ASoC: es8316: Add jack-detect support
[linux/fpc-iii.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
blob264f4ed8eef26e8f839d121d905497c3c75de67c
1 /*
2 * VMware VMCI Driver
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47 * new-style VMX'en.
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
52 * -------------- NEW -------------
53 * | |
54 * \_/ \_/
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
56 * | | |
57 * | o-----------------------o |
58 * | | |
59 * \_/ \_/ \_/
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61 * | | |
62 * | o----------------------o |
63 * | | |
64 * \_/ \_/ \_/
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66 * | |
67 * | |
68 * -------------> gone <-------------
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95 * paths:
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110 * will be entered.
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134 struct mutex __mutex; /* Protects the queue. */
135 struct mutex *mutex; /* Shared by producer and consumer queues. */
136 size_t num_pages; /* Number of pages incl. header. */
137 bool host; /* Host or guest? */
138 union {
139 struct {
140 dma_addr_t *pas;
141 void **vas;
142 } g; /* Used by the guest. */
143 struct {
144 struct page **page;
145 struct page **header_page;
146 } h; /* Used by the host. */
147 } u;
151 * This structure is opaque to the clients.
153 struct vmci_qp {
154 struct vmci_handle handle;
155 struct vmci_queue *produce_q;
156 struct vmci_queue *consume_q;
157 u64 produce_q_size;
158 u64 consume_q_size;
159 u32 peer;
160 u32 flags;
161 u32 priv_flags;
162 bool guest_endpoint;
163 unsigned int blocked;
164 unsigned int generation;
165 wait_queue_head_t event;
168 enum qp_broker_state {
169 VMCIQPB_NEW,
170 VMCIQPB_CREATED_NO_MEM,
171 VMCIQPB_CREATED_MEM,
172 VMCIQPB_ATTACHED_NO_MEM,
173 VMCIQPB_ATTACHED_MEM,
174 VMCIQPB_SHUTDOWN_NO_MEM,
175 VMCIQPB_SHUTDOWN_MEM,
176 VMCIQPB_GONE
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
184 * In the queue pair broker, we always use the guest point of view for
185 * the produce and consume queue values and references, e.g., the
186 * produce queue size stored is the guests produce queue size. The
187 * host endpoint will need to swap these around. The only exception is
188 * the local queue pairs on the host, in which case the host endpoint
189 * that creates the queue pair will have the right orientation, and
190 * the attaching host endpoint will need to swap.
192 struct qp_entry {
193 struct list_head list_item;
194 struct vmci_handle handle;
195 u32 peer;
196 u32 flags;
197 u64 produce_size;
198 u64 consume_size;
199 u32 ref_count;
202 struct qp_broker_entry {
203 struct vmci_resource resource;
204 struct qp_entry qp;
205 u32 create_id;
206 u32 attach_id;
207 enum qp_broker_state state;
208 bool require_trusted_attach;
209 bool created_by_trusted;
210 bool vmci_page_files; /* Created by VMX using VMCI page files */
211 struct vmci_queue *produce_q;
212 struct vmci_queue *consume_q;
213 struct vmci_queue_header saved_produce_q;
214 struct vmci_queue_header saved_consume_q;
215 vmci_event_release_cb wakeup_cb;
216 void *client_data;
217 void *local_mem; /* Kernel memory for local queue pair */
220 struct qp_guest_endpoint {
221 struct vmci_resource resource;
222 struct qp_entry qp;
223 u64 num_ppns;
224 void *produce_q;
225 void *consume_q;
226 struct ppn_set ppn_set;
229 struct qp_list {
230 struct list_head head;
231 struct mutex mutex; /* Protect queue list. */
234 static struct qp_list qp_broker_list = {
235 .head = LIST_HEAD_INIT(qp_broker_list.head),
236 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
239 static struct qp_list qp_guest_endpoints = {
240 .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
244 #define INVALID_VMCI_GUEST_MEM_ID 0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
251 * Frees kernel VA space for a given queue and its queue header, and
252 * frees physical data pages.
254 static void qp_free_queue(void *q, u64 size)
256 struct vmci_queue *queue = q;
258 if (queue) {
259 u64 i;
261 /* Given size does not include header, so add in a page here. */
262 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264 queue->kernel_if->u.g.vas[i],
265 queue->kernel_if->u.g.pas[i]);
268 vfree(queue);
273 * Allocates kernel queue pages of specified size with IOMMU mappings,
274 * plus space for the queue structure/kernel interface and the queue
275 * header.
277 static void *qp_alloc_queue(u64 size, u32 flags)
279 u64 i;
280 struct vmci_queue *queue;
281 size_t pas_size;
282 size_t vas_size;
283 size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284 u64 num_pages;
286 if (size > SIZE_MAX - PAGE_SIZE)
287 return NULL;
288 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289 if (num_pages >
290 (SIZE_MAX - queue_size) /
291 (sizeof(*queue->kernel_if->u.g.pas) +
292 sizeof(*queue->kernel_if->u.g.vas)))
293 return NULL;
295 pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296 vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297 queue_size += pas_size + vas_size;
299 queue = vmalloc(queue_size);
300 if (!queue)
301 return NULL;
303 queue->q_header = NULL;
304 queue->saved_header = NULL;
305 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306 queue->kernel_if->mutex = NULL;
307 queue->kernel_if->num_pages = num_pages;
308 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309 queue->kernel_if->u.g.vas =
310 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311 queue->kernel_if->host = false;
313 for (i = 0; i < num_pages; i++) {
314 queue->kernel_if->u.g.vas[i] =
315 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316 &queue->kernel_if->u.g.pas[i],
317 GFP_KERNEL);
318 if (!queue->kernel_if->u.g.vas[i]) {
319 /* Size excl. the header. */
320 qp_free_queue(queue, i * PAGE_SIZE);
321 return NULL;
325 /* Queue header is the first page. */
326 queue->q_header = queue->kernel_if->u.g.vas[0];
328 return queue;
332 * Copies from a given buffer or iovector to a VMCI Queue. Uses
333 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334 * by traversing the offset -> page translation structure for the queue.
335 * Assumes that offset + size does not wrap around in the queue.
337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338 u64 queue_offset,
339 struct iov_iter *from,
340 size_t size)
342 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343 size_t bytes_copied = 0;
345 while (bytes_copied < size) {
346 const u64 page_index =
347 (queue_offset + bytes_copied) / PAGE_SIZE;
348 const size_t page_offset =
349 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350 void *va;
351 size_t to_copy;
353 if (kernel_if->host)
354 va = kmap(kernel_if->u.h.page[page_index]);
355 else
356 va = kernel_if->u.g.vas[page_index + 1];
357 /* Skip header. */
359 if (size - bytes_copied > PAGE_SIZE - page_offset)
360 /* Enough payload to fill up from this page. */
361 to_copy = PAGE_SIZE - page_offset;
362 else
363 to_copy = size - bytes_copied;
365 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366 from)) {
367 if (kernel_if->host)
368 kunmap(kernel_if->u.h.page[page_index]);
369 return VMCI_ERROR_INVALID_ARGS;
371 bytes_copied += to_copy;
372 if (kernel_if->host)
373 kunmap(kernel_if->u.h.page[page_index]);
376 return VMCI_SUCCESS;
380 * Copies to a given buffer or iovector from a VMCI Queue. Uses
381 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382 * by traversing the offset -> page translation structure for the queue.
383 * Assumes that offset + size does not wrap around in the queue.
385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386 const struct vmci_queue *queue,
387 u64 queue_offset, size_t size)
389 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390 size_t bytes_copied = 0;
392 while (bytes_copied < size) {
393 const u64 page_index =
394 (queue_offset + bytes_copied) / PAGE_SIZE;
395 const size_t page_offset =
396 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397 void *va;
398 size_t to_copy;
399 int err;
401 if (kernel_if->host)
402 va = kmap(kernel_if->u.h.page[page_index]);
403 else
404 va = kernel_if->u.g.vas[page_index + 1];
405 /* Skip header. */
407 if (size - bytes_copied > PAGE_SIZE - page_offset)
408 /* Enough payload to fill up this page. */
409 to_copy = PAGE_SIZE - page_offset;
410 else
411 to_copy = size - bytes_copied;
413 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414 if (err != to_copy) {
415 if (kernel_if->host)
416 kunmap(kernel_if->u.h.page[page_index]);
417 return VMCI_ERROR_INVALID_ARGS;
419 bytes_copied += to_copy;
420 if (kernel_if->host)
421 kunmap(kernel_if->u.h.page[page_index]);
424 return VMCI_SUCCESS;
428 * Allocates two list of PPNs --- one for the pages in the produce queue,
429 * and the other for the pages in the consume queue. Intializes the list
430 * of PPNs with the page frame numbers of the KVA for the two queues (and
431 * the queue headers).
433 static int qp_alloc_ppn_set(void *prod_q,
434 u64 num_produce_pages,
435 void *cons_q,
436 u64 num_consume_pages, struct ppn_set *ppn_set)
438 u32 *produce_ppns;
439 u32 *consume_ppns;
440 struct vmci_queue *produce_q = prod_q;
441 struct vmci_queue *consume_q = cons_q;
442 u64 i;
444 if (!produce_q || !num_produce_pages || !consume_q ||
445 !num_consume_pages || !ppn_set)
446 return VMCI_ERROR_INVALID_ARGS;
448 if (ppn_set->initialized)
449 return VMCI_ERROR_ALREADY_EXISTS;
451 produce_ppns =
452 kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
453 GFP_KERNEL);
454 if (!produce_ppns)
455 return VMCI_ERROR_NO_MEM;
457 consume_ppns =
458 kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
459 GFP_KERNEL);
460 if (!consume_ppns) {
461 kfree(produce_ppns);
462 return VMCI_ERROR_NO_MEM;
465 for (i = 0; i < num_produce_pages; i++) {
466 unsigned long pfn;
468 produce_ppns[i] =
469 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
470 pfn = produce_ppns[i];
472 /* Fail allocation if PFN isn't supported by hypervisor. */
473 if (sizeof(pfn) > sizeof(*produce_ppns)
474 && pfn != produce_ppns[i])
475 goto ppn_error;
478 for (i = 0; i < num_consume_pages; i++) {
479 unsigned long pfn;
481 consume_ppns[i] =
482 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
483 pfn = consume_ppns[i];
485 /* Fail allocation if PFN isn't supported by hypervisor. */
486 if (sizeof(pfn) > sizeof(*consume_ppns)
487 && pfn != consume_ppns[i])
488 goto ppn_error;
491 ppn_set->num_produce_pages = num_produce_pages;
492 ppn_set->num_consume_pages = num_consume_pages;
493 ppn_set->produce_ppns = produce_ppns;
494 ppn_set->consume_ppns = consume_ppns;
495 ppn_set->initialized = true;
496 return VMCI_SUCCESS;
498 ppn_error:
499 kfree(produce_ppns);
500 kfree(consume_ppns);
501 return VMCI_ERROR_INVALID_ARGS;
505 * Frees the two list of PPNs for a queue pair.
507 static void qp_free_ppn_set(struct ppn_set *ppn_set)
509 if (ppn_set->initialized) {
510 /* Do not call these functions on NULL inputs. */
511 kfree(ppn_set->produce_ppns);
512 kfree(ppn_set->consume_ppns);
514 memset(ppn_set, 0, sizeof(*ppn_set));
518 * Populates the list of PPNs in the hypercall structure with the PPNS
519 * of the produce queue and the consume queue.
521 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
523 memcpy(call_buf, ppn_set->produce_ppns,
524 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
525 memcpy(call_buf +
526 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
527 ppn_set->consume_ppns,
528 ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
530 return VMCI_SUCCESS;
534 * Allocates kernel VA space of specified size plus space for the queue
535 * and kernel interface. This is different from the guest queue allocator,
536 * because we do not allocate our own queue header/data pages here but
537 * share those of the guest.
539 static struct vmci_queue *qp_host_alloc_queue(u64 size)
541 struct vmci_queue *queue;
542 size_t queue_page_size;
543 u64 num_pages;
544 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
546 if (size > SIZE_MAX - PAGE_SIZE)
547 return NULL;
548 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
549 if (num_pages > (SIZE_MAX - queue_size) /
550 sizeof(*queue->kernel_if->u.h.page))
551 return NULL;
553 queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
555 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
556 if (queue) {
557 queue->q_header = NULL;
558 queue->saved_header = NULL;
559 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
560 queue->kernel_if->host = true;
561 queue->kernel_if->mutex = NULL;
562 queue->kernel_if->num_pages = num_pages;
563 queue->kernel_if->u.h.header_page =
564 (struct page **)((u8 *)queue + queue_size);
565 queue->kernel_if->u.h.page =
566 &queue->kernel_if->u.h.header_page[1];
569 return queue;
573 * Frees kernel memory for a given queue (header plus translation
574 * structure).
576 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
578 kfree(queue);
582 * Initialize the mutex for the pair of queues. This mutex is used to
583 * protect the q_header and the buffer from changing out from under any
584 * users of either queue. Of course, it's only any good if the mutexes
585 * are actually acquired. Queue structure must lie on non-paged memory
586 * or we cannot guarantee access to the mutex.
588 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
589 struct vmci_queue *consume_q)
592 * Only the host queue has shared state - the guest queues do not
593 * need to synchronize access using a queue mutex.
596 if (produce_q->kernel_if->host) {
597 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
598 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
599 mutex_init(produce_q->kernel_if->mutex);
604 * Cleans up the mutex for the pair of queues.
606 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
607 struct vmci_queue *consume_q)
609 if (produce_q->kernel_if->host) {
610 produce_q->kernel_if->mutex = NULL;
611 consume_q->kernel_if->mutex = NULL;
616 * Acquire the mutex for the queue. Note that the produce_q and
617 * the consume_q share a mutex. So, only one of the two need to
618 * be passed in to this routine. Either will work just fine.
620 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
622 if (queue->kernel_if->host)
623 mutex_lock(queue->kernel_if->mutex);
627 * Release the mutex for the queue. Note that the produce_q and
628 * the consume_q share a mutex. So, only one of the two need to
629 * be passed in to this routine. Either will work just fine.
631 static void qp_release_queue_mutex(struct vmci_queue *queue)
633 if (queue->kernel_if->host)
634 mutex_unlock(queue->kernel_if->mutex);
638 * Helper function to release pages in the PageStoreAttachInfo
639 * previously obtained using get_user_pages.
641 static void qp_release_pages(struct page **pages,
642 u64 num_pages, bool dirty)
644 int i;
646 for (i = 0; i < num_pages; i++) {
647 if (dirty)
648 set_page_dirty(pages[i]);
650 put_page(pages[i]);
651 pages[i] = NULL;
656 * Lock the user pages referenced by the {produce,consume}Buffer
657 * struct into memory and populate the {produce,consume}Pages
658 * arrays in the attach structure with them.
660 static int qp_host_get_user_memory(u64 produce_uva,
661 u64 consume_uva,
662 struct vmci_queue *produce_q,
663 struct vmci_queue *consume_q)
665 int retval;
666 int err = VMCI_SUCCESS;
668 retval = get_user_pages_fast((uintptr_t) produce_uva,
669 produce_q->kernel_if->num_pages, 1,
670 produce_q->kernel_if->u.h.header_page);
671 if (retval < (int)produce_q->kernel_if->num_pages) {
672 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
673 retval);
674 qp_release_pages(produce_q->kernel_if->u.h.header_page,
675 retval, false);
676 err = VMCI_ERROR_NO_MEM;
677 goto out;
680 retval = get_user_pages_fast((uintptr_t) consume_uva,
681 consume_q->kernel_if->num_pages, 1,
682 consume_q->kernel_if->u.h.header_page);
683 if (retval < (int)consume_q->kernel_if->num_pages) {
684 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
685 retval);
686 qp_release_pages(consume_q->kernel_if->u.h.header_page,
687 retval, false);
688 qp_release_pages(produce_q->kernel_if->u.h.header_page,
689 produce_q->kernel_if->num_pages, false);
690 err = VMCI_ERROR_NO_MEM;
693 out:
694 return err;
698 * Registers the specification of the user pages used for backing a queue
699 * pair. Enough information to map in pages is stored in the OS specific
700 * part of the struct vmci_queue structure.
702 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
703 struct vmci_queue *produce_q,
704 struct vmci_queue *consume_q)
706 u64 produce_uva;
707 u64 consume_uva;
710 * The new style and the old style mapping only differs in
711 * that we either get a single or two UVAs, so we split the
712 * single UVA range at the appropriate spot.
714 produce_uva = page_store->pages;
715 consume_uva = page_store->pages +
716 produce_q->kernel_if->num_pages * PAGE_SIZE;
717 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
718 consume_q);
722 * Releases and removes the references to user pages stored in the attach
723 * struct. Pages are released from the page cache and may become
724 * swappable again.
726 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
727 struct vmci_queue *consume_q)
729 qp_release_pages(produce_q->kernel_if->u.h.header_page,
730 produce_q->kernel_if->num_pages, true);
731 memset(produce_q->kernel_if->u.h.header_page, 0,
732 sizeof(*produce_q->kernel_if->u.h.header_page) *
733 produce_q->kernel_if->num_pages);
734 qp_release_pages(consume_q->kernel_if->u.h.header_page,
735 consume_q->kernel_if->num_pages, true);
736 memset(consume_q->kernel_if->u.h.header_page, 0,
737 sizeof(*consume_q->kernel_if->u.h.header_page) *
738 consume_q->kernel_if->num_pages);
742 * Once qp_host_register_user_memory has been performed on a
743 * queue, the queue pair headers can be mapped into the
744 * kernel. Once mapped, they must be unmapped with
745 * qp_host_unmap_queues prior to calling
746 * qp_host_unregister_user_memory.
747 * Pages are pinned.
749 static int qp_host_map_queues(struct vmci_queue *produce_q,
750 struct vmci_queue *consume_q)
752 int result;
754 if (!produce_q->q_header || !consume_q->q_header) {
755 struct page *headers[2];
757 if (produce_q->q_header != consume_q->q_header)
758 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
760 if (produce_q->kernel_if->u.h.header_page == NULL ||
761 *produce_q->kernel_if->u.h.header_page == NULL)
762 return VMCI_ERROR_UNAVAILABLE;
764 headers[0] = *produce_q->kernel_if->u.h.header_page;
765 headers[1] = *consume_q->kernel_if->u.h.header_page;
767 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
768 if (produce_q->q_header != NULL) {
769 consume_q->q_header =
770 (struct vmci_queue_header *)((u8 *)
771 produce_q->q_header +
772 PAGE_SIZE);
773 result = VMCI_SUCCESS;
774 } else {
775 pr_warn("vmap failed\n");
776 result = VMCI_ERROR_NO_MEM;
778 } else {
779 result = VMCI_SUCCESS;
782 return result;
786 * Unmaps previously mapped queue pair headers from the kernel.
787 * Pages are unpinned.
789 static int qp_host_unmap_queues(u32 gid,
790 struct vmci_queue *produce_q,
791 struct vmci_queue *consume_q)
793 if (produce_q->q_header) {
794 if (produce_q->q_header < consume_q->q_header)
795 vunmap(produce_q->q_header);
796 else
797 vunmap(consume_q->q_header);
799 produce_q->q_header = NULL;
800 consume_q->q_header = NULL;
803 return VMCI_SUCCESS;
807 * Finds the entry in the list corresponding to a given handle. Assumes
808 * that the list is locked.
810 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
811 struct vmci_handle handle)
813 struct qp_entry *entry;
815 if (vmci_handle_is_invalid(handle))
816 return NULL;
818 list_for_each_entry(entry, &qp_list->head, list_item) {
819 if (vmci_handle_is_equal(entry->handle, handle))
820 return entry;
823 return NULL;
827 * Finds the entry in the list corresponding to a given handle.
829 static struct qp_guest_endpoint *
830 qp_guest_handle_to_entry(struct vmci_handle handle)
832 struct qp_guest_endpoint *entry;
833 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
835 entry = qp ? container_of(
836 qp, struct qp_guest_endpoint, qp) : NULL;
837 return entry;
841 * Finds the entry in the list corresponding to a given handle.
843 static struct qp_broker_entry *
844 qp_broker_handle_to_entry(struct vmci_handle handle)
846 struct qp_broker_entry *entry;
847 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
849 entry = qp ? container_of(
850 qp, struct qp_broker_entry, qp) : NULL;
851 return entry;
855 * Dispatches a queue pair event message directly into the local event
856 * queue.
858 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
860 u32 context_id = vmci_get_context_id();
861 struct vmci_event_qp ev;
863 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
864 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
865 VMCI_CONTEXT_RESOURCE_ID);
866 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
867 ev.msg.event_data.event =
868 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
869 ev.payload.peer_id = context_id;
870 ev.payload.handle = handle;
872 return vmci_event_dispatch(&ev.msg.hdr);
876 * Allocates and initializes a qp_guest_endpoint structure.
877 * Allocates a queue_pair rid (and handle) iff the given entry has
878 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
879 * are reserved handles. Assumes that the QP list mutex is held
880 * by the caller.
882 static struct qp_guest_endpoint *
883 qp_guest_endpoint_create(struct vmci_handle handle,
884 u32 peer,
885 u32 flags,
886 u64 produce_size,
887 u64 consume_size,
888 void *produce_q,
889 void *consume_q)
891 int result;
892 struct qp_guest_endpoint *entry;
893 /* One page each for the queue headers. */
894 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
895 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
897 if (vmci_handle_is_invalid(handle)) {
898 u32 context_id = vmci_get_context_id();
900 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
903 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
904 if (entry) {
905 entry->qp.peer = peer;
906 entry->qp.flags = flags;
907 entry->qp.produce_size = produce_size;
908 entry->qp.consume_size = consume_size;
909 entry->qp.ref_count = 0;
910 entry->num_ppns = num_ppns;
911 entry->produce_q = produce_q;
912 entry->consume_q = consume_q;
913 INIT_LIST_HEAD(&entry->qp.list_item);
915 /* Add resource obj */
916 result = vmci_resource_add(&entry->resource,
917 VMCI_RESOURCE_TYPE_QPAIR_GUEST,
918 handle);
919 entry->qp.handle = vmci_resource_handle(&entry->resource);
920 if ((result != VMCI_SUCCESS) ||
921 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
922 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
923 handle.context, handle.resource, result);
924 kfree(entry);
925 entry = NULL;
928 return entry;
932 * Frees a qp_guest_endpoint structure.
934 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
936 qp_free_ppn_set(&entry->ppn_set);
937 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
938 qp_free_queue(entry->produce_q, entry->qp.produce_size);
939 qp_free_queue(entry->consume_q, entry->qp.consume_size);
940 /* Unlink from resource hash table and free callback */
941 vmci_resource_remove(&entry->resource);
943 kfree(entry);
947 * Helper to make a queue_pairAlloc hypercall when the driver is
948 * supporting a guest device.
950 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
952 struct vmci_qp_alloc_msg *alloc_msg;
953 size_t msg_size;
954 int result;
956 if (!entry || entry->num_ppns <= 2)
957 return VMCI_ERROR_INVALID_ARGS;
959 msg_size = sizeof(*alloc_msg) +
960 (size_t) entry->num_ppns * sizeof(u32);
961 alloc_msg = kmalloc(msg_size, GFP_KERNEL);
962 if (!alloc_msg)
963 return VMCI_ERROR_NO_MEM;
965 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
966 VMCI_QUEUEPAIR_ALLOC);
967 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
968 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
969 alloc_msg->handle = entry->qp.handle;
970 alloc_msg->peer = entry->qp.peer;
971 alloc_msg->flags = entry->qp.flags;
972 alloc_msg->produce_size = entry->qp.produce_size;
973 alloc_msg->consume_size = entry->qp.consume_size;
974 alloc_msg->num_ppns = entry->num_ppns;
976 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
977 &entry->ppn_set);
978 if (result == VMCI_SUCCESS)
979 result = vmci_send_datagram(&alloc_msg->hdr);
981 kfree(alloc_msg);
983 return result;
987 * Helper to make a queue_pairDetach hypercall when the driver is
988 * supporting a guest device.
990 static int qp_detatch_hypercall(struct vmci_handle handle)
992 struct vmci_qp_detach_msg detach_msg;
994 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
995 VMCI_QUEUEPAIR_DETACH);
996 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
997 detach_msg.hdr.payload_size = sizeof(handle);
998 detach_msg.handle = handle;
1000 return vmci_send_datagram(&detach_msg.hdr);
1004 * Adds the given entry to the list. Assumes that the list is locked.
1006 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1008 if (entry)
1009 list_add(&entry->list_item, &qp_list->head);
1013 * Removes the given entry from the list. Assumes that the list is locked.
1015 static void qp_list_remove_entry(struct qp_list *qp_list,
1016 struct qp_entry *entry)
1018 if (entry)
1019 list_del(&entry->list_item);
1023 * Helper for VMCI queue_pair detach interface. Frees the physical
1024 * pages for the queue pair.
1026 static int qp_detatch_guest_work(struct vmci_handle handle)
1028 int result;
1029 struct qp_guest_endpoint *entry;
1030 u32 ref_count = ~0; /* To avoid compiler warning below */
1032 mutex_lock(&qp_guest_endpoints.mutex);
1034 entry = qp_guest_handle_to_entry(handle);
1035 if (!entry) {
1036 mutex_unlock(&qp_guest_endpoints.mutex);
1037 return VMCI_ERROR_NOT_FOUND;
1040 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1041 result = VMCI_SUCCESS;
1043 if (entry->qp.ref_count > 1) {
1044 result = qp_notify_peer_local(false, handle);
1046 * We can fail to notify a local queuepair
1047 * because we can't allocate. We still want
1048 * to release the entry if that happens, so
1049 * don't bail out yet.
1052 } else {
1053 result = qp_detatch_hypercall(handle);
1054 if (result < VMCI_SUCCESS) {
1056 * We failed to notify a non-local queuepair.
1057 * That other queuepair might still be
1058 * accessing the shared memory, so don't
1059 * release the entry yet. It will get cleaned
1060 * up by VMCIqueue_pair_Exit() if necessary
1061 * (assuming we are going away, otherwise why
1062 * did this fail?).
1065 mutex_unlock(&qp_guest_endpoints.mutex);
1066 return result;
1071 * If we get here then we either failed to notify a local queuepair, or
1072 * we succeeded in all cases. Release the entry if required.
1075 entry->qp.ref_count--;
1076 if (entry->qp.ref_count == 0)
1077 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1079 /* If we didn't remove the entry, this could change once we unlock. */
1080 if (entry)
1081 ref_count = entry->qp.ref_count;
1083 mutex_unlock(&qp_guest_endpoints.mutex);
1085 if (ref_count == 0)
1086 qp_guest_endpoint_destroy(entry);
1088 return result;
1092 * This functions handles the actual allocation of a VMCI queue
1093 * pair guest endpoint. Allocates physical pages for the queue
1094 * pair. It makes OS dependent calls through generic wrappers.
1096 static int qp_alloc_guest_work(struct vmci_handle *handle,
1097 struct vmci_queue **produce_q,
1098 u64 produce_size,
1099 struct vmci_queue **consume_q,
1100 u64 consume_size,
1101 u32 peer,
1102 u32 flags,
1103 u32 priv_flags)
1105 const u64 num_produce_pages =
1106 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1107 const u64 num_consume_pages =
1108 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1109 void *my_produce_q = NULL;
1110 void *my_consume_q = NULL;
1111 int result;
1112 struct qp_guest_endpoint *queue_pair_entry = NULL;
1114 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1115 return VMCI_ERROR_NO_ACCESS;
1117 mutex_lock(&qp_guest_endpoints.mutex);
1119 queue_pair_entry = qp_guest_handle_to_entry(*handle);
1120 if (queue_pair_entry) {
1121 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1122 /* Local attach case. */
1123 if (queue_pair_entry->qp.ref_count > 1) {
1124 pr_devel("Error attempting to attach more than once\n");
1125 result = VMCI_ERROR_UNAVAILABLE;
1126 goto error_keep_entry;
1129 if (queue_pair_entry->qp.produce_size != consume_size ||
1130 queue_pair_entry->qp.consume_size !=
1131 produce_size ||
1132 queue_pair_entry->qp.flags !=
1133 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1134 pr_devel("Error mismatched queue pair in local attach\n");
1135 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1136 goto error_keep_entry;
1140 * Do a local attach. We swap the consume and
1141 * produce queues for the attacher and deliver
1142 * an attach event.
1144 result = qp_notify_peer_local(true, *handle);
1145 if (result < VMCI_SUCCESS)
1146 goto error_keep_entry;
1148 my_produce_q = queue_pair_entry->consume_q;
1149 my_consume_q = queue_pair_entry->produce_q;
1150 goto out;
1153 result = VMCI_ERROR_ALREADY_EXISTS;
1154 goto error_keep_entry;
1157 my_produce_q = qp_alloc_queue(produce_size, flags);
1158 if (!my_produce_q) {
1159 pr_warn("Error allocating pages for produce queue\n");
1160 result = VMCI_ERROR_NO_MEM;
1161 goto error;
1164 my_consume_q = qp_alloc_queue(consume_size, flags);
1165 if (!my_consume_q) {
1166 pr_warn("Error allocating pages for consume queue\n");
1167 result = VMCI_ERROR_NO_MEM;
1168 goto error;
1171 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1172 produce_size, consume_size,
1173 my_produce_q, my_consume_q);
1174 if (!queue_pair_entry) {
1175 pr_warn("Error allocating memory in %s\n", __func__);
1176 result = VMCI_ERROR_NO_MEM;
1177 goto error;
1180 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1181 num_consume_pages,
1182 &queue_pair_entry->ppn_set);
1183 if (result < VMCI_SUCCESS) {
1184 pr_warn("qp_alloc_ppn_set failed\n");
1185 goto error;
1189 * It's only necessary to notify the host if this queue pair will be
1190 * attached to from another context.
1192 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1193 /* Local create case. */
1194 u32 context_id = vmci_get_context_id();
1197 * Enforce similar checks on local queue pairs as we
1198 * do for regular ones. The handle's context must
1199 * match the creator or attacher context id (here they
1200 * are both the current context id) and the
1201 * attach-only flag cannot exist during create. We
1202 * also ensure specified peer is this context or an
1203 * invalid one.
1205 if (queue_pair_entry->qp.handle.context != context_id ||
1206 (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1207 queue_pair_entry->qp.peer != context_id)) {
1208 result = VMCI_ERROR_NO_ACCESS;
1209 goto error;
1212 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1213 result = VMCI_ERROR_NOT_FOUND;
1214 goto error;
1216 } else {
1217 result = qp_alloc_hypercall(queue_pair_entry);
1218 if (result < VMCI_SUCCESS) {
1219 pr_warn("qp_alloc_hypercall result = %d\n", result);
1220 goto error;
1224 qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1225 (struct vmci_queue *)my_consume_q);
1227 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1229 out:
1230 queue_pair_entry->qp.ref_count++;
1231 *handle = queue_pair_entry->qp.handle;
1232 *produce_q = (struct vmci_queue *)my_produce_q;
1233 *consume_q = (struct vmci_queue *)my_consume_q;
1236 * We should initialize the queue pair header pages on a local
1237 * queue pair create. For non-local queue pairs, the
1238 * hypervisor initializes the header pages in the create step.
1240 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1241 queue_pair_entry->qp.ref_count == 1) {
1242 vmci_q_header_init((*produce_q)->q_header, *handle);
1243 vmci_q_header_init((*consume_q)->q_header, *handle);
1246 mutex_unlock(&qp_guest_endpoints.mutex);
1248 return VMCI_SUCCESS;
1250 error:
1251 mutex_unlock(&qp_guest_endpoints.mutex);
1252 if (queue_pair_entry) {
1253 /* The queues will be freed inside the destroy routine. */
1254 qp_guest_endpoint_destroy(queue_pair_entry);
1255 } else {
1256 qp_free_queue(my_produce_q, produce_size);
1257 qp_free_queue(my_consume_q, consume_size);
1259 return result;
1261 error_keep_entry:
1262 /* This path should only be used when an existing entry was found. */
1263 mutex_unlock(&qp_guest_endpoints.mutex);
1264 return result;
1268 * The first endpoint issuing a queue pair allocation will create the state
1269 * of the queue pair in the queue pair broker.
1271 * If the creator is a guest, it will associate a VMX virtual address range
1272 * with the queue pair as specified by the page_store. For compatibility with
1273 * older VMX'en, that would use a separate step to set the VMX virtual
1274 * address range, the virtual address range can be registered later using
1275 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1276 * used.
1278 * If the creator is the host, a page_store of NULL should be used as well,
1279 * since the host is not able to supply a page store for the queue pair.
1281 * For older VMX and host callers, the queue pair will be created in the
1282 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1283 * created in VMCOQPB_CREATED_MEM state.
1285 static int qp_broker_create(struct vmci_handle handle,
1286 u32 peer,
1287 u32 flags,
1288 u32 priv_flags,
1289 u64 produce_size,
1290 u64 consume_size,
1291 struct vmci_qp_page_store *page_store,
1292 struct vmci_ctx *context,
1293 vmci_event_release_cb wakeup_cb,
1294 void *client_data, struct qp_broker_entry **ent)
1296 struct qp_broker_entry *entry = NULL;
1297 const u32 context_id = vmci_ctx_get_id(context);
1298 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1299 int result;
1300 u64 guest_produce_size;
1301 u64 guest_consume_size;
1303 /* Do not create if the caller asked not to. */
1304 if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1305 return VMCI_ERROR_NOT_FOUND;
1308 * Creator's context ID should match handle's context ID or the creator
1309 * must allow the context in handle's context ID as the "peer".
1311 if (handle.context != context_id && handle.context != peer)
1312 return VMCI_ERROR_NO_ACCESS;
1314 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1315 return VMCI_ERROR_DST_UNREACHABLE;
1318 * Creator's context ID for local queue pairs should match the
1319 * peer, if a peer is specified.
1321 if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1322 return VMCI_ERROR_NO_ACCESS;
1324 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1325 if (!entry)
1326 return VMCI_ERROR_NO_MEM;
1328 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1330 * The queue pair broker entry stores values from the guest
1331 * point of view, so a creating host side endpoint should swap
1332 * produce and consume values -- unless it is a local queue
1333 * pair, in which case no swapping is necessary, since the local
1334 * attacher will swap queues.
1337 guest_produce_size = consume_size;
1338 guest_consume_size = produce_size;
1339 } else {
1340 guest_produce_size = produce_size;
1341 guest_consume_size = consume_size;
1344 entry->qp.handle = handle;
1345 entry->qp.peer = peer;
1346 entry->qp.flags = flags;
1347 entry->qp.produce_size = guest_produce_size;
1348 entry->qp.consume_size = guest_consume_size;
1349 entry->qp.ref_count = 1;
1350 entry->create_id = context_id;
1351 entry->attach_id = VMCI_INVALID_ID;
1352 entry->state = VMCIQPB_NEW;
1353 entry->require_trusted_attach =
1354 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1355 entry->created_by_trusted =
1356 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1357 entry->vmci_page_files = false;
1358 entry->wakeup_cb = wakeup_cb;
1359 entry->client_data = client_data;
1360 entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1361 if (entry->produce_q == NULL) {
1362 result = VMCI_ERROR_NO_MEM;
1363 goto error;
1365 entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1366 if (entry->consume_q == NULL) {
1367 result = VMCI_ERROR_NO_MEM;
1368 goto error;
1371 qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1373 INIT_LIST_HEAD(&entry->qp.list_item);
1375 if (is_local) {
1376 u8 *tmp;
1378 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1379 PAGE_SIZE, GFP_KERNEL);
1380 if (entry->local_mem == NULL) {
1381 result = VMCI_ERROR_NO_MEM;
1382 goto error;
1384 entry->state = VMCIQPB_CREATED_MEM;
1385 entry->produce_q->q_header = entry->local_mem;
1386 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1387 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1388 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1389 } else if (page_store) {
1391 * The VMX already initialized the queue pair headers, so no
1392 * need for the kernel side to do that.
1394 result = qp_host_register_user_memory(page_store,
1395 entry->produce_q,
1396 entry->consume_q);
1397 if (result < VMCI_SUCCESS)
1398 goto error;
1400 entry->state = VMCIQPB_CREATED_MEM;
1401 } else {
1403 * A create without a page_store may be either a host
1404 * side create (in which case we are waiting for the
1405 * guest side to supply the memory) or an old style
1406 * queue pair create (in which case we will expect a
1407 * set page store call as the next step).
1409 entry->state = VMCIQPB_CREATED_NO_MEM;
1412 qp_list_add_entry(&qp_broker_list, &entry->qp);
1413 if (ent != NULL)
1414 *ent = entry;
1416 /* Add to resource obj */
1417 result = vmci_resource_add(&entry->resource,
1418 VMCI_RESOURCE_TYPE_QPAIR_HOST,
1419 handle);
1420 if (result != VMCI_SUCCESS) {
1421 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1422 handle.context, handle.resource, result);
1423 goto error;
1426 entry->qp.handle = vmci_resource_handle(&entry->resource);
1427 if (is_local) {
1428 vmci_q_header_init(entry->produce_q->q_header,
1429 entry->qp.handle);
1430 vmci_q_header_init(entry->consume_q->q_header,
1431 entry->qp.handle);
1434 vmci_ctx_qp_create(context, entry->qp.handle);
1436 return VMCI_SUCCESS;
1438 error:
1439 if (entry != NULL) {
1440 qp_host_free_queue(entry->produce_q, guest_produce_size);
1441 qp_host_free_queue(entry->consume_q, guest_consume_size);
1442 kfree(entry);
1445 return result;
1449 * Enqueues an event datagram to notify the peer VM attached to
1450 * the given queue pair handle about attach/detach event by the
1451 * given VM. Returns Payload size of datagram enqueued on
1452 * success, error code otherwise.
1454 static int qp_notify_peer(bool attach,
1455 struct vmci_handle handle,
1456 u32 my_id,
1457 u32 peer_id)
1459 int rv;
1460 struct vmci_event_qp ev;
1462 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1463 peer_id == VMCI_INVALID_ID)
1464 return VMCI_ERROR_INVALID_ARGS;
1467 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1468 * number of pending events from the hypervisor to a given VM
1469 * otherwise a rogue VM could do an arbitrary number of attach
1470 * and detach operations causing memory pressure in the host
1471 * kernel.
1474 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1475 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1476 VMCI_CONTEXT_RESOURCE_ID);
1477 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1478 ev.msg.event_data.event = attach ?
1479 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1480 ev.payload.handle = handle;
1481 ev.payload.peer_id = my_id;
1483 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1484 &ev.msg.hdr, false);
1485 if (rv < VMCI_SUCCESS)
1486 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1487 attach ? "ATTACH" : "DETACH", peer_id);
1489 return rv;
1493 * The second endpoint issuing a queue pair allocation will attach to
1494 * the queue pair registered with the queue pair broker.
1496 * If the attacher is a guest, it will associate a VMX virtual address
1497 * range with the queue pair as specified by the page_store. At this
1498 * point, the already attach host endpoint may start using the queue
1499 * pair, and an attach event is sent to it. For compatibility with
1500 * older VMX'en, that used a separate step to set the VMX virtual
1501 * address range, the virtual address range can be registered later
1502 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1503 * NULL should be used, and the attach event will be generated once
1504 * the actual page store has been set.
1506 * If the attacher is the host, a page_store of NULL should be used as
1507 * well, since the page store information is already set by the guest.
1509 * For new VMX and host callers, the queue pair will be moved to the
1510 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1511 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1513 static int qp_broker_attach(struct qp_broker_entry *entry,
1514 u32 peer,
1515 u32 flags,
1516 u32 priv_flags,
1517 u64 produce_size,
1518 u64 consume_size,
1519 struct vmci_qp_page_store *page_store,
1520 struct vmci_ctx *context,
1521 vmci_event_release_cb wakeup_cb,
1522 void *client_data,
1523 struct qp_broker_entry **ent)
1525 const u32 context_id = vmci_ctx_get_id(context);
1526 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1527 int result;
1529 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1530 entry->state != VMCIQPB_CREATED_MEM)
1531 return VMCI_ERROR_UNAVAILABLE;
1533 if (is_local) {
1534 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1535 context_id != entry->create_id) {
1536 return VMCI_ERROR_INVALID_ARGS;
1538 } else if (context_id == entry->create_id ||
1539 context_id == entry->attach_id) {
1540 return VMCI_ERROR_ALREADY_EXISTS;
1543 if (VMCI_CONTEXT_IS_VM(context_id) &&
1544 VMCI_CONTEXT_IS_VM(entry->create_id))
1545 return VMCI_ERROR_DST_UNREACHABLE;
1548 * If we are attaching from a restricted context then the queuepair
1549 * must have been created by a trusted endpoint.
1551 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1552 !entry->created_by_trusted)
1553 return VMCI_ERROR_NO_ACCESS;
1556 * If we are attaching to a queuepair that was created by a restricted
1557 * context then we must be trusted.
1559 if (entry->require_trusted_attach &&
1560 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1561 return VMCI_ERROR_NO_ACCESS;
1564 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1565 * control check is not performed.
1567 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1568 return VMCI_ERROR_NO_ACCESS;
1570 if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1572 * Do not attach if the caller doesn't support Host Queue Pairs
1573 * and a host created this queue pair.
1576 if (!vmci_ctx_supports_host_qp(context))
1577 return VMCI_ERROR_INVALID_RESOURCE;
1579 } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1580 struct vmci_ctx *create_context;
1581 bool supports_host_qp;
1584 * Do not attach a host to a user created queue pair if that
1585 * user doesn't support host queue pair end points.
1588 create_context = vmci_ctx_get(entry->create_id);
1589 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1590 vmci_ctx_put(create_context);
1592 if (!supports_host_qp)
1593 return VMCI_ERROR_INVALID_RESOURCE;
1596 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1597 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1599 if (context_id != VMCI_HOST_CONTEXT_ID) {
1601 * The queue pair broker entry stores values from the guest
1602 * point of view, so an attaching guest should match the values
1603 * stored in the entry.
1606 if (entry->qp.produce_size != produce_size ||
1607 entry->qp.consume_size != consume_size) {
1608 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1610 } else if (entry->qp.produce_size != consume_size ||
1611 entry->qp.consume_size != produce_size) {
1612 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1615 if (context_id != VMCI_HOST_CONTEXT_ID) {
1617 * If a guest attached to a queue pair, it will supply
1618 * the backing memory. If this is a pre NOVMVM vmx,
1619 * the backing memory will be supplied by calling
1620 * vmci_qp_broker_set_page_store() following the
1621 * return of the vmci_qp_broker_alloc() call. If it is
1622 * a vmx of version NOVMVM or later, the page store
1623 * must be supplied as part of the
1624 * vmci_qp_broker_alloc call. Under all circumstances
1625 * must the initially created queue pair not have any
1626 * memory associated with it already.
1629 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1630 return VMCI_ERROR_INVALID_ARGS;
1632 if (page_store != NULL) {
1634 * Patch up host state to point to guest
1635 * supplied memory. The VMX already
1636 * initialized the queue pair headers, so no
1637 * need for the kernel side to do that.
1640 result = qp_host_register_user_memory(page_store,
1641 entry->produce_q,
1642 entry->consume_q);
1643 if (result < VMCI_SUCCESS)
1644 return result;
1646 entry->state = VMCIQPB_ATTACHED_MEM;
1647 } else {
1648 entry->state = VMCIQPB_ATTACHED_NO_MEM;
1650 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1652 * The host side is attempting to attach to a queue
1653 * pair that doesn't have any memory associated with
1654 * it. This must be a pre NOVMVM vmx that hasn't set
1655 * the page store information yet, or a quiesced VM.
1658 return VMCI_ERROR_UNAVAILABLE;
1659 } else {
1660 /* The host side has successfully attached to a queue pair. */
1661 entry->state = VMCIQPB_ATTACHED_MEM;
1664 if (entry->state == VMCIQPB_ATTACHED_MEM) {
1665 result =
1666 qp_notify_peer(true, entry->qp.handle, context_id,
1667 entry->create_id);
1668 if (result < VMCI_SUCCESS)
1669 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1670 entry->create_id, entry->qp.handle.context,
1671 entry->qp.handle.resource);
1674 entry->attach_id = context_id;
1675 entry->qp.ref_count++;
1676 if (wakeup_cb) {
1677 entry->wakeup_cb = wakeup_cb;
1678 entry->client_data = client_data;
1682 * When attaching to local queue pairs, the context already has
1683 * an entry tracking the queue pair, so don't add another one.
1685 if (!is_local)
1686 vmci_ctx_qp_create(context, entry->qp.handle);
1688 if (ent != NULL)
1689 *ent = entry;
1691 return VMCI_SUCCESS;
1695 * queue_pair_Alloc for use when setting up queue pair endpoints
1696 * on the host.
1698 static int qp_broker_alloc(struct vmci_handle handle,
1699 u32 peer,
1700 u32 flags,
1701 u32 priv_flags,
1702 u64 produce_size,
1703 u64 consume_size,
1704 struct vmci_qp_page_store *page_store,
1705 struct vmci_ctx *context,
1706 vmci_event_release_cb wakeup_cb,
1707 void *client_data,
1708 struct qp_broker_entry **ent,
1709 bool *swap)
1711 const u32 context_id = vmci_ctx_get_id(context);
1712 bool create;
1713 struct qp_broker_entry *entry = NULL;
1714 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1715 int result;
1717 if (vmci_handle_is_invalid(handle) ||
1718 (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1719 !(produce_size || consume_size) ||
1720 !context || context_id == VMCI_INVALID_ID ||
1721 handle.context == VMCI_INVALID_ID) {
1722 return VMCI_ERROR_INVALID_ARGS;
1725 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1726 return VMCI_ERROR_INVALID_ARGS;
1729 * In the initial argument check, we ensure that non-vmkernel hosts
1730 * are not allowed to create local queue pairs.
1733 mutex_lock(&qp_broker_list.mutex);
1735 if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1736 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1737 context_id, handle.context, handle.resource);
1738 mutex_unlock(&qp_broker_list.mutex);
1739 return VMCI_ERROR_ALREADY_EXISTS;
1742 if (handle.resource != VMCI_INVALID_ID)
1743 entry = qp_broker_handle_to_entry(handle);
1745 if (!entry) {
1746 create = true;
1747 result =
1748 qp_broker_create(handle, peer, flags, priv_flags,
1749 produce_size, consume_size, page_store,
1750 context, wakeup_cb, client_data, ent);
1751 } else {
1752 create = false;
1753 result =
1754 qp_broker_attach(entry, peer, flags, priv_flags,
1755 produce_size, consume_size, page_store,
1756 context, wakeup_cb, client_data, ent);
1759 mutex_unlock(&qp_broker_list.mutex);
1761 if (swap)
1762 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1763 !(create && is_local);
1765 return result;
1769 * This function implements the kernel API for allocating a queue
1770 * pair.
1772 static int qp_alloc_host_work(struct vmci_handle *handle,
1773 struct vmci_queue **produce_q,
1774 u64 produce_size,
1775 struct vmci_queue **consume_q,
1776 u64 consume_size,
1777 u32 peer,
1778 u32 flags,
1779 u32 priv_flags,
1780 vmci_event_release_cb wakeup_cb,
1781 void *client_data)
1783 struct vmci_handle new_handle;
1784 struct vmci_ctx *context;
1785 struct qp_broker_entry *entry;
1786 int result;
1787 bool swap;
1789 if (vmci_handle_is_invalid(*handle)) {
1790 new_handle = vmci_make_handle(
1791 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1792 } else
1793 new_handle = *handle;
1795 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1796 entry = NULL;
1797 result =
1798 qp_broker_alloc(new_handle, peer, flags, priv_flags,
1799 produce_size, consume_size, NULL, context,
1800 wakeup_cb, client_data, &entry, &swap);
1801 if (result == VMCI_SUCCESS) {
1802 if (swap) {
1804 * If this is a local queue pair, the attacher
1805 * will swap around produce and consume
1806 * queues.
1809 *produce_q = entry->consume_q;
1810 *consume_q = entry->produce_q;
1811 } else {
1812 *produce_q = entry->produce_q;
1813 *consume_q = entry->consume_q;
1816 *handle = vmci_resource_handle(&entry->resource);
1817 } else {
1818 *handle = VMCI_INVALID_HANDLE;
1819 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1820 result);
1822 vmci_ctx_put(context);
1823 return result;
1827 * Allocates a VMCI queue_pair. Only checks validity of input
1828 * arguments. The real work is done in the host or guest
1829 * specific function.
1831 int vmci_qp_alloc(struct vmci_handle *handle,
1832 struct vmci_queue **produce_q,
1833 u64 produce_size,
1834 struct vmci_queue **consume_q,
1835 u64 consume_size,
1836 u32 peer,
1837 u32 flags,
1838 u32 priv_flags,
1839 bool guest_endpoint,
1840 vmci_event_release_cb wakeup_cb,
1841 void *client_data)
1843 if (!handle || !produce_q || !consume_q ||
1844 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1845 return VMCI_ERROR_INVALID_ARGS;
1847 if (guest_endpoint) {
1848 return qp_alloc_guest_work(handle, produce_q,
1849 produce_size, consume_q,
1850 consume_size, peer,
1851 flags, priv_flags);
1852 } else {
1853 return qp_alloc_host_work(handle, produce_q,
1854 produce_size, consume_q,
1855 consume_size, peer, flags,
1856 priv_flags, wakeup_cb, client_data);
1861 * This function implements the host kernel API for detaching from
1862 * a queue pair.
1864 static int qp_detatch_host_work(struct vmci_handle handle)
1866 int result;
1867 struct vmci_ctx *context;
1869 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1871 result = vmci_qp_broker_detach(handle, context);
1873 vmci_ctx_put(context);
1874 return result;
1878 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1879 * Real work is done in the host or guest specific function.
1881 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1883 if (vmci_handle_is_invalid(handle))
1884 return VMCI_ERROR_INVALID_ARGS;
1886 if (guest_endpoint)
1887 return qp_detatch_guest_work(handle);
1888 else
1889 return qp_detatch_host_work(handle);
1893 * Returns the entry from the head of the list. Assumes that the list is
1894 * locked.
1896 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1898 if (!list_empty(&qp_list->head)) {
1899 struct qp_entry *entry =
1900 list_first_entry(&qp_list->head, struct qp_entry,
1901 list_item);
1902 return entry;
1905 return NULL;
1908 void vmci_qp_broker_exit(void)
1910 struct qp_entry *entry;
1911 struct qp_broker_entry *be;
1913 mutex_lock(&qp_broker_list.mutex);
1915 while ((entry = qp_list_get_head(&qp_broker_list))) {
1916 be = (struct qp_broker_entry *)entry;
1918 qp_list_remove_entry(&qp_broker_list, entry);
1919 kfree(be);
1922 mutex_unlock(&qp_broker_list.mutex);
1926 * Requests that a queue pair be allocated with the VMCI queue
1927 * pair broker. Allocates a queue pair entry if one does not
1928 * exist. Attaches to one if it exists, and retrieves the page
1929 * files backing that queue_pair. Assumes that the queue pair
1930 * broker lock is held.
1932 int vmci_qp_broker_alloc(struct vmci_handle handle,
1933 u32 peer,
1934 u32 flags,
1935 u32 priv_flags,
1936 u64 produce_size,
1937 u64 consume_size,
1938 struct vmci_qp_page_store *page_store,
1939 struct vmci_ctx *context)
1941 return qp_broker_alloc(handle, peer, flags, priv_flags,
1942 produce_size, consume_size,
1943 page_store, context, NULL, NULL, NULL, NULL);
1947 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1948 * step to add the UVAs of the VMX mapping of the queue pair. This function
1949 * provides backwards compatibility with such VMX'en, and takes care of
1950 * registering the page store for a queue pair previously allocated by the
1951 * VMX during create or attach. This function will move the queue pair state
1952 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1953 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1954 * attached state with memory, the queue pair is ready to be used by the
1955 * host peer, and an attached event will be generated.
1957 * Assumes that the queue pair broker lock is held.
1959 * This function is only used by the hosted platform, since there is no
1960 * issue with backwards compatibility for vmkernel.
1962 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1963 u64 produce_uva,
1964 u64 consume_uva,
1965 struct vmci_ctx *context)
1967 struct qp_broker_entry *entry;
1968 int result;
1969 const u32 context_id = vmci_ctx_get_id(context);
1971 if (vmci_handle_is_invalid(handle) || !context ||
1972 context_id == VMCI_INVALID_ID)
1973 return VMCI_ERROR_INVALID_ARGS;
1976 * We only support guest to host queue pairs, so the VMX must
1977 * supply UVAs for the mapped page files.
1980 if (produce_uva == 0 || consume_uva == 0)
1981 return VMCI_ERROR_INVALID_ARGS;
1983 mutex_lock(&qp_broker_list.mutex);
1985 if (!vmci_ctx_qp_exists(context, handle)) {
1986 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1987 context_id, handle.context, handle.resource);
1988 result = VMCI_ERROR_NOT_FOUND;
1989 goto out;
1992 entry = qp_broker_handle_to_entry(handle);
1993 if (!entry) {
1994 result = VMCI_ERROR_NOT_FOUND;
1995 goto out;
1999 * If I'm the owner then I can set the page store.
2001 * Or, if a host created the queue_pair and I'm the attached peer
2002 * then I can set the page store.
2004 if (entry->create_id != context_id &&
2005 (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2006 entry->attach_id != context_id)) {
2007 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2008 goto out;
2011 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2012 entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2013 result = VMCI_ERROR_UNAVAILABLE;
2014 goto out;
2017 result = qp_host_get_user_memory(produce_uva, consume_uva,
2018 entry->produce_q, entry->consume_q);
2019 if (result < VMCI_SUCCESS)
2020 goto out;
2022 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2023 if (result < VMCI_SUCCESS) {
2024 qp_host_unregister_user_memory(entry->produce_q,
2025 entry->consume_q);
2026 goto out;
2029 if (entry->state == VMCIQPB_CREATED_NO_MEM)
2030 entry->state = VMCIQPB_CREATED_MEM;
2031 else
2032 entry->state = VMCIQPB_ATTACHED_MEM;
2034 entry->vmci_page_files = true;
2036 if (entry->state == VMCIQPB_ATTACHED_MEM) {
2037 result =
2038 qp_notify_peer(true, handle, context_id, entry->create_id);
2039 if (result < VMCI_SUCCESS) {
2040 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2041 entry->create_id, entry->qp.handle.context,
2042 entry->qp.handle.resource);
2046 result = VMCI_SUCCESS;
2047 out:
2048 mutex_unlock(&qp_broker_list.mutex);
2049 return result;
2053 * Resets saved queue headers for the given QP broker
2054 * entry. Should be used when guest memory becomes available
2055 * again, or the guest detaches.
2057 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2059 entry->produce_q->saved_header = NULL;
2060 entry->consume_q->saved_header = NULL;
2064 * The main entry point for detaching from a queue pair registered with the
2065 * queue pair broker. If more than one endpoint is attached to the queue
2066 * pair, the first endpoint will mainly decrement a reference count and
2067 * generate a notification to its peer. The last endpoint will clean up
2068 * the queue pair state registered with the broker.
2070 * When a guest endpoint detaches, it will unmap and unregister the guest
2071 * memory backing the queue pair. If the host is still attached, it will
2072 * no longer be able to access the queue pair content.
2074 * If the queue pair is already in a state where there is no memory
2075 * registered for the queue pair (any *_NO_MEM state), it will transition to
2076 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2077 * endpoint is the first of two endpoints to detach. If the host endpoint is
2078 * the first out of two to detach, the queue pair will move to the
2079 * VMCIQPB_SHUTDOWN_MEM state.
2081 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2083 struct qp_broker_entry *entry;
2084 const u32 context_id = vmci_ctx_get_id(context);
2085 u32 peer_id;
2086 bool is_local = false;
2087 int result;
2089 if (vmci_handle_is_invalid(handle) || !context ||
2090 context_id == VMCI_INVALID_ID) {
2091 return VMCI_ERROR_INVALID_ARGS;
2094 mutex_lock(&qp_broker_list.mutex);
2096 if (!vmci_ctx_qp_exists(context, handle)) {
2097 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2098 context_id, handle.context, handle.resource);
2099 result = VMCI_ERROR_NOT_FOUND;
2100 goto out;
2103 entry = qp_broker_handle_to_entry(handle);
2104 if (!entry) {
2105 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2106 context_id, handle.context, handle.resource);
2107 result = VMCI_ERROR_NOT_FOUND;
2108 goto out;
2111 if (context_id != entry->create_id && context_id != entry->attach_id) {
2112 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2113 goto out;
2116 if (context_id == entry->create_id) {
2117 peer_id = entry->attach_id;
2118 entry->create_id = VMCI_INVALID_ID;
2119 } else {
2120 peer_id = entry->create_id;
2121 entry->attach_id = VMCI_INVALID_ID;
2123 entry->qp.ref_count--;
2125 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2127 if (context_id != VMCI_HOST_CONTEXT_ID) {
2128 bool headers_mapped;
2131 * Pre NOVMVM vmx'en may detach from a queue pair
2132 * before setting the page store, and in that case
2133 * there is no user memory to detach from. Also, more
2134 * recent VMX'en may detach from a queue pair in the
2135 * quiesced state.
2138 qp_acquire_queue_mutex(entry->produce_q);
2139 headers_mapped = entry->produce_q->q_header ||
2140 entry->consume_q->q_header;
2141 if (QPBROKERSTATE_HAS_MEM(entry)) {
2142 result =
2143 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2144 entry->produce_q,
2145 entry->consume_q);
2146 if (result < VMCI_SUCCESS)
2147 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2148 handle.context, handle.resource,
2149 result);
2151 qp_host_unregister_user_memory(entry->produce_q,
2152 entry->consume_q);
2156 if (!headers_mapped)
2157 qp_reset_saved_headers(entry);
2159 qp_release_queue_mutex(entry->produce_q);
2161 if (!headers_mapped && entry->wakeup_cb)
2162 entry->wakeup_cb(entry->client_data);
2164 } else {
2165 if (entry->wakeup_cb) {
2166 entry->wakeup_cb = NULL;
2167 entry->client_data = NULL;
2171 if (entry->qp.ref_count == 0) {
2172 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2174 if (is_local)
2175 kfree(entry->local_mem);
2177 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2178 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2179 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2180 /* Unlink from resource hash table and free callback */
2181 vmci_resource_remove(&entry->resource);
2183 kfree(entry);
2185 vmci_ctx_qp_destroy(context, handle);
2186 } else {
2187 qp_notify_peer(false, handle, context_id, peer_id);
2188 if (context_id == VMCI_HOST_CONTEXT_ID &&
2189 QPBROKERSTATE_HAS_MEM(entry)) {
2190 entry->state = VMCIQPB_SHUTDOWN_MEM;
2191 } else {
2192 entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2195 if (!is_local)
2196 vmci_ctx_qp_destroy(context, handle);
2199 result = VMCI_SUCCESS;
2200 out:
2201 mutex_unlock(&qp_broker_list.mutex);
2202 return result;
2206 * Establishes the necessary mappings for a queue pair given a
2207 * reference to the queue pair guest memory. This is usually
2208 * called when a guest is unquiesced and the VMX is allowed to
2209 * map guest memory once again.
2211 int vmci_qp_broker_map(struct vmci_handle handle,
2212 struct vmci_ctx *context,
2213 u64 guest_mem)
2215 struct qp_broker_entry *entry;
2216 const u32 context_id = vmci_ctx_get_id(context);
2217 int result;
2219 if (vmci_handle_is_invalid(handle) || !context ||
2220 context_id == VMCI_INVALID_ID)
2221 return VMCI_ERROR_INVALID_ARGS;
2223 mutex_lock(&qp_broker_list.mutex);
2225 if (!vmci_ctx_qp_exists(context, handle)) {
2226 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2227 context_id, handle.context, handle.resource);
2228 result = VMCI_ERROR_NOT_FOUND;
2229 goto out;
2232 entry = qp_broker_handle_to_entry(handle);
2233 if (!entry) {
2234 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2235 context_id, handle.context, handle.resource);
2236 result = VMCI_ERROR_NOT_FOUND;
2237 goto out;
2240 if (context_id != entry->create_id && context_id != entry->attach_id) {
2241 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2242 goto out;
2245 result = VMCI_SUCCESS;
2247 if (context_id != VMCI_HOST_CONTEXT_ID) {
2248 struct vmci_qp_page_store page_store;
2250 page_store.pages = guest_mem;
2251 page_store.len = QPE_NUM_PAGES(entry->qp);
2253 qp_acquire_queue_mutex(entry->produce_q);
2254 qp_reset_saved_headers(entry);
2255 result =
2256 qp_host_register_user_memory(&page_store,
2257 entry->produce_q,
2258 entry->consume_q);
2259 qp_release_queue_mutex(entry->produce_q);
2260 if (result == VMCI_SUCCESS) {
2261 /* Move state from *_NO_MEM to *_MEM */
2263 entry->state++;
2265 if (entry->wakeup_cb)
2266 entry->wakeup_cb(entry->client_data);
2270 out:
2271 mutex_unlock(&qp_broker_list.mutex);
2272 return result;
2276 * Saves a snapshot of the queue headers for the given QP broker
2277 * entry. Should be used when guest memory is unmapped.
2278 * Results:
2279 * VMCI_SUCCESS on success, appropriate error code if guest memory
2280 * can't be accessed..
2282 static int qp_save_headers(struct qp_broker_entry *entry)
2284 int result;
2286 if (entry->produce_q->saved_header != NULL &&
2287 entry->consume_q->saved_header != NULL) {
2289 * If the headers have already been saved, we don't need to do
2290 * it again, and we don't want to map in the headers
2291 * unnecessarily.
2294 return VMCI_SUCCESS;
2297 if (NULL == entry->produce_q->q_header ||
2298 NULL == entry->consume_q->q_header) {
2299 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2300 if (result < VMCI_SUCCESS)
2301 return result;
2304 memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2305 sizeof(entry->saved_produce_q));
2306 entry->produce_q->saved_header = &entry->saved_produce_q;
2307 memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2308 sizeof(entry->saved_consume_q));
2309 entry->consume_q->saved_header = &entry->saved_consume_q;
2311 return VMCI_SUCCESS;
2315 * Removes all references to the guest memory of a given queue pair, and
2316 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317 * called when a VM is being quiesced where access to guest memory should
2318 * avoided.
2320 int vmci_qp_broker_unmap(struct vmci_handle handle,
2321 struct vmci_ctx *context,
2322 u32 gid)
2324 struct qp_broker_entry *entry;
2325 const u32 context_id = vmci_ctx_get_id(context);
2326 int result;
2328 if (vmci_handle_is_invalid(handle) || !context ||
2329 context_id == VMCI_INVALID_ID)
2330 return VMCI_ERROR_INVALID_ARGS;
2332 mutex_lock(&qp_broker_list.mutex);
2334 if (!vmci_ctx_qp_exists(context, handle)) {
2335 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2336 context_id, handle.context, handle.resource);
2337 result = VMCI_ERROR_NOT_FOUND;
2338 goto out;
2341 entry = qp_broker_handle_to_entry(handle);
2342 if (!entry) {
2343 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2344 context_id, handle.context, handle.resource);
2345 result = VMCI_ERROR_NOT_FOUND;
2346 goto out;
2349 if (context_id != entry->create_id && context_id != entry->attach_id) {
2350 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2351 goto out;
2354 if (context_id != VMCI_HOST_CONTEXT_ID) {
2355 qp_acquire_queue_mutex(entry->produce_q);
2356 result = qp_save_headers(entry);
2357 if (result < VMCI_SUCCESS)
2358 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2359 handle.context, handle.resource, result);
2361 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2364 * On hosted, when we unmap queue pairs, the VMX will also
2365 * unmap the guest memory, so we invalidate the previously
2366 * registered memory. If the queue pair is mapped again at a
2367 * later point in time, we will need to reregister the user
2368 * memory with a possibly new user VA.
2370 qp_host_unregister_user_memory(entry->produce_q,
2371 entry->consume_q);
2374 * Move state from *_MEM to *_NO_MEM.
2376 entry->state--;
2378 qp_release_queue_mutex(entry->produce_q);
2381 result = VMCI_SUCCESS;
2383 out:
2384 mutex_unlock(&qp_broker_list.mutex);
2385 return result;
2389 * Destroys all guest queue pair endpoints. If active guest queue
2390 * pairs still exist, hypercalls to attempt detach from these
2391 * queue pairs will be made. Any failure to detach is silently
2392 * ignored.
2394 void vmci_qp_guest_endpoints_exit(void)
2396 struct qp_entry *entry;
2397 struct qp_guest_endpoint *ep;
2399 mutex_lock(&qp_guest_endpoints.mutex);
2401 while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2402 ep = (struct qp_guest_endpoint *)entry;
2404 /* Don't make a hypercall for local queue_pairs. */
2405 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2406 qp_detatch_hypercall(entry->handle);
2408 /* We cannot fail the exit, so let's reset ref_count. */
2409 entry->ref_count = 0;
2410 qp_list_remove_entry(&qp_guest_endpoints, entry);
2412 qp_guest_endpoint_destroy(ep);
2415 mutex_unlock(&qp_guest_endpoints.mutex);
2419 * Helper routine that will lock the queue pair before subsequent
2420 * operations.
2421 * Note: Non-blocking on the host side is currently only implemented in ESX.
2422 * Since non-blocking isn't yet implemented on the host personality we
2423 * have no reason to acquire a spin lock. So to avoid the use of an
2424 * unnecessary lock only acquire the mutex if we can block.
2426 static void qp_lock(const struct vmci_qp *qpair)
2428 qp_acquire_queue_mutex(qpair->produce_q);
2432 * Helper routine that unlocks the queue pair after calling
2433 * qp_lock.
2435 static void qp_unlock(const struct vmci_qp *qpair)
2437 qp_release_queue_mutex(qpair->produce_q);
2441 * The queue headers may not be mapped at all times. If a queue is
2442 * currently not mapped, it will be attempted to do so.
2444 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2445 struct vmci_queue *consume_q)
2447 int result;
2449 if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2450 result = qp_host_map_queues(produce_q, consume_q);
2451 if (result < VMCI_SUCCESS)
2452 return (produce_q->saved_header &&
2453 consume_q->saved_header) ?
2454 VMCI_ERROR_QUEUEPAIR_NOT_READY :
2455 VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2458 return VMCI_SUCCESS;
2462 * Helper routine that will retrieve the produce and consume
2463 * headers of a given queue pair. If the guest memory of the
2464 * queue pair is currently not available, the saved queue headers
2465 * will be returned, if these are available.
2467 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2468 struct vmci_queue_header **produce_q_header,
2469 struct vmci_queue_header **consume_q_header)
2471 int result;
2473 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2474 if (result == VMCI_SUCCESS) {
2475 *produce_q_header = qpair->produce_q->q_header;
2476 *consume_q_header = qpair->consume_q->q_header;
2477 } else if (qpair->produce_q->saved_header &&
2478 qpair->consume_q->saved_header) {
2479 *produce_q_header = qpair->produce_q->saved_header;
2480 *consume_q_header = qpair->consume_q->saved_header;
2481 result = VMCI_SUCCESS;
2484 return result;
2488 * Callback from VMCI queue pair broker indicating that a queue
2489 * pair that was previously not ready, now either is ready or
2490 * gone forever.
2492 static int qp_wakeup_cb(void *client_data)
2494 struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2496 qp_lock(qpair);
2497 while (qpair->blocked > 0) {
2498 qpair->blocked--;
2499 qpair->generation++;
2500 wake_up(&qpair->event);
2502 qp_unlock(qpair);
2504 return VMCI_SUCCESS;
2508 * Makes the calling thread wait for the queue pair to become
2509 * ready for host side access. Returns true when thread is
2510 * woken up after queue pair state change, false otherwise.
2512 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2514 unsigned int generation;
2516 qpair->blocked++;
2517 generation = qpair->generation;
2518 qp_unlock(qpair);
2519 wait_event(qpair->event, generation != qpair->generation);
2520 qp_lock(qpair);
2522 return true;
2526 * Enqueues a given buffer to the produce queue using the provided
2527 * function. As many bytes as possible (space available in the queue)
2528 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2529 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2530 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2531 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2532 * an error occured when accessing the buffer,
2533 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2534 * available. Otherwise, the number of bytes written to the queue is
2535 * returned. Updates the tail pointer of the produce queue.
2537 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2538 struct vmci_queue *consume_q,
2539 const u64 produce_q_size,
2540 struct iov_iter *from)
2542 s64 free_space;
2543 u64 tail;
2544 size_t buf_size = iov_iter_count(from);
2545 size_t written;
2546 ssize_t result;
2548 result = qp_map_queue_headers(produce_q, consume_q);
2549 if (unlikely(result != VMCI_SUCCESS))
2550 return result;
2552 free_space = vmci_q_header_free_space(produce_q->q_header,
2553 consume_q->q_header,
2554 produce_q_size);
2555 if (free_space == 0)
2556 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2558 if (free_space < VMCI_SUCCESS)
2559 return (ssize_t) free_space;
2561 written = (size_t) (free_space > buf_size ? buf_size : free_space);
2562 tail = vmci_q_header_producer_tail(produce_q->q_header);
2563 if (likely(tail + written < produce_q_size)) {
2564 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2565 } else {
2566 /* Tail pointer wraps around. */
2568 const size_t tmp = (size_t) (produce_q_size - tail);
2570 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2571 if (result >= VMCI_SUCCESS)
2572 result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2573 written - tmp);
2576 if (result < VMCI_SUCCESS)
2577 return result;
2579 vmci_q_header_add_producer_tail(produce_q->q_header, written,
2580 produce_q_size);
2581 return written;
2585 * Dequeues data (if available) from the given consume queue. Writes data
2586 * to the user provided buffer using the provided function.
2587 * Assumes the queue->mutex has been acquired.
2588 * Results:
2589 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2590 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2591 * (as defined by the queue size).
2592 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2593 * Otherwise the number of bytes dequeued is returned.
2594 * Side effects:
2595 * Updates the head pointer of the consume queue.
2597 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2598 struct vmci_queue *consume_q,
2599 const u64 consume_q_size,
2600 struct iov_iter *to,
2601 bool update_consumer)
2603 size_t buf_size = iov_iter_count(to);
2604 s64 buf_ready;
2605 u64 head;
2606 size_t read;
2607 ssize_t result;
2609 result = qp_map_queue_headers(produce_q, consume_q);
2610 if (unlikely(result != VMCI_SUCCESS))
2611 return result;
2613 buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2614 produce_q->q_header,
2615 consume_q_size);
2616 if (buf_ready == 0)
2617 return VMCI_ERROR_QUEUEPAIR_NODATA;
2619 if (buf_ready < VMCI_SUCCESS)
2620 return (ssize_t) buf_ready;
2622 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2623 head = vmci_q_header_consumer_head(produce_q->q_header);
2624 if (likely(head + read < consume_q_size)) {
2625 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2626 } else {
2627 /* Head pointer wraps around. */
2629 const size_t tmp = (size_t) (consume_q_size - head);
2631 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2632 if (result >= VMCI_SUCCESS)
2633 result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2634 read - tmp);
2638 if (result < VMCI_SUCCESS)
2639 return result;
2641 if (update_consumer)
2642 vmci_q_header_add_consumer_head(produce_q->q_header,
2643 read, consume_q_size);
2645 return read;
2649 * vmci_qpair_alloc() - Allocates a queue pair.
2650 * @qpair: Pointer for the new vmci_qp struct.
2651 * @handle: Handle to track the resource.
2652 * @produce_qsize: Desired size of the producer queue.
2653 * @consume_qsize: Desired size of the consumer queue.
2654 * @peer: ContextID of the peer.
2655 * @flags: VMCI flags.
2656 * @priv_flags: VMCI priviledge flags.
2658 * This is the client interface for allocating the memory for a
2659 * vmci_qp structure and then attaching to the underlying
2660 * queue. If an error occurs allocating the memory for the
2661 * vmci_qp structure no attempt is made to attach. If an
2662 * error occurs attaching, then the structure is freed.
2664 int vmci_qpair_alloc(struct vmci_qp **qpair,
2665 struct vmci_handle *handle,
2666 u64 produce_qsize,
2667 u64 consume_qsize,
2668 u32 peer,
2669 u32 flags,
2670 u32 priv_flags)
2672 struct vmci_qp *my_qpair;
2673 int retval;
2674 struct vmci_handle src = VMCI_INVALID_HANDLE;
2675 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2676 enum vmci_route route;
2677 vmci_event_release_cb wakeup_cb;
2678 void *client_data;
2681 * Restrict the size of a queuepair. The device already
2682 * enforces a limit on the total amount of memory that can be
2683 * allocated to queuepairs for a guest. However, we try to
2684 * allocate this memory before we make the queuepair
2685 * allocation hypercall. On Linux, we allocate each page
2686 * separately, which means rather than fail, the guest will
2687 * thrash while it tries to allocate, and will become
2688 * increasingly unresponsive to the point where it appears to
2689 * be hung. So we place a limit on the size of an individual
2690 * queuepair here, and leave the device to enforce the
2691 * restriction on total queuepair memory. (Note that this
2692 * doesn't prevent all cases; a user with only this much
2693 * physical memory could still get into trouble.) The error
2694 * used by the device is NO_RESOURCES, so use that here too.
2697 if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2698 produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2699 return VMCI_ERROR_NO_RESOURCES;
2701 retval = vmci_route(&src, &dst, false, &route);
2702 if (retval < VMCI_SUCCESS)
2703 route = vmci_guest_code_active() ?
2704 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2706 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2707 pr_devel("NONBLOCK OR PINNED set");
2708 return VMCI_ERROR_INVALID_ARGS;
2711 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2712 if (!my_qpair)
2713 return VMCI_ERROR_NO_MEM;
2715 my_qpair->produce_q_size = produce_qsize;
2716 my_qpair->consume_q_size = consume_qsize;
2717 my_qpair->peer = peer;
2718 my_qpair->flags = flags;
2719 my_qpair->priv_flags = priv_flags;
2721 wakeup_cb = NULL;
2722 client_data = NULL;
2724 if (VMCI_ROUTE_AS_HOST == route) {
2725 my_qpair->guest_endpoint = false;
2726 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2727 my_qpair->blocked = 0;
2728 my_qpair->generation = 0;
2729 init_waitqueue_head(&my_qpair->event);
2730 wakeup_cb = qp_wakeup_cb;
2731 client_data = (void *)my_qpair;
2733 } else {
2734 my_qpair->guest_endpoint = true;
2737 retval = vmci_qp_alloc(handle,
2738 &my_qpair->produce_q,
2739 my_qpair->produce_q_size,
2740 &my_qpair->consume_q,
2741 my_qpair->consume_q_size,
2742 my_qpair->peer,
2743 my_qpair->flags,
2744 my_qpair->priv_flags,
2745 my_qpair->guest_endpoint,
2746 wakeup_cb, client_data);
2748 if (retval < VMCI_SUCCESS) {
2749 kfree(my_qpair);
2750 return retval;
2753 *qpair = my_qpair;
2754 my_qpair->handle = *handle;
2756 return retval;
2758 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2761 * vmci_qpair_detach() - Detatches the client from a queue pair.
2762 * @qpair: Reference of a pointer to the qpair struct.
2764 * This is the client interface for detaching from a VMCIQPair.
2765 * Note that this routine will free the memory allocated for the
2766 * vmci_qp structure too.
2768 int vmci_qpair_detach(struct vmci_qp **qpair)
2770 int result;
2771 struct vmci_qp *old_qpair;
2773 if (!qpair || !(*qpair))
2774 return VMCI_ERROR_INVALID_ARGS;
2776 old_qpair = *qpair;
2777 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2780 * The guest can fail to detach for a number of reasons, and
2781 * if it does so, it will cleanup the entry (if there is one).
2782 * The host can fail too, but it won't cleanup the entry
2783 * immediately, it will do that later when the context is
2784 * freed. Either way, we need to release the qpair struct
2785 * here; there isn't much the caller can do, and we don't want
2786 * to leak.
2789 memset(old_qpair, 0, sizeof(*old_qpair));
2790 old_qpair->handle = VMCI_INVALID_HANDLE;
2791 old_qpair->peer = VMCI_INVALID_ID;
2792 kfree(old_qpair);
2793 *qpair = NULL;
2795 return result;
2797 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2800 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2801 * @qpair: Pointer to the queue pair struct.
2802 * @producer_tail: Reference used for storing producer tail index.
2803 * @consumer_head: Reference used for storing the consumer head index.
2805 * This is the client interface for getting the current indexes of the
2806 * QPair from the point of the view of the caller as the producer.
2808 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2809 u64 *producer_tail,
2810 u64 *consumer_head)
2812 struct vmci_queue_header *produce_q_header;
2813 struct vmci_queue_header *consume_q_header;
2814 int result;
2816 if (!qpair)
2817 return VMCI_ERROR_INVALID_ARGS;
2819 qp_lock(qpair);
2820 result =
2821 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2822 if (result == VMCI_SUCCESS)
2823 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2824 producer_tail, consumer_head);
2825 qp_unlock(qpair);
2827 if (result == VMCI_SUCCESS &&
2828 ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2829 (consumer_head && *consumer_head >= qpair->produce_q_size)))
2830 return VMCI_ERROR_INVALID_SIZE;
2832 return result;
2834 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2837 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2838 * @qpair: Pointer to the queue pair struct.
2839 * @consumer_tail: Reference used for storing consumer tail index.
2840 * @producer_head: Reference used for storing the producer head index.
2842 * This is the client interface for getting the current indexes of the
2843 * QPair from the point of the view of the caller as the consumer.
2845 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2846 u64 *consumer_tail,
2847 u64 *producer_head)
2849 struct vmci_queue_header *produce_q_header;
2850 struct vmci_queue_header *consume_q_header;
2851 int result;
2853 if (!qpair)
2854 return VMCI_ERROR_INVALID_ARGS;
2856 qp_lock(qpair);
2857 result =
2858 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2859 if (result == VMCI_SUCCESS)
2860 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2861 consumer_tail, producer_head);
2862 qp_unlock(qpair);
2864 if (result == VMCI_SUCCESS &&
2865 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2866 (producer_head && *producer_head >= qpair->consume_q_size)))
2867 return VMCI_ERROR_INVALID_SIZE;
2869 return result;
2871 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2874 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2875 * @qpair: Pointer to the queue pair struct.
2877 * This is the client interface for getting the amount of free
2878 * space in the QPair from the point of the view of the caller as
2879 * the producer which is the common case. Returns < 0 if err, else
2880 * available bytes into which data can be enqueued if > 0.
2882 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2884 struct vmci_queue_header *produce_q_header;
2885 struct vmci_queue_header *consume_q_header;
2886 s64 result;
2888 if (!qpair)
2889 return VMCI_ERROR_INVALID_ARGS;
2891 qp_lock(qpair);
2892 result =
2893 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2894 if (result == VMCI_SUCCESS)
2895 result = vmci_q_header_free_space(produce_q_header,
2896 consume_q_header,
2897 qpair->produce_q_size);
2898 else
2899 result = 0;
2901 qp_unlock(qpair);
2903 return result;
2905 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2908 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2909 * @qpair: Pointer to the queue pair struct.
2911 * This is the client interface for getting the amount of free
2912 * space in the QPair from the point of the view of the caller as
2913 * the consumer which is not the common case. Returns < 0 if err, else
2914 * available bytes into which data can be enqueued if > 0.
2916 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2918 struct vmci_queue_header *produce_q_header;
2919 struct vmci_queue_header *consume_q_header;
2920 s64 result;
2922 if (!qpair)
2923 return VMCI_ERROR_INVALID_ARGS;
2925 qp_lock(qpair);
2926 result =
2927 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2928 if (result == VMCI_SUCCESS)
2929 result = vmci_q_header_free_space(consume_q_header,
2930 produce_q_header,
2931 qpair->consume_q_size);
2932 else
2933 result = 0;
2935 qp_unlock(qpair);
2937 return result;
2939 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2942 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2943 * producer queue.
2944 * @qpair: Pointer to the queue pair struct.
2946 * This is the client interface for getting the amount of
2947 * enqueued data in the QPair from the point of the view of the
2948 * caller as the producer which is not the common case. Returns < 0 if err,
2949 * else available bytes that may be read.
2951 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2953 struct vmci_queue_header *produce_q_header;
2954 struct vmci_queue_header *consume_q_header;
2955 s64 result;
2957 if (!qpair)
2958 return VMCI_ERROR_INVALID_ARGS;
2960 qp_lock(qpair);
2961 result =
2962 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2963 if (result == VMCI_SUCCESS)
2964 result = vmci_q_header_buf_ready(produce_q_header,
2965 consume_q_header,
2966 qpair->produce_q_size);
2967 else
2968 result = 0;
2970 qp_unlock(qpair);
2972 return result;
2974 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2977 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2978 * consumer queue.
2979 * @qpair: Pointer to the queue pair struct.
2981 * This is the client interface for getting the amount of
2982 * enqueued data in the QPair from the point of the view of the
2983 * caller as the consumer which is the normal case. Returns < 0 if err,
2984 * else available bytes that may be read.
2986 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2988 struct vmci_queue_header *produce_q_header;
2989 struct vmci_queue_header *consume_q_header;
2990 s64 result;
2992 if (!qpair)
2993 return VMCI_ERROR_INVALID_ARGS;
2995 qp_lock(qpair);
2996 result =
2997 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2998 if (result == VMCI_SUCCESS)
2999 result = vmci_q_header_buf_ready(consume_q_header,
3000 produce_q_header,
3001 qpair->consume_q_size);
3002 else
3003 result = 0;
3005 qp_unlock(qpair);
3007 return result;
3009 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3012 * vmci_qpair_enqueue() - Throw data on the queue.
3013 * @qpair: Pointer to the queue pair struct.
3014 * @buf: Pointer to buffer containing data
3015 * @buf_size: Length of buffer.
3016 * @buf_type: Buffer type (Unused).
3018 * This is the client interface for enqueueing data into the queue.
3019 * Returns number of bytes enqueued or < 0 on error.
3021 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3022 const void *buf,
3023 size_t buf_size,
3024 int buf_type)
3026 ssize_t result;
3027 struct iov_iter from;
3028 struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3030 if (!qpair || !buf)
3031 return VMCI_ERROR_INVALID_ARGS;
3033 iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3035 qp_lock(qpair);
3037 do {
3038 result = qp_enqueue_locked(qpair->produce_q,
3039 qpair->consume_q,
3040 qpair->produce_q_size,
3041 &from);
3043 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3044 !qp_wait_for_ready_queue(qpair))
3045 result = VMCI_ERROR_WOULD_BLOCK;
3047 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3049 qp_unlock(qpair);
3051 return result;
3053 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3056 * vmci_qpair_dequeue() - Get data from the queue.
3057 * @qpair: Pointer to the queue pair struct.
3058 * @buf: Pointer to buffer for the data
3059 * @buf_size: Length of buffer.
3060 * @buf_type: Buffer type (Unused).
3062 * This is the client interface for dequeueing data from the queue.
3063 * Returns number of bytes dequeued or < 0 on error.
3065 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3066 void *buf,
3067 size_t buf_size,
3068 int buf_type)
3070 ssize_t result;
3071 struct iov_iter to;
3072 struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3074 if (!qpair || !buf)
3075 return VMCI_ERROR_INVALID_ARGS;
3077 iov_iter_kvec(&to, READ, &v, 1, buf_size);
3079 qp_lock(qpair);
3081 do {
3082 result = qp_dequeue_locked(qpair->produce_q,
3083 qpair->consume_q,
3084 qpair->consume_q_size,
3085 &to, true);
3087 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3088 !qp_wait_for_ready_queue(qpair))
3089 result = VMCI_ERROR_WOULD_BLOCK;
3091 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3093 qp_unlock(qpair);
3095 return result;
3097 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3100 * vmci_qpair_peek() - Peek at the data in the queue.
3101 * @qpair: Pointer to the queue pair struct.
3102 * @buf: Pointer to buffer for the data
3103 * @buf_size: Length of buffer.
3104 * @buf_type: Buffer type (Unused on Linux).
3106 * This is the client interface for peeking into a queue. (I.e.,
3107 * copy data from the queue without updating the head pointer.)
3108 * Returns number of bytes dequeued or < 0 on error.
3110 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3111 void *buf,
3112 size_t buf_size,
3113 int buf_type)
3115 struct iov_iter to;
3116 struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3117 ssize_t result;
3119 if (!qpair || !buf)
3120 return VMCI_ERROR_INVALID_ARGS;
3122 iov_iter_kvec(&to, READ, &v, 1, buf_size);
3124 qp_lock(qpair);
3126 do {
3127 result = qp_dequeue_locked(qpair->produce_q,
3128 qpair->consume_q,
3129 qpair->consume_q_size,
3130 &to, false);
3132 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3133 !qp_wait_for_ready_queue(qpair))
3134 result = VMCI_ERROR_WOULD_BLOCK;
3136 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3138 qp_unlock(qpair);
3140 return result;
3142 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3145 * vmci_qpair_enquev() - Throw data on the queue using iov.
3146 * @qpair: Pointer to the queue pair struct.
3147 * @iov: Pointer to buffer containing data
3148 * @iov_size: Length of buffer.
3149 * @buf_type: Buffer type (Unused).
3151 * This is the client interface for enqueueing data into the queue.
3152 * This function uses IO vectors to handle the work. Returns number
3153 * of bytes enqueued or < 0 on error.
3155 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3156 struct msghdr *msg,
3157 size_t iov_size,
3158 int buf_type)
3160 ssize_t result;
3162 if (!qpair)
3163 return VMCI_ERROR_INVALID_ARGS;
3165 qp_lock(qpair);
3167 do {
3168 result = qp_enqueue_locked(qpair->produce_q,
3169 qpair->consume_q,
3170 qpair->produce_q_size,
3171 &msg->msg_iter);
3173 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3174 !qp_wait_for_ready_queue(qpair))
3175 result = VMCI_ERROR_WOULD_BLOCK;
3177 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3179 qp_unlock(qpair);
3181 return result;
3183 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3186 * vmci_qpair_dequev() - Get data from the queue using iov.
3187 * @qpair: Pointer to the queue pair struct.
3188 * @iov: Pointer to buffer for the data
3189 * @iov_size: Length of buffer.
3190 * @buf_type: Buffer type (Unused).
3192 * This is the client interface for dequeueing data from the queue.
3193 * This function uses IO vectors to handle the work. Returns number
3194 * of bytes dequeued or < 0 on error.
3196 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3197 struct msghdr *msg,
3198 size_t iov_size,
3199 int buf_type)
3201 ssize_t result;
3203 if (!qpair)
3204 return VMCI_ERROR_INVALID_ARGS;
3206 qp_lock(qpair);
3208 do {
3209 result = qp_dequeue_locked(qpair->produce_q,
3210 qpair->consume_q,
3211 qpair->consume_q_size,
3212 &msg->msg_iter, true);
3214 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3215 !qp_wait_for_ready_queue(qpair))
3216 result = VMCI_ERROR_WOULD_BLOCK;
3218 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3220 qp_unlock(qpair);
3222 return result;
3224 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3227 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3228 * @qpair: Pointer to the queue pair struct.
3229 * @iov: Pointer to buffer for the data
3230 * @iov_size: Length of buffer.
3231 * @buf_type: Buffer type (Unused on Linux).
3233 * This is the client interface for peeking into a queue. (I.e.,
3234 * copy data from the queue without updating the head pointer.)
3235 * This function uses IO vectors to handle the work. Returns number
3236 * of bytes peeked or < 0 on error.
3238 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3239 struct msghdr *msg,
3240 size_t iov_size,
3241 int buf_type)
3243 ssize_t result;
3245 if (!qpair)
3246 return VMCI_ERROR_INVALID_ARGS;
3248 qp_lock(qpair);
3250 do {
3251 result = qp_dequeue_locked(qpair->produce_q,
3252 qpair->consume_q,
3253 qpair->consume_q_size,
3254 &msg->msg_iter, false);
3256 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3257 !qp_wait_for_ready_queue(qpair))
3258 result = VMCI_ERROR_WOULD_BLOCK;
3260 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3262 qp_unlock(qpair);
3263 return result;
3265 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);