lock
, flags
);
3689 table
= irq_lookup_table
[devid
];
3693 table
= irq_lookup_table
[alias
];
3695 set_remap_table_entry(iommu
, devid
, table
);
3702 set_remap_table_entry(iommu
, devid
, table
);
3704 set_remap_table_entry(iommu
, alias
, table
);
3707 iommu_completion_wait(iommu
);
3710 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3713 kmem_cache_free(amd_iommu_irq_cache
, new_table
->table
);
3719 static int alloc_irq_index(u16 devid
, int count
, bool align
)
3721 struct irq_remap_table
*table
;
3722 int index
, c
, alignment
= 1;
3723 unsigned long flags
;
3724 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3729 table
= alloc_irq_table(devid
);
3734 alignment
= roundup_pow_of_two(count
);
3736 raw_spin_lock_irqsave(&table
->lock
, flags
);
3738 /* Scan table for free entries */
3739 for (index
= ALIGN(table
->min_index
, alignment
), c
= 0;
3740 index
< MAX_IRQS_PER_TABLE
;) {
3741 if (!iommu
->irte_ops
->is_allocated(table
, index
)) {
3745 index
= ALIGN(index
+ 1, alignment
);
3751 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3763 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3768 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3769 struct amd_ir_data
*data
)
3771 struct irq_remap_table
*table
;
3772 struct amd_iommu
*iommu
;
3773 unsigned long flags
;
3774 struct irte_ga
*entry
;
3776 iommu
= amd_iommu_rlookup_table
[devid
];
3780 table
= get_irq_table(devid
);
3784 raw_spin_lock_irqsave(&table
->lock
, flags
);
3786 entry
= (struct irte_ga
*)table
->table
;
3787 entry
= &entry
[index
];
3788 entry
->lo
.fields_remap
.valid
= 0;
3789 entry
->hi
.val
= irte
->hi
.val
;
3790 entry
->lo
.val
= irte
->lo
.val
;
3791 entry
->lo
.fields_remap
.valid
= 1;
3795 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3797 iommu_flush_irt(iommu
, devid
);
3798 iommu_completion_wait(iommu
);
3803 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3805 struct irq_remap_table
*table
;
3806 struct amd_iommu
*iommu
;
3807 unsigned long flags
;
3809 iommu
= amd_iommu_rlookup_table
[devid
];
3813 table
= get_irq_table(devid
);
3817 raw_spin_lock_irqsave(&table
->lock
, flags
);
3818 table
->table
[index
] = irte
->val
;
3819 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3821 iommu_flush_irt(iommu
, devid
);
3822 iommu_completion_wait(iommu
);
3827 static void free_irte(u16 devid
, int index
)
3829 struct irq_remap_table
*table
;
3830 struct amd_iommu
*iommu
;
3831 unsigned long flags
;
3833 iommu
= amd_iommu_rlookup_table
[devid
];
3837 table
= get_irq_table(devid
);
3841 raw_spin_lock_irqsave(&table
->lock
, flags
);
3842 iommu
->irte_ops
->clear_allocated(table
, index
);
3843 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3845 iommu_flush_irt(iommu
, devid
);
3846 iommu_completion_wait(iommu
);
3849 static void irte_prepare(void *entry
,
3850 u32 delivery_mode
, u32 dest_mode
,
3851 u8 vector
, u32 dest_apicid
, int devid
)
3853 union irte
*irte
= (union irte
*) entry
;
3856 irte
->fields
.vector
= vector
;
3857 irte
->fields
.int_type
= delivery_mode
;
3858 irte
->fields
.destination
= dest_apicid
;
3859 irte
->fields
.dm
= dest_mode
;
3860 irte
->fields
.valid
= 1;
3863 static void irte_ga_prepare(void *entry
,
3864 u32 delivery_mode
, u32 dest_mode
,
3865 u8 vector
, u32 dest_apicid
, int devid
)
3867 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3871 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3872 irte
->lo
.fields_remap
.dm
= dest_mode
;
3873 irte
->hi
.fields
.vector
= vector
;
3874 irte
->lo
.fields_remap
.destination
= APICID_TO_IRTE_DEST_LO(dest_apicid
);
3875 irte
->hi
.fields
.destination
= APICID_TO_IRTE_DEST_HI(dest_apicid
);
3876 irte
->lo
.fields_remap
.valid
= 1;
3879 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3881 union irte
*irte
= (union irte
*) entry
;
3883 irte
->fields
.valid
= 1;
3884 modify_irte(devid
, index
, irte
);
3887 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3889 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3891 irte
->lo
.fields_remap
.valid
= 1;
3892 modify_irte_ga(devid
, index
, irte
, NULL
);
3895 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3897 union irte
*irte
= (union irte
*) entry
;
3899 irte
->fields
.valid
= 0;
3900 modify_irte(devid
, index
, irte
);
3903 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3905 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3907 irte
->lo
.fields_remap
.valid
= 0;
3908 modify_irte_ga(devid
, index
, irte
, NULL
);
3911 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3912 u8 vector
, u32 dest_apicid
)
3914 union irte
*irte
= (union irte
*) entry
;
3916 irte
->fields
.vector
= vector
;
3917 irte
->fields
.destination
= dest_apicid
;
3918 modify_irte(devid
, index
, irte
);
3921 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3922 u8 vector
, u32 dest_apicid
)
3924 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3926 if (!irte
->lo
.fields_remap
.guest_mode
) {
3927 irte
->hi
.fields
.vector
= vector
;
3928 irte
->lo
.fields_remap
.destination
=
3929 APICID_TO_IRTE_DEST_LO(dest_apicid
);
3930 irte
->hi
.fields
.destination
=
3931 APICID_TO_IRTE_DEST_HI(dest_apicid
);
3932 modify_irte_ga(devid
, index
, irte
, NULL
);
3936 #define IRTE_ALLOCATED (~1U)
3937 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
3939 table
->table
[index
] = IRTE_ALLOCATED
;
3942 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
3944 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3945 struct irte_ga
*irte
= &ptr
[index
];
3947 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3948 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3949 irte
->hi
.fields
.vector
= 0xff;
3952 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
3954 union irte
*ptr
= (union irte
*)table
->table
;
3955 union irte
*irte
= &ptr
[index
];
3957 return irte
->val
!= 0;
3960 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
3962 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3963 struct irte_ga
*irte
= &ptr
[index
];
3965 return irte
->hi
.fields
.vector
!= 0;
3968 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
3970 table
->table
[index
] = 0;
3973 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
3975 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3976 struct irte_ga
*irte
= &ptr
[index
];
3978 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3979 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3982 static int get_devid(struct irq_alloc_info
*info
)
3986 switch (info
->type
) {
3987 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3988 devid
= get_ioapic_devid(info
->ioapic_id
);
3990 case X86_IRQ_ALLOC_TYPE_HPET
:
3991 devid
= get_hpet_devid(info
->hpet_id
);
3993 case X86_IRQ_ALLOC_TYPE_MSI
:
3994 case X86_IRQ_ALLOC_TYPE_MSIX
:
3995 devid
= get_device_id(&info
->msi_dev
->dev
);
4005 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
4007 struct amd_iommu
*iommu
;
4013 devid
= get_devid(info
);
4015 iommu
= amd_iommu_rlookup_table
[devid
];
4017 return iommu
->ir_domain
;
4023 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4025 struct amd_iommu
*iommu
;
4031 switch (info
->type
) {
4032 case X86_IRQ_ALLOC_TYPE_MSI
:
4033 case X86_IRQ_ALLOC_TYPE_MSIX
:
4034 devid
= get_device_id(&info
->msi_dev
->dev
);
4038 iommu
= amd_iommu_rlookup_table
[devid
];
4040 return iommu
->msi_domain
;
4049 struct irq_remap_ops amd_iommu_irq_ops
= {
4050 .prepare
= amd_iommu_prepare
,
4051 .enable
= amd_iommu_enable
,
4052 .disable
= amd_iommu_disable
,
4053 .reenable
= amd_iommu_reenable
,
4054 .enable_faulting
= amd_iommu_enable_faulting
,
4055 .get_ir_irq_domain
= get_ir_irq_domain
,
4056 .get_irq_domain
= get_irq_domain
,
4059 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4060 struct irq_cfg
*irq_cfg
,
4061 struct irq_alloc_info
*info
,
4062 int devid
, int index
, int sub_handle
)
4064 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4065 struct msi_msg
*msg
= &data
->msi_entry
;
4066 struct IO_APIC_route_entry
*entry
;
4067 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4072 data
->irq_2_irte
.devid
= devid
;
4073 data
->irq_2_irte
.index
= index
+ sub_handle
;
4074 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4075 apic
->irq_dest_mode
, irq_cfg
->vector
,
4076 irq_cfg
->dest_apicid
, devid
);
4078 switch (info
->type
) {
4079 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4080 /* Setup IOAPIC entry */
4081 entry
= info
->ioapic_entry
;
4082 info
->ioapic_entry
= NULL
;
4083 memset(entry
, 0, sizeof(*entry
));
4084 entry
->vector
= index
;
4086 entry
->trigger
= info
->ioapic_trigger
;
4087 entry
->polarity
= info
->ioapic_polarity
;
4088 /* Mask level triggered irqs. */
4089 if (info
->ioapic_trigger
)
4093 case X86_IRQ_ALLOC_TYPE_HPET
:
4094 case X86_IRQ_ALLOC_TYPE_MSI
:
4095 case X86_IRQ_ALLOC_TYPE_MSIX
:
4096 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4097 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4098 msg
->data
= irte_info
->index
;
4107 struct amd_irte_ops irte_32_ops
= {
4108 .prepare
= irte_prepare
,
4109 .activate
= irte_activate
,
4110 .deactivate
= irte_deactivate
,
4111 .set_affinity
= irte_set_affinity
,
4112 .set_allocated
= irte_set_allocated
,
4113 .is_allocated
= irte_is_allocated
,
4114 .clear_allocated
= irte_clear_allocated
,
4117 struct amd_irte_ops irte_128_ops
= {
4118 .prepare
= irte_ga_prepare
,
4119 .activate
= irte_ga_activate
,
4120 .deactivate
= irte_ga_deactivate
,
4121 .set_affinity
= irte_ga_set_affinity
,
4122 .set_allocated
= irte_ga_set_allocated
,
4123 .is_allocated
= irte_ga_is_allocated
,
4124 .clear_allocated
= irte_ga_clear_allocated
,
4127 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4128 unsigned int nr_irqs
, void *arg
)
4130 struct irq_alloc_info
*info
= arg
;
4131 struct irq_data
*irq_data
;
4132 struct amd_ir_data
*data
= NULL
;
4133 struct irq_cfg
*cfg
;
4139 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4140 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4144 * With IRQ remapping enabled, don't need contiguous CPU vectors
4145 * to support multiple MSI interrupts.
4147 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4148 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4150 devid
= get_devid(info
);
4154 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4158 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4159 struct irq_remap_table
*table
;
4160 struct amd_iommu
*iommu
;
4162 table
= alloc_irq_table(devid
);
4164 if (!table
->min_index
) {
4166 * Keep the first 32 indexes free for IOAPIC
4169 table
->min_index
= 32;
4170 iommu
= amd_iommu_rlookup_table
[devid
];
4171 for (i
= 0; i
< 32; ++i
)
4172 iommu
->irte_ops
->set_allocated(table
, i
);
4174 WARN_ON(table
->min_index
!= 32);
4175 index
= info
->ioapic_pin
;
4180 bool align
= (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
);
4182 index
= alloc_irq_index(devid
, nr_irqs
, align
);
4185 pr_warn("Failed to allocate IRTE\n");
4187 goto out_free_parent
;
4190 for (i
= 0; i
< nr_irqs
; i
++) {
4191 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4192 cfg
= irqd_cfg(irq_data
);
4193 if (!irq_data
|| !cfg
) {
4199 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4203 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4204 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4206 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4213 irq_data
->hwirq
= (devid
<< 16) + i
;
4214 irq_data
->chip_data
= data
;
4215 irq_data
->chip
= &amd_ir_chip
;
4216 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4217 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4223 for (i
--; i
>= 0; i
--) {
4224 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4226 kfree(irq_data
->chip_data
);
4228 for (i
= 0; i
< nr_irqs
; i
++)
4229 free_irte(devid
, index
+ i
);
4231 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4235 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4236 unsigned int nr_irqs
)
4238 struct irq_2_irte
*irte_info
;
4239 struct irq_data
*irq_data
;
4240 struct amd_ir_data
*data
;
4243 for (i
= 0; i
< nr_irqs
; i
++) {
4244 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4245 if (irq_data
&& irq_data
->chip_data
) {
4246 data
= irq_data
->chip_data
;
4247 irte_info
= &data
->irq_2_irte
;
4248 free_irte(irte_info
->devid
, irte_info
->index
);
4253 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4256 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4257 struct amd_ir_data
*ir_data
,
4258 struct irq_2_irte
*irte_info
,
4259 struct irq_cfg
*cfg
);
4261 static int irq_remapping_activate(struct irq_domain
*domain
,
4262 struct irq_data
*irq_data
, bool reserve
)
4264 struct amd_ir_data
*data
= irq_data
->chip_data
;
4265 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4266 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4267 struct irq_cfg
*cfg
= irqd_cfg(irq_data
);
4272 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4274 amd_ir_update_irte(irq_data
, iommu
, data
, irte_info
, cfg
);
4278 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4279 struct irq_data
*irq_data
)
4281 struct amd_ir_data
*data
= irq_data
->chip_data
;
4282 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4283 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4286 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4290 static const struct irq_domain_ops amd_ir_domain_ops
= {
4291 .alloc
= irq_remapping_alloc
,
4292 .free
= irq_remapping_free
,
4293 .activate
= irq_remapping_activate
,
4294 .deactivate
= irq_remapping_deactivate
,
4297 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4299 struct amd_iommu
*iommu
;
4300 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4301 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4302 struct amd_ir_data
*ir_data
= data
->chip_data
;
4303 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4304 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4305 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4308 * This device has never been set up for guest mode.
4309 * we should not modify the IRTE
4311 if (!dev_data
|| !dev_data
->use_vapic
)
4314 pi_data
->ir_data
= ir_data
;
4317 * SVM tries to set up for VAPIC mode, but we are in
4318 * legacy mode. So, we force legacy mode instead.
4320 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4321 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4323 pi_data
->is_guest_mode
= false;
4326 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4330 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4331 if (pi_data
->is_guest_mode
) {
4333 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4334 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4335 irte
->lo
.fields_vapic
.ga_log_intr
= 1;
4336 irte
->lo
.fields_vapic
.guest_mode
= 1;
4337 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4339 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4342 struct irq_cfg
*cfg
= irqd_cfg(data
);
4346 irte
->hi
.fields
.vector
= cfg
->vector
;
4347 irte
->lo
.fields_remap
.guest_mode
= 0;
4348 irte
->lo
.fields_remap
.destination
=
4349 APICID_TO_IRTE_DEST_LO(cfg
->dest_apicid
);
4350 irte
->hi
.fields
.destination
=
4351 APICID_TO_IRTE_DEST_HI(cfg
->dest_apicid
);
4352 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4353 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4356 * This communicates the ga_tag back to the caller
4357 * so that it can do all the necessary clean up.
4359 ir_data
->cached_ga_tag
= 0;
4362 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4366 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4367 struct amd_ir_data
*ir_data
,
4368 struct irq_2_irte
*irte_info
,
4369 struct irq_cfg
*cfg
)
4373 * Atomically updates the IRTE with the new destination, vector
4374 * and flushes the interrupt entry cache.
4376 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4377 irte_info
->index
, cfg
->vector
,
4381 static int amd_ir_set_affinity(struct irq_data
*data
,
4382 const struct cpumask
*mask
, bool force
)
4384 struct amd_ir_data
*ir_data
= data
->chip_data
;
4385 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4386 struct irq_cfg
*cfg
= irqd_cfg(data
);
4387 struct irq_data
*parent
= data
->parent_data
;
4388 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4394 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4395 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4398 amd_ir_update_irte(data
, iommu
, ir_data
, irte_info
, cfg
);
4400 * After this point, all the interrupts will start arriving
4401 * at the new destination. So, time to cleanup the previous
4402 * vector allocation.
4404 send_cleanup_vector(cfg
);
4406 return IRQ_SET_MASK_OK_DONE
;
4409 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4411 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4413 *msg
= ir_data
->msi_entry
;
4416 static struct irq_chip amd_ir_chip
= {
4418 .irq_ack
= apic_ack_irq
,
4419 .irq_set_affinity
= amd_ir_set_affinity
,
4420 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4421 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4424 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4426 struct fwnode_handle
*fn
;
4428 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
4431 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
4432 irq_domain_free_fwnode(fn
);
4433 if (!iommu
->ir_domain
)
4436 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4437 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
4443 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4445 unsigned long flags
;
4446 struct amd_iommu
*iommu
;
4447 struct irq_remap_table
*table
;
4448 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4449 int devid
= ir_data
->irq_2_irte
.devid
;
4450 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4451 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4453 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4454 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4457 iommu
= amd_iommu_rlookup_table
[devid
];
4461 table
= get_irq_table(devid
);
4465 raw_spin_lock_irqsave(&table
->lock
, flags
);
4467 if (ref
->lo
.fields_vapic
.guest_mode
) {
4469 ref
->lo
.fields_vapic
.destination
=
4470 APICID_TO_IRTE_DEST_LO(cpu
);
4471 ref
->hi
.fields
.destination
=
4472 APICID_TO_IRTE_DEST_HI(cpu
);
4474 ref
->lo
.fields_vapic
.is_run
= is_run
;
4478 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
4480 iommu_flush_irt(iommu
, devid
);
4481 iommu_completion_wait(iommu
);
4484 EXPORT_SYMBOL(amd_iommu_update_ga
);