spi: bcm2835: Fix controller unregister order
[linux/fpc-iii.git] / mm / hugetlb.c
blob9914da93069e83405b6e060850dbfc6640dd53bb
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
37 int hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 __initdata LIST_HEAD(huge_boot_pages);
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
108 spool->rsv_hpages = min_hpages;
110 return spool;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
132 long ret = delta;
134 if (!spool)
135 return ret;
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
163 unlock_ret:
164 spin_unlock(&spool->lock);
165 return ret;
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 long delta)
177 long ret = delta;
179 if (!spool)
180 return delta;
182 spin_lock(&spool->lock);
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool);
205 return ret;
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 return HUGETLBFS_SB(inode->i_sb)->spool;
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 return subpool_inode(file_inode(vma->vm_file));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
237 struct file_region {
238 struct list_head link;
239 long from;
240 long to;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map *resv, long f, long t)
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
261 long add = 0;
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
287 add += t - f;
288 goto out_locked;
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add -= (rg->to - rg->from);
314 list_del(&rg->link);
315 kfree(rg);
319 add += (nrg->from - f); /* Added to beginning of region */
320 nrg->from = f;
321 add += t - nrg->to; /* Added to end of region */
322 nrg->to = t;
324 out_locked:
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
327 VM_BUG_ON(add < 0);
328 return add;
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map *resv, long f, long t)
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
357 long chg = 0;
359 retry:
360 spin_lock(&resv->lock);
361 retry_locked:
362 resv->adds_in_progress++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg) {
378 kfree(nrg);
379 return -ENOMEM;
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
397 if (!nrg) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
425 goto out;
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
434 chg -= rg->to - rg->from;
437 out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442 out_nrg:
443 spin_unlock(&resv->lock);
444 return chg;
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map *resv, long f, long t)
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map *resv, long f, long t)
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
485 long del = 0;
487 retry:
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 continue;
500 if (rg->from >= t)
501 break;
503 if (f > rg->from && t < rg->to) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
525 del += t - f;
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
532 /* Original entry is trimmed */
533 rg->to = f;
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
537 break;
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
556 spin_unlock(&resv->lock);
557 kfree(nrg);
558 return del;
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
570 void hugetlb_fix_reserve_counts(struct inode *inode)
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
579 hugetlb_acct_memory(h, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map *resv, long f, long t)
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
591 long chg = 0;
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
596 long seg_from;
597 long seg_to;
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
607 chg += seg_to - seg_from;
609 spin_unlock(&resv->lock);
611 return chg;
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 struct hstate *hstate;
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
643 hstate = hstate_vma(vma);
645 return 1UL << huge_page_shift(hstate);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 return vma_kernel_pagesize(vma);
660 #endif
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 return (unsigned long)vma->vm_private_data;
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
698 vma->vm_private_data = (void *)value;
701 struct resv_map *resv_map_alloc(void)
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
709 return NULL;
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
716 resv_map->adds_in_progress = 0;
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
722 return resv_map;
725 void resv_map_release(struct kref *ref)
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
740 VM_BUG_ON(resv_map->adds_in_progress);
742 kfree(resv_map);
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 return inode->i_mapping->private_data;
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
757 return inode_resv_map(inode);
759 } else {
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 return (get_vma_private_data(vma) & flag) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 if (vma->vm_flags & VM_NORESERVE) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 return true;
812 else
813 return false;
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
825 if (chg)
826 return false;
827 else
828 return true;
832 * Only the process that called mmap() has reserves for
833 * private mappings.
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
851 if (chg)
852 return false;
853 else
854 return true;
857 return false;
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 struct page *page;
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
874 break;
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h->hugepage_freelists[nid] == &page->lru)
880 return NULL;
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
893 else
894 return GFP_HIGHUSER;
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
900 long chg)
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
906 struct zone *zone;
907 struct zoneref *z;
908 unsigned int cpuset_mems_cookie;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
917 goto err;
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 goto err;
923 retry_cpuset:
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 if (page) {
933 if (avoid_reserve)
934 break;
935 if (!vma_has_reserves(vma, chg))
936 break;
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
940 break;
945 mpol_cond_put(mpol);
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 goto retry_cpuset;
948 return page;
950 err:
951 return NULL;
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
966 return nid;
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
973 return nid;
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
980 * mask.
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
985 int nid;
987 VM_BUG_ON(!nodes_allowed);
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992 return nid;
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 int nid;
1005 VM_BUG_ON(!nodes_allowed);
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010 return nid;
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1015 nr_nodes > 0 && \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1017 nr_nodes--)
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1021 nr_nodes > 0 && \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1023 nr_nodes--)
1025 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1029 unsigned int order)
1031 int i;
1032 int nr_pages = 1 << order;
1033 struct page *p = page + 1;
1035 atomic_set(compound_mapcount_ptr(page), 0);
1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 clear_compound_head(p);
1038 set_page_refcounted(p);
1041 set_compound_order(page, 0);
1042 __ClearPageHead(page);
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1047 free_contig_range(page_to_pfn(page), 1 << order);
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051 unsigned long nr_pages)
1053 unsigned long end_pfn = start_pfn + nr_pages;
1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058 unsigned long start_pfn, unsigned long nr_pages)
1060 unsigned long i, end_pfn = start_pfn + nr_pages;
1061 struct page *page;
1063 for (i = start_pfn; i < end_pfn; i++) {
1064 if (!pfn_valid(i))
1065 return false;
1067 page = pfn_to_page(i);
1069 if (page_zone(page) != z)
1070 return false;
1072 if (PageReserved(page))
1073 return false;
1075 if (page_count(page) > 0)
1076 return false;
1078 if (PageHuge(page))
1079 return false;
1082 return true;
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086 unsigned long start_pfn, unsigned long nr_pages)
1088 unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 return zone_spans_pfn(zone, last_pfn);
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1094 unsigned long nr_pages = 1 << order;
1095 unsigned long ret, pfn, flags;
1096 struct zone *z;
1098 z = NODE_DATA(nid)->node_zones;
1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 spin_lock_irqsave(&z->lock, flags);
1102 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1106 * We release the zone lock here because
1107 * alloc_contig_range() will also lock the zone
1108 * at some point. If there's an allocation
1109 * spinning on this lock, it may win the race
1110 * and cause alloc_contig_range() to fail...
1112 spin_unlock_irqrestore(&z->lock, flags);
1113 ret = __alloc_gigantic_page(pfn, nr_pages);
1114 if (!ret)
1115 return pfn_to_page(pfn);
1116 spin_lock_irqsave(&z->lock, flags);
1118 pfn += nr_pages;
1121 spin_unlock_irqrestore(&z->lock, flags);
1124 return NULL;
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1132 struct page *page;
1134 page = alloc_gigantic_page(nid, huge_page_order(h));
1135 if (page) {
1136 prep_compound_gigantic_page(page, huge_page_order(h));
1137 prep_new_huge_page(h, page, nid);
1140 return page;
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144 nodemask_t *nodes_allowed)
1146 struct page *page = NULL;
1147 int nr_nodes, node;
1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 page = alloc_fresh_gigantic_page_node(h, node);
1151 if (page)
1152 return 1;
1155 return 0;
1158 static inline bool gigantic_page_supported(void) { return true; }
1159 #else
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 nodemask_t *nodes_allowed) { return 0; }
1166 #endif
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1170 int i;
1172 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173 return;
1175 h->nr_huge_pages--;
1176 h->nr_huge_pages_node[page_to_nid(page)]--;
1177 for (i = 0; i < pages_per_huge_page(h); i++) {
1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 1 << PG_referenced | 1 << PG_dirty |
1180 1 << PG_active | 1 << PG_private |
1181 1 << PG_writeback);
1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 set_page_refcounted(page);
1186 if (hstate_is_gigantic(h)) {
1187 destroy_compound_gigantic_page(page, huge_page_order(h));
1188 free_gigantic_page(page, huge_page_order(h));
1189 } else {
1190 __free_pages(page, huge_page_order(h));
1194 struct hstate *size_to_hstate(unsigned long size)
1196 struct hstate *h;
1198 for_each_hstate(h) {
1199 if (huge_page_size(h) == size)
1200 return h;
1202 return NULL;
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1209 * This function can be called for tail pages, but never returns true for them.
1211 bool page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 return PageHead(page) && PagePrivate(&page[1]);
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 SetPagePrivate(&page[1]);
1224 static void clear_page_huge_active(struct page *page)
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 ClearPagePrivate(&page[1]);
1230 void free_huge_page(struct page *page)
1233 * Can't pass hstate in here because it is called from the
1234 * compound page destructor.
1236 struct hstate *h = page_hstate(page);
1237 int nid = page_to_nid(page);
1238 struct hugepage_subpool *spool =
1239 (struct hugepage_subpool *)page_private(page);
1240 bool restore_reserve;
1242 set_page_private(page, 0);
1243 page->mapping = NULL;
1244 VM_BUG_ON_PAGE(page_count(page), page);
1245 VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 restore_reserve = PagePrivate(page);
1247 ClearPagePrivate(page);
1250 * If PagePrivate() was set on page, page allocation consumed a
1251 * reservation. If the page was associated with a subpool, there
1252 * would have been a page reserved in the subpool before allocation
1253 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1254 * reservtion, do not call hugepage_subpool_put_pages() as this will
1255 * remove the reserved page from the subpool.
1257 if (!restore_reserve) {
1259 * A return code of zero implies that the subpool will be
1260 * under its minimum size if the reservation is not restored
1261 * after page is free. Therefore, force restore_reserve
1262 * operation.
1264 if (hugepage_subpool_put_pages(spool, 1) == 0)
1265 restore_reserve = true;
1268 spin_lock(&hugetlb_lock);
1269 clear_page_huge_active(page);
1270 hugetlb_cgroup_uncharge_page(hstate_index(h),
1271 pages_per_huge_page(h), page);
1272 if (restore_reserve)
1273 h->resv_huge_pages++;
1275 if (h->surplus_huge_pages_node[nid]) {
1276 /* remove the page from active list */
1277 list_del(&page->lru);
1278 update_and_free_page(h, page);
1279 h->surplus_huge_pages--;
1280 h->surplus_huge_pages_node[nid]--;
1281 } else {
1282 arch_clear_hugepage_flags(page);
1283 enqueue_huge_page(h, page);
1285 spin_unlock(&hugetlb_lock);
1288 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1290 INIT_LIST_HEAD(&page->lru);
1291 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1292 spin_lock(&hugetlb_lock);
1293 set_hugetlb_cgroup(page, NULL);
1294 h->nr_huge_pages++;
1295 h->nr_huge_pages_node[nid]++;
1296 spin_unlock(&hugetlb_lock);
1297 put_page(page); /* free it into the hugepage allocator */
1300 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302 int i;
1303 int nr_pages = 1 << order;
1304 struct page *p = page + 1;
1306 /* we rely on prep_new_huge_page to set the destructor */
1307 set_compound_order(page, order);
1308 __ClearPageReserved(page);
1309 __SetPageHead(page);
1310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312 * For gigantic hugepages allocated through bootmem at
1313 * boot, it's safer to be consistent with the not-gigantic
1314 * hugepages and clear the PG_reserved bit from all tail pages
1315 * too. Otherwse drivers using get_user_pages() to access tail
1316 * pages may get the reference counting wrong if they see
1317 * PG_reserved set on a tail page (despite the head page not
1318 * having PG_reserved set). Enforcing this consistency between
1319 * head and tail pages allows drivers to optimize away a check
1320 * on the head page when they need know if put_page() is needed
1321 * after get_user_pages().
1323 __ClearPageReserved(p);
1324 set_page_count(p, 0);
1325 set_compound_head(p, page);
1327 atomic_set(compound_mapcount_ptr(page), -1);
1331 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1332 * transparent huge pages. See the PageTransHuge() documentation for more
1333 * details.
1335 int PageHuge(struct page *page)
1337 if (!PageCompound(page))
1338 return 0;
1340 page = compound_head(page);
1341 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343 EXPORT_SYMBOL_GPL(PageHuge);
1346 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1347 * normal or transparent huge pages.
1349 int PageHeadHuge(struct page *page_head)
1351 if (!PageHead(page_head))
1352 return 0;
1354 return get_compound_page_dtor(page_head) == free_huge_page;
1357 pgoff_t __basepage_index(struct page *page)
1359 struct page *page_head = compound_head(page);
1360 pgoff_t index = page_index(page_head);
1361 unsigned long compound_idx;
1363 if (!PageHuge(page_head))
1364 return page_index(page);
1366 if (compound_order(page_head) >= MAX_ORDER)
1367 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1368 else
1369 compound_idx = page - page_head;
1371 return (index << compound_order(page_head)) + compound_idx;
1374 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1376 struct page *page;
1378 page = __alloc_pages_node(nid,
1379 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1380 __GFP_REPEAT|__GFP_NOWARN,
1381 huge_page_order(h));
1382 if (page) {
1383 prep_new_huge_page(h, page, nid);
1386 return page;
1389 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1391 struct page *page;
1392 int nr_nodes, node;
1393 int ret = 0;
1395 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1396 page = alloc_fresh_huge_page_node(h, node);
1397 if (page) {
1398 ret = 1;
1399 break;
1403 if (ret)
1404 count_vm_event(HTLB_BUDDY_PGALLOC);
1405 else
1406 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1408 return ret;
1412 * Free huge page from pool from next node to free.
1413 * Attempt to keep persistent huge pages more or less
1414 * balanced over allowed nodes.
1415 * Called with hugetlb_lock locked.
1417 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1418 bool acct_surplus)
1420 int nr_nodes, node;
1421 int ret = 0;
1423 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1425 * If we're returning unused surplus pages, only examine
1426 * nodes with surplus pages.
1428 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1429 !list_empty(&h->hugepage_freelists[node])) {
1430 struct page *page =
1431 list_entry(h->hugepage_freelists[node].next,
1432 struct page, lru);
1433 list_del(&page->lru);
1434 h->free_huge_pages--;
1435 h->free_huge_pages_node[node]--;
1436 if (acct_surplus) {
1437 h->surplus_huge_pages--;
1438 h->surplus_huge_pages_node[node]--;
1440 update_and_free_page(h, page);
1441 ret = 1;
1442 break;
1446 return ret;
1450 * Dissolve a given free hugepage into free buddy pages. This function does
1451 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1452 * number of free hugepages would be reduced below the number of reserved
1453 * hugepages.
1455 static int dissolve_free_huge_page(struct page *page)
1457 int rc = 0;
1459 spin_lock(&hugetlb_lock);
1460 if (PageHuge(page) && !page_count(page)) {
1461 struct page *head = compound_head(page);
1462 struct hstate *h = page_hstate(head);
1463 int nid = page_to_nid(head);
1464 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1465 rc = -EBUSY;
1466 goto out;
1468 list_del(&head->lru);
1469 h->free_huge_pages--;
1470 h->free_huge_pages_node[nid]--;
1471 h->max_huge_pages--;
1472 update_and_free_page(h, head);
1474 out:
1475 spin_unlock(&hugetlb_lock);
1476 return rc;
1480 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1481 * make specified memory blocks removable from the system.
1482 * Note that this will dissolve a free gigantic hugepage completely, if any
1483 * part of it lies within the given range.
1484 * Also note that if dissolve_free_huge_page() returns with an error, all
1485 * free hugepages that were dissolved before that error are lost.
1487 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1489 unsigned long pfn;
1490 struct page *page;
1491 int rc = 0;
1493 if (!hugepages_supported())
1494 return rc;
1496 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1497 page = pfn_to_page(pfn);
1498 if (PageHuge(page) && !page_count(page)) {
1499 rc = dissolve_free_huge_page(page);
1500 if (rc)
1501 break;
1505 return rc;
1509 * There are 3 ways this can get called:
1510 * 1. With vma+addr: we use the VMA's memory policy
1511 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1512 * page from any node, and let the buddy allocator itself figure
1513 * it out.
1514 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1515 * strictly from 'nid'
1517 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1518 struct vm_area_struct *vma, unsigned long addr, int nid)
1520 int order = huge_page_order(h);
1521 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1522 unsigned int cpuset_mems_cookie;
1525 * We need a VMA to get a memory policy. If we do not
1526 * have one, we use the 'nid' argument.
1528 * The mempolicy stuff below has some non-inlined bits
1529 * and calls ->vm_ops. That makes it hard to optimize at
1530 * compile-time, even when NUMA is off and it does
1531 * nothing. This helps the compiler optimize it out.
1533 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1535 * If a specific node is requested, make sure to
1536 * get memory from there, but only when a node
1537 * is explicitly specified.
1539 if (nid != NUMA_NO_NODE)
1540 gfp |= __GFP_THISNODE;
1542 * Make sure to call something that can handle
1543 * nid=NUMA_NO_NODE
1545 return alloc_pages_node(nid, gfp, order);
1549 * OK, so we have a VMA. Fetch the mempolicy and try to
1550 * allocate a huge page with it. We will only reach this
1551 * when CONFIG_NUMA=y.
1553 do {
1554 struct page *page;
1555 struct mempolicy *mpol;
1556 struct zonelist *zl;
1557 nodemask_t *nodemask;
1559 cpuset_mems_cookie = read_mems_allowed_begin();
1560 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1561 mpol_cond_put(mpol);
1562 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1563 if (page)
1564 return page;
1565 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1567 return NULL;
1571 * There are two ways to allocate a huge page:
1572 * 1. When you have a VMA and an address (like a fault)
1573 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1575 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1576 * this case which signifies that the allocation should be done with
1577 * respect for the VMA's memory policy.
1579 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1580 * implies that memory policies will not be taken in to account.
1582 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1583 struct vm_area_struct *vma, unsigned long addr, int nid)
1585 struct page *page;
1586 unsigned int r_nid;
1588 if (hstate_is_gigantic(h))
1589 return NULL;
1592 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1593 * This makes sure the caller is picking _one_ of the modes with which
1594 * we can call this function, not both.
1596 if (vma || (addr != -1)) {
1597 VM_WARN_ON_ONCE(addr == -1);
1598 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1601 * Assume we will successfully allocate the surplus page to
1602 * prevent racing processes from causing the surplus to exceed
1603 * overcommit
1605 * This however introduces a different race, where a process B
1606 * tries to grow the static hugepage pool while alloc_pages() is
1607 * called by process A. B will only examine the per-node
1608 * counters in determining if surplus huge pages can be
1609 * converted to normal huge pages in adjust_pool_surplus(). A
1610 * won't be able to increment the per-node counter, until the
1611 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1612 * no more huge pages can be converted from surplus to normal
1613 * state (and doesn't try to convert again). Thus, we have a
1614 * case where a surplus huge page exists, the pool is grown, and
1615 * the surplus huge page still exists after, even though it
1616 * should just have been converted to a normal huge page. This
1617 * does not leak memory, though, as the hugepage will be freed
1618 * once it is out of use. It also does not allow the counters to
1619 * go out of whack in adjust_pool_surplus() as we don't modify
1620 * the node values until we've gotten the hugepage and only the
1621 * per-node value is checked there.
1623 spin_lock(&hugetlb_lock);
1624 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1625 spin_unlock(&hugetlb_lock);
1626 return NULL;
1627 } else {
1628 h->nr_huge_pages++;
1629 h->surplus_huge_pages++;
1631 spin_unlock(&hugetlb_lock);
1633 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1635 spin_lock(&hugetlb_lock);
1636 if (page) {
1637 INIT_LIST_HEAD(&page->lru);
1638 r_nid = page_to_nid(page);
1639 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1640 set_hugetlb_cgroup(page, NULL);
1642 * We incremented the global counters already
1644 h->nr_huge_pages_node[r_nid]++;
1645 h->surplus_huge_pages_node[r_nid]++;
1646 __count_vm_event(HTLB_BUDDY_PGALLOC);
1647 } else {
1648 h->nr_huge_pages--;
1649 h->surplus_huge_pages--;
1650 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1652 spin_unlock(&hugetlb_lock);
1654 return page;
1658 * Allocate a huge page from 'nid'. Note, 'nid' may be
1659 * NUMA_NO_NODE, which means that it may be allocated
1660 * anywhere.
1662 static
1663 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1665 unsigned long addr = -1;
1667 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1671 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1673 static
1674 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1675 struct vm_area_struct *vma, unsigned long addr)
1677 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1681 * This allocation function is useful in the context where vma is irrelevant.
1682 * E.g. soft-offlining uses this function because it only cares physical
1683 * address of error page.
1685 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1687 struct page *page = NULL;
1689 spin_lock(&hugetlb_lock);
1690 if (h->free_huge_pages - h->resv_huge_pages > 0)
1691 page = dequeue_huge_page_node(h, nid);
1692 spin_unlock(&hugetlb_lock);
1694 if (!page)
1695 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1697 return page;
1701 * Increase the hugetlb pool such that it can accommodate a reservation
1702 * of size 'delta'.
1704 static int gather_surplus_pages(struct hstate *h, int delta)
1706 struct list_head surplus_list;
1707 struct page *page, *tmp;
1708 int ret, i;
1709 int needed, allocated;
1710 bool alloc_ok = true;
1712 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1713 if (needed <= 0) {
1714 h->resv_huge_pages += delta;
1715 return 0;
1718 allocated = 0;
1719 INIT_LIST_HEAD(&surplus_list);
1721 ret = -ENOMEM;
1722 retry:
1723 spin_unlock(&hugetlb_lock);
1724 for (i = 0; i < needed; i++) {
1725 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1726 if (!page) {
1727 alloc_ok = false;
1728 break;
1730 list_add(&page->lru, &surplus_list);
1732 allocated += i;
1735 * After retaking hugetlb_lock, we need to recalculate 'needed'
1736 * because either resv_huge_pages or free_huge_pages may have changed.
1738 spin_lock(&hugetlb_lock);
1739 needed = (h->resv_huge_pages + delta) -
1740 (h->free_huge_pages + allocated);
1741 if (needed > 0) {
1742 if (alloc_ok)
1743 goto retry;
1745 * We were not able to allocate enough pages to
1746 * satisfy the entire reservation so we free what
1747 * we've allocated so far.
1749 goto free;
1752 * The surplus_list now contains _at_least_ the number of extra pages
1753 * needed to accommodate the reservation. Add the appropriate number
1754 * of pages to the hugetlb pool and free the extras back to the buddy
1755 * allocator. Commit the entire reservation here to prevent another
1756 * process from stealing the pages as they are added to the pool but
1757 * before they are reserved.
1759 needed += allocated;
1760 h->resv_huge_pages += delta;
1761 ret = 0;
1763 /* Free the needed pages to the hugetlb pool */
1764 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1765 if ((--needed) < 0)
1766 break;
1768 * This page is now managed by the hugetlb allocator and has
1769 * no users -- drop the buddy allocator's reference.
1771 put_page_testzero(page);
1772 VM_BUG_ON_PAGE(page_count(page), page);
1773 enqueue_huge_page(h, page);
1775 free:
1776 spin_unlock(&hugetlb_lock);
1778 /* Free unnecessary surplus pages to the buddy allocator */
1779 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1780 put_page(page);
1781 spin_lock(&hugetlb_lock);
1783 return ret;
1787 * This routine has two main purposes:
1788 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1789 * in unused_resv_pages. This corresponds to the prior adjustments made
1790 * to the associated reservation map.
1791 * 2) Free any unused surplus pages that may have been allocated to satisfy
1792 * the reservation. As many as unused_resv_pages may be freed.
1794 * Called with hugetlb_lock held. However, the lock could be dropped (and
1795 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1796 * we must make sure nobody else can claim pages we are in the process of
1797 * freeing. Do this by ensuring resv_huge_page always is greater than the
1798 * number of huge pages we plan to free when dropping the lock.
1800 static void return_unused_surplus_pages(struct hstate *h,
1801 unsigned long unused_resv_pages)
1803 unsigned long nr_pages;
1805 /* Cannot return gigantic pages currently */
1806 if (hstate_is_gigantic(h))
1807 goto out;
1810 * Part (or even all) of the reservation could have been backed
1811 * by pre-allocated pages. Only free surplus pages.
1813 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1816 * We want to release as many surplus pages as possible, spread
1817 * evenly across all nodes with memory. Iterate across these nodes
1818 * until we can no longer free unreserved surplus pages. This occurs
1819 * when the nodes with surplus pages have no free pages.
1820 * free_pool_huge_page() will balance the the freed pages across the
1821 * on-line nodes with memory and will handle the hstate accounting.
1823 * Note that we decrement resv_huge_pages as we free the pages. If
1824 * we drop the lock, resv_huge_pages will still be sufficiently large
1825 * to cover subsequent pages we may free.
1827 while (nr_pages--) {
1828 h->resv_huge_pages--;
1829 unused_resv_pages--;
1830 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1831 goto out;
1832 cond_resched_lock(&hugetlb_lock);
1835 out:
1836 /* Fully uncommit the reservation */
1837 h->resv_huge_pages -= unused_resv_pages;
1842 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1843 * are used by the huge page allocation routines to manage reservations.
1845 * vma_needs_reservation is called to determine if the huge page at addr
1846 * within the vma has an associated reservation. If a reservation is
1847 * needed, the value 1 is returned. The caller is then responsible for
1848 * managing the global reservation and subpool usage counts. After
1849 * the huge page has been allocated, vma_commit_reservation is called
1850 * to add the page to the reservation map. If the page allocation fails,
1851 * the reservation must be ended instead of committed. vma_end_reservation
1852 * is called in such cases.
1854 * In the normal case, vma_commit_reservation returns the same value
1855 * as the preceding vma_needs_reservation call. The only time this
1856 * is not the case is if a reserve map was changed between calls. It
1857 * is the responsibility of the caller to notice the difference and
1858 * take appropriate action.
1860 * vma_add_reservation is used in error paths where a reservation must
1861 * be restored when a newly allocated huge page must be freed. It is
1862 * to be called after calling vma_needs_reservation to determine if a
1863 * reservation exists.
1865 enum vma_resv_mode {
1866 VMA_NEEDS_RESV,
1867 VMA_COMMIT_RESV,
1868 VMA_END_RESV,
1869 VMA_ADD_RESV,
1871 static long __vma_reservation_common(struct hstate *h,
1872 struct vm_area_struct *vma, unsigned long addr,
1873 enum vma_resv_mode mode)
1875 struct resv_map *resv;
1876 pgoff_t idx;
1877 long ret;
1879 resv = vma_resv_map(vma);
1880 if (!resv)
1881 return 1;
1883 idx = vma_hugecache_offset(h, vma, addr);
1884 switch (mode) {
1885 case VMA_NEEDS_RESV:
1886 ret = region_chg(resv, idx, idx + 1);
1887 break;
1888 case VMA_COMMIT_RESV:
1889 ret = region_add(resv, idx, idx + 1);
1890 break;
1891 case VMA_END_RESV:
1892 region_abort(resv, idx, idx + 1);
1893 ret = 0;
1894 break;
1895 case VMA_ADD_RESV:
1896 if (vma->vm_flags & VM_MAYSHARE)
1897 ret = region_add(resv, idx, idx + 1);
1898 else {
1899 region_abort(resv, idx, idx + 1);
1900 ret = region_del(resv, idx, idx + 1);
1902 break;
1903 default:
1904 BUG();
1907 if (vma->vm_flags & VM_MAYSHARE)
1908 return ret;
1909 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1911 * In most cases, reserves always exist for private mappings.
1912 * However, a file associated with mapping could have been
1913 * hole punched or truncated after reserves were consumed.
1914 * As subsequent fault on such a range will not use reserves.
1915 * Subtle - The reserve map for private mappings has the
1916 * opposite meaning than that of shared mappings. If NO
1917 * entry is in the reserve map, it means a reservation exists.
1918 * If an entry exists in the reserve map, it means the
1919 * reservation has already been consumed. As a result, the
1920 * return value of this routine is the opposite of the
1921 * value returned from reserve map manipulation routines above.
1923 if (ret)
1924 return 0;
1925 else
1926 return 1;
1928 else
1929 return ret < 0 ? ret : 0;
1932 static long vma_needs_reservation(struct hstate *h,
1933 struct vm_area_struct *vma, unsigned long addr)
1935 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1938 static long vma_commit_reservation(struct hstate *h,
1939 struct vm_area_struct *vma, unsigned long addr)
1941 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1944 static void vma_end_reservation(struct hstate *h,
1945 struct vm_area_struct *vma, unsigned long addr)
1947 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1950 static long vma_add_reservation(struct hstate *h,
1951 struct vm_area_struct *vma, unsigned long addr)
1953 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1957 * This routine is called to restore a reservation on error paths. In the
1958 * specific error paths, a huge page was allocated (via alloc_huge_page)
1959 * and is about to be freed. If a reservation for the page existed,
1960 * alloc_huge_page would have consumed the reservation and set PagePrivate
1961 * in the newly allocated page. When the page is freed via free_huge_page,
1962 * the global reservation count will be incremented if PagePrivate is set.
1963 * However, free_huge_page can not adjust the reserve map. Adjust the
1964 * reserve map here to be consistent with global reserve count adjustments
1965 * to be made by free_huge_page.
1967 static void restore_reserve_on_error(struct hstate *h,
1968 struct vm_area_struct *vma, unsigned long address,
1969 struct page *page)
1971 if (unlikely(PagePrivate(page))) {
1972 long rc = vma_needs_reservation(h, vma, address);
1974 if (unlikely(rc < 0)) {
1976 * Rare out of memory condition in reserve map
1977 * manipulation. Clear PagePrivate so that
1978 * global reserve count will not be incremented
1979 * by free_huge_page. This will make it appear
1980 * as though the reservation for this page was
1981 * consumed. This may prevent the task from
1982 * faulting in the page at a later time. This
1983 * is better than inconsistent global huge page
1984 * accounting of reserve counts.
1986 ClearPagePrivate(page);
1987 } else if (rc) {
1988 rc = vma_add_reservation(h, vma, address);
1989 if (unlikely(rc < 0))
1991 * See above comment about rare out of
1992 * memory condition.
1994 ClearPagePrivate(page);
1995 } else
1996 vma_end_reservation(h, vma, address);
2000 struct page *alloc_huge_page(struct vm_area_struct *vma,
2001 unsigned long addr, int avoid_reserve)
2003 struct hugepage_subpool *spool = subpool_vma(vma);
2004 struct hstate *h = hstate_vma(vma);
2005 struct page *page;
2006 long map_chg, map_commit;
2007 long gbl_chg;
2008 int ret, idx;
2009 struct hugetlb_cgroup *h_cg;
2011 idx = hstate_index(h);
2013 * Examine the region/reserve map to determine if the process
2014 * has a reservation for the page to be allocated. A return
2015 * code of zero indicates a reservation exists (no change).
2017 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2018 if (map_chg < 0)
2019 return ERR_PTR(-ENOMEM);
2022 * Processes that did not create the mapping will have no
2023 * reserves as indicated by the region/reserve map. Check
2024 * that the allocation will not exceed the subpool limit.
2025 * Allocations for MAP_NORESERVE mappings also need to be
2026 * checked against any subpool limit.
2028 if (map_chg || avoid_reserve) {
2029 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2030 if (gbl_chg < 0) {
2031 vma_end_reservation(h, vma, addr);
2032 return ERR_PTR(-ENOSPC);
2036 * Even though there was no reservation in the region/reserve
2037 * map, there could be reservations associated with the
2038 * subpool that can be used. This would be indicated if the
2039 * return value of hugepage_subpool_get_pages() is zero.
2040 * However, if avoid_reserve is specified we still avoid even
2041 * the subpool reservations.
2043 if (avoid_reserve)
2044 gbl_chg = 1;
2047 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2048 if (ret)
2049 goto out_subpool_put;
2051 spin_lock(&hugetlb_lock);
2053 * glb_chg is passed to indicate whether or not a page must be taken
2054 * from the global free pool (global change). gbl_chg == 0 indicates
2055 * a reservation exists for the allocation.
2057 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2058 if (!page) {
2059 spin_unlock(&hugetlb_lock);
2060 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2061 if (!page)
2062 goto out_uncharge_cgroup;
2063 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2064 SetPagePrivate(page);
2065 h->resv_huge_pages--;
2067 spin_lock(&hugetlb_lock);
2068 list_move(&page->lru, &h->hugepage_activelist);
2069 /* Fall through */
2071 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2072 spin_unlock(&hugetlb_lock);
2074 set_page_private(page, (unsigned long)spool);
2076 map_commit = vma_commit_reservation(h, vma, addr);
2077 if (unlikely(map_chg > map_commit)) {
2079 * The page was added to the reservation map between
2080 * vma_needs_reservation and vma_commit_reservation.
2081 * This indicates a race with hugetlb_reserve_pages.
2082 * Adjust for the subpool count incremented above AND
2083 * in hugetlb_reserve_pages for the same page. Also,
2084 * the reservation count added in hugetlb_reserve_pages
2085 * no longer applies.
2087 long rsv_adjust;
2089 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2090 hugetlb_acct_memory(h, -rsv_adjust);
2092 return page;
2094 out_uncharge_cgroup:
2095 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2096 out_subpool_put:
2097 if (map_chg || avoid_reserve)
2098 hugepage_subpool_put_pages(spool, 1);
2099 vma_end_reservation(h, vma, addr);
2100 return ERR_PTR(-ENOSPC);
2104 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2105 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2106 * where no ERR_VALUE is expected to be returned.
2108 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2109 unsigned long addr, int avoid_reserve)
2111 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2112 if (IS_ERR(page))
2113 page = NULL;
2114 return page;
2117 int __weak alloc_bootmem_huge_page(struct hstate *h)
2119 struct huge_bootmem_page *m;
2120 int nr_nodes, node;
2122 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2123 void *addr;
2125 addr = memblock_virt_alloc_try_nid_nopanic(
2126 huge_page_size(h), huge_page_size(h),
2127 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2128 if (addr) {
2130 * Use the beginning of the huge page to store the
2131 * huge_bootmem_page struct (until gather_bootmem
2132 * puts them into the mem_map).
2134 m = addr;
2135 goto found;
2138 return 0;
2140 found:
2141 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2142 /* Put them into a private list first because mem_map is not up yet */
2143 list_add(&m->list, &huge_boot_pages);
2144 m->hstate = h;
2145 return 1;
2148 static void __init prep_compound_huge_page(struct page *page,
2149 unsigned int order)
2151 if (unlikely(order > (MAX_ORDER - 1)))
2152 prep_compound_gigantic_page(page, order);
2153 else
2154 prep_compound_page(page, order);
2157 /* Put bootmem huge pages into the standard lists after mem_map is up */
2158 static void __init gather_bootmem_prealloc(void)
2160 struct huge_bootmem_page *m;
2162 list_for_each_entry(m, &huge_boot_pages, list) {
2163 struct hstate *h = m->hstate;
2164 struct page *page;
2166 #ifdef CONFIG_HIGHMEM
2167 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2168 memblock_free_late(__pa(m),
2169 sizeof(struct huge_bootmem_page));
2170 #else
2171 page = virt_to_page(m);
2172 #endif
2173 WARN_ON(page_count(page) != 1);
2174 prep_compound_huge_page(page, h->order);
2175 WARN_ON(PageReserved(page));
2176 prep_new_huge_page(h, page, page_to_nid(page));
2178 * If we had gigantic hugepages allocated at boot time, we need
2179 * to restore the 'stolen' pages to totalram_pages in order to
2180 * fix confusing memory reports from free(1) and another
2181 * side-effects, like CommitLimit going negative.
2183 if (hstate_is_gigantic(h))
2184 adjust_managed_page_count(page, 1 << h->order);
2185 cond_resched();
2189 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2191 unsigned long i;
2193 for (i = 0; i < h->max_huge_pages; ++i) {
2194 if (hstate_is_gigantic(h)) {
2195 if (!alloc_bootmem_huge_page(h))
2196 break;
2197 } else if (!alloc_fresh_huge_page(h,
2198 &node_states[N_MEMORY]))
2199 break;
2201 h->max_huge_pages = i;
2204 static void __init hugetlb_init_hstates(void)
2206 struct hstate *h;
2208 for_each_hstate(h) {
2209 if (minimum_order > huge_page_order(h))
2210 minimum_order = huge_page_order(h);
2212 /* oversize hugepages were init'ed in early boot */
2213 if (!hstate_is_gigantic(h))
2214 hugetlb_hstate_alloc_pages(h);
2216 VM_BUG_ON(minimum_order == UINT_MAX);
2219 static char * __init memfmt(char *buf, unsigned long n)
2221 if (n >= (1UL << 30))
2222 sprintf(buf, "%lu GB", n >> 30);
2223 else if (n >= (1UL << 20))
2224 sprintf(buf, "%lu MB", n >> 20);
2225 else
2226 sprintf(buf, "%lu KB", n >> 10);
2227 return buf;
2230 static void __init report_hugepages(void)
2232 struct hstate *h;
2234 for_each_hstate(h) {
2235 char buf[32];
2236 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2237 memfmt(buf, huge_page_size(h)),
2238 h->free_huge_pages);
2242 #ifdef CONFIG_HIGHMEM
2243 static void try_to_free_low(struct hstate *h, unsigned long count,
2244 nodemask_t *nodes_allowed)
2246 int i;
2248 if (hstate_is_gigantic(h))
2249 return;
2251 for_each_node_mask(i, *nodes_allowed) {
2252 struct page *page, *next;
2253 struct list_head *freel = &h->hugepage_freelists[i];
2254 list_for_each_entry_safe(page, next, freel, lru) {
2255 if (count >= h->nr_huge_pages)
2256 return;
2257 if (PageHighMem(page))
2258 continue;
2259 list_del(&page->lru);
2260 update_and_free_page(h, page);
2261 h->free_huge_pages--;
2262 h->free_huge_pages_node[page_to_nid(page)]--;
2266 #else
2267 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2268 nodemask_t *nodes_allowed)
2271 #endif
2274 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2275 * balanced by operating on them in a round-robin fashion.
2276 * Returns 1 if an adjustment was made.
2278 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2279 int delta)
2281 int nr_nodes, node;
2283 VM_BUG_ON(delta != -1 && delta != 1);
2285 if (delta < 0) {
2286 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2287 if (h->surplus_huge_pages_node[node])
2288 goto found;
2290 } else {
2291 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2292 if (h->surplus_huge_pages_node[node] <
2293 h->nr_huge_pages_node[node])
2294 goto found;
2297 return 0;
2299 found:
2300 h->surplus_huge_pages += delta;
2301 h->surplus_huge_pages_node[node] += delta;
2302 return 1;
2305 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2306 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2307 nodemask_t *nodes_allowed)
2309 unsigned long min_count, ret;
2311 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2312 return h->max_huge_pages;
2315 * Increase the pool size
2316 * First take pages out of surplus state. Then make up the
2317 * remaining difference by allocating fresh huge pages.
2319 * We might race with __alloc_buddy_huge_page() here and be unable
2320 * to convert a surplus huge page to a normal huge page. That is
2321 * not critical, though, it just means the overall size of the
2322 * pool might be one hugepage larger than it needs to be, but
2323 * within all the constraints specified by the sysctls.
2325 spin_lock(&hugetlb_lock);
2326 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2327 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2328 break;
2331 while (count > persistent_huge_pages(h)) {
2333 * If this allocation races such that we no longer need the
2334 * page, free_huge_page will handle it by freeing the page
2335 * and reducing the surplus.
2337 spin_unlock(&hugetlb_lock);
2339 /* yield cpu to avoid soft lockup */
2340 cond_resched();
2342 if (hstate_is_gigantic(h))
2343 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2344 else
2345 ret = alloc_fresh_huge_page(h, nodes_allowed);
2346 spin_lock(&hugetlb_lock);
2347 if (!ret)
2348 goto out;
2350 /* Bail for signals. Probably ctrl-c from user */
2351 if (signal_pending(current))
2352 goto out;
2356 * Decrease the pool size
2357 * First return free pages to the buddy allocator (being careful
2358 * to keep enough around to satisfy reservations). Then place
2359 * pages into surplus state as needed so the pool will shrink
2360 * to the desired size as pages become free.
2362 * By placing pages into the surplus state independent of the
2363 * overcommit value, we are allowing the surplus pool size to
2364 * exceed overcommit. There are few sane options here. Since
2365 * __alloc_buddy_huge_page() is checking the global counter,
2366 * though, we'll note that we're not allowed to exceed surplus
2367 * and won't grow the pool anywhere else. Not until one of the
2368 * sysctls are changed, or the surplus pages go out of use.
2370 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2371 min_count = max(count, min_count);
2372 try_to_free_low(h, min_count, nodes_allowed);
2373 while (min_count < persistent_huge_pages(h)) {
2374 if (!free_pool_huge_page(h, nodes_allowed, 0))
2375 break;
2376 cond_resched_lock(&hugetlb_lock);
2378 while (count < persistent_huge_pages(h)) {
2379 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2380 break;
2382 out:
2383 ret = persistent_huge_pages(h);
2384 spin_unlock(&hugetlb_lock);
2385 return ret;
2388 #define HSTATE_ATTR_RO(_name) \
2389 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2391 #define HSTATE_ATTR(_name) \
2392 static struct kobj_attribute _name##_attr = \
2393 __ATTR(_name, 0644, _name##_show, _name##_store)
2395 static struct kobject *hugepages_kobj;
2396 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2398 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2400 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2402 int i;
2404 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2405 if (hstate_kobjs[i] == kobj) {
2406 if (nidp)
2407 *nidp = NUMA_NO_NODE;
2408 return &hstates[i];
2411 return kobj_to_node_hstate(kobj, nidp);
2414 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2415 struct kobj_attribute *attr, char *buf)
2417 struct hstate *h;
2418 unsigned long nr_huge_pages;
2419 int nid;
2421 h = kobj_to_hstate(kobj, &nid);
2422 if (nid == NUMA_NO_NODE)
2423 nr_huge_pages = h->nr_huge_pages;
2424 else
2425 nr_huge_pages = h->nr_huge_pages_node[nid];
2427 return sprintf(buf, "%lu\n", nr_huge_pages);
2430 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2431 struct hstate *h, int nid,
2432 unsigned long count, size_t len)
2434 int err;
2435 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2437 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2438 err = -EINVAL;
2439 goto out;
2442 if (nid == NUMA_NO_NODE) {
2444 * global hstate attribute
2446 if (!(obey_mempolicy &&
2447 init_nodemask_of_mempolicy(nodes_allowed))) {
2448 NODEMASK_FREE(nodes_allowed);
2449 nodes_allowed = &node_states[N_MEMORY];
2451 } else if (nodes_allowed) {
2453 * per node hstate attribute: adjust count to global,
2454 * but restrict alloc/free to the specified node.
2456 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2457 init_nodemask_of_node(nodes_allowed, nid);
2458 } else
2459 nodes_allowed = &node_states[N_MEMORY];
2461 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2463 if (nodes_allowed != &node_states[N_MEMORY])
2464 NODEMASK_FREE(nodes_allowed);
2466 return len;
2467 out:
2468 NODEMASK_FREE(nodes_allowed);
2469 return err;
2472 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2473 struct kobject *kobj, const char *buf,
2474 size_t len)
2476 struct hstate *h;
2477 unsigned long count;
2478 int nid;
2479 int err;
2481 err = kstrtoul(buf, 10, &count);
2482 if (err)
2483 return err;
2485 h = kobj_to_hstate(kobj, &nid);
2486 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2489 static ssize_t nr_hugepages_show(struct kobject *kobj,
2490 struct kobj_attribute *attr, char *buf)
2492 return nr_hugepages_show_common(kobj, attr, buf);
2495 static ssize_t nr_hugepages_store(struct kobject *kobj,
2496 struct kobj_attribute *attr, const char *buf, size_t len)
2498 return nr_hugepages_store_common(false, kobj, buf, len);
2500 HSTATE_ATTR(nr_hugepages);
2502 #ifdef CONFIG_NUMA
2505 * hstate attribute for optionally mempolicy-based constraint on persistent
2506 * huge page alloc/free.
2508 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2509 struct kobj_attribute *attr, char *buf)
2511 return nr_hugepages_show_common(kobj, attr, buf);
2514 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2515 struct kobj_attribute *attr, const char *buf, size_t len)
2517 return nr_hugepages_store_common(true, kobj, buf, len);
2519 HSTATE_ATTR(nr_hugepages_mempolicy);
2520 #endif
2523 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2524 struct kobj_attribute *attr, char *buf)
2526 struct hstate *h = kobj_to_hstate(kobj, NULL);
2527 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2530 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2531 struct kobj_attribute *attr, const char *buf, size_t count)
2533 int err;
2534 unsigned long input;
2535 struct hstate *h = kobj_to_hstate(kobj, NULL);
2537 if (hstate_is_gigantic(h))
2538 return -EINVAL;
2540 err = kstrtoul(buf, 10, &input);
2541 if (err)
2542 return err;
2544 spin_lock(&hugetlb_lock);
2545 h->nr_overcommit_huge_pages = input;
2546 spin_unlock(&hugetlb_lock);
2548 return count;
2550 HSTATE_ATTR(nr_overcommit_hugepages);
2552 static ssize_t free_hugepages_show(struct kobject *kobj,
2553 struct kobj_attribute *attr, char *buf)
2555 struct hstate *h;
2556 unsigned long free_huge_pages;
2557 int nid;
2559 h = kobj_to_hstate(kobj, &nid);
2560 if (nid == NUMA_NO_NODE)
2561 free_huge_pages = h->free_huge_pages;
2562 else
2563 free_huge_pages = h->free_huge_pages_node[nid];
2565 return sprintf(buf, "%lu\n", free_huge_pages);
2567 HSTATE_ATTR_RO(free_hugepages);
2569 static ssize_t resv_hugepages_show(struct kobject *kobj,
2570 struct kobj_attribute *attr, char *buf)
2572 struct hstate *h = kobj_to_hstate(kobj, NULL);
2573 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2575 HSTATE_ATTR_RO(resv_hugepages);
2577 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2578 struct kobj_attribute *attr, char *buf)
2580 struct hstate *h;
2581 unsigned long surplus_huge_pages;
2582 int nid;
2584 h = kobj_to_hstate(kobj, &nid);
2585 if (nid == NUMA_NO_NODE)
2586 surplus_huge_pages = h->surplus_huge_pages;
2587 else
2588 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2590 return sprintf(buf, "%lu\n", surplus_huge_pages);
2592 HSTATE_ATTR_RO(surplus_hugepages);
2594 static struct attribute *hstate_attrs[] = {
2595 &nr_hugepages_attr.attr,
2596 &nr_overcommit_hugepages_attr.attr,
2597 &free_hugepages_attr.attr,
2598 &resv_hugepages_attr.attr,
2599 &surplus_hugepages_attr.attr,
2600 #ifdef CONFIG_NUMA
2601 &nr_hugepages_mempolicy_attr.attr,
2602 #endif
2603 NULL,
2606 static struct attribute_group hstate_attr_group = {
2607 .attrs = hstate_attrs,
2610 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2611 struct kobject **hstate_kobjs,
2612 struct attribute_group *hstate_attr_group)
2614 int retval;
2615 int hi = hstate_index(h);
2617 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2618 if (!hstate_kobjs[hi])
2619 return -ENOMEM;
2621 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2622 if (retval)
2623 kobject_put(hstate_kobjs[hi]);
2625 return retval;
2628 static void __init hugetlb_sysfs_init(void)
2630 struct hstate *h;
2631 int err;
2633 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2634 if (!hugepages_kobj)
2635 return;
2637 for_each_hstate(h) {
2638 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2639 hstate_kobjs, &hstate_attr_group);
2640 if (err)
2641 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2645 #ifdef CONFIG_NUMA
2648 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2649 * with node devices in node_devices[] using a parallel array. The array
2650 * index of a node device or _hstate == node id.
2651 * This is here to avoid any static dependency of the node device driver, in
2652 * the base kernel, on the hugetlb module.
2654 struct node_hstate {
2655 struct kobject *hugepages_kobj;
2656 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2658 static struct node_hstate node_hstates[MAX_NUMNODES];
2661 * A subset of global hstate attributes for node devices
2663 static struct attribute *per_node_hstate_attrs[] = {
2664 &nr_hugepages_attr.attr,
2665 &free_hugepages_attr.attr,
2666 &surplus_hugepages_attr.attr,
2667 NULL,
2670 static struct attribute_group per_node_hstate_attr_group = {
2671 .attrs = per_node_hstate_attrs,
2675 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2676 * Returns node id via non-NULL nidp.
2678 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2680 int nid;
2682 for (nid = 0; nid < nr_node_ids; nid++) {
2683 struct node_hstate *nhs = &node_hstates[nid];
2684 int i;
2685 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2686 if (nhs->hstate_kobjs[i] == kobj) {
2687 if (nidp)
2688 *nidp = nid;
2689 return &hstates[i];
2693 BUG();
2694 return NULL;
2698 * Unregister hstate attributes from a single node device.
2699 * No-op if no hstate attributes attached.
2701 static void hugetlb_unregister_node(struct node *node)
2703 struct hstate *h;
2704 struct node_hstate *nhs = &node_hstates[node->dev.id];
2706 if (!nhs->hugepages_kobj)
2707 return; /* no hstate attributes */
2709 for_each_hstate(h) {
2710 int idx = hstate_index(h);
2711 if (nhs->hstate_kobjs[idx]) {
2712 kobject_put(nhs->hstate_kobjs[idx]);
2713 nhs->hstate_kobjs[idx] = NULL;
2717 kobject_put(nhs->hugepages_kobj);
2718 nhs->hugepages_kobj = NULL;
2723 * Register hstate attributes for a single node device.
2724 * No-op if attributes already registered.
2726 static void hugetlb_register_node(struct node *node)
2728 struct hstate *h;
2729 struct node_hstate *nhs = &node_hstates[node->dev.id];
2730 int err;
2732 if (nhs->hugepages_kobj)
2733 return; /* already allocated */
2735 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2736 &node->dev.kobj);
2737 if (!nhs->hugepages_kobj)
2738 return;
2740 for_each_hstate(h) {
2741 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2742 nhs->hstate_kobjs,
2743 &per_node_hstate_attr_group);
2744 if (err) {
2745 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2746 h->name, node->dev.id);
2747 hugetlb_unregister_node(node);
2748 break;
2754 * hugetlb init time: register hstate attributes for all registered node
2755 * devices of nodes that have memory. All on-line nodes should have
2756 * registered their associated device by this time.
2758 static void __init hugetlb_register_all_nodes(void)
2760 int nid;
2762 for_each_node_state(nid, N_MEMORY) {
2763 struct node *node = node_devices[nid];
2764 if (node->dev.id == nid)
2765 hugetlb_register_node(node);
2769 * Let the node device driver know we're here so it can
2770 * [un]register hstate attributes on node hotplug.
2772 register_hugetlbfs_with_node(hugetlb_register_node,
2773 hugetlb_unregister_node);
2775 #else /* !CONFIG_NUMA */
2777 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2779 BUG();
2780 if (nidp)
2781 *nidp = -1;
2782 return NULL;
2785 static void hugetlb_register_all_nodes(void) { }
2787 #endif
2789 static int __init hugetlb_init(void)
2791 int i;
2793 if (!hugepages_supported())
2794 return 0;
2796 if (!size_to_hstate(default_hstate_size)) {
2797 default_hstate_size = HPAGE_SIZE;
2798 if (!size_to_hstate(default_hstate_size))
2799 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2801 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2802 if (default_hstate_max_huge_pages) {
2803 if (!default_hstate.max_huge_pages)
2804 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2807 hugetlb_init_hstates();
2808 gather_bootmem_prealloc();
2809 report_hugepages();
2811 hugetlb_sysfs_init();
2812 hugetlb_register_all_nodes();
2813 hugetlb_cgroup_file_init();
2815 #ifdef CONFIG_SMP
2816 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2817 #else
2818 num_fault_mutexes = 1;
2819 #endif
2820 hugetlb_fault_mutex_table =
2821 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2822 BUG_ON(!hugetlb_fault_mutex_table);
2824 for (i = 0; i < num_fault_mutexes; i++)
2825 mutex_init(&hugetlb_fault_mutex_table[i]);
2826 return 0;
2828 subsys_initcall(hugetlb_init);
2830 /* Should be called on processing a hugepagesz=... option */
2831 void __init hugetlb_bad_size(void)
2833 parsed_valid_hugepagesz = false;
2836 void __init hugetlb_add_hstate(unsigned int order)
2838 struct hstate *h;
2839 unsigned long i;
2841 if (size_to_hstate(PAGE_SIZE << order)) {
2842 pr_warn("hugepagesz= specified twice, ignoring\n");
2843 return;
2845 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2846 BUG_ON(order == 0);
2847 h = &hstates[hugetlb_max_hstate++];
2848 h->order = order;
2849 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2850 h->nr_huge_pages = 0;
2851 h->free_huge_pages = 0;
2852 for (i = 0; i < MAX_NUMNODES; ++i)
2853 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2854 INIT_LIST_HEAD(&h->hugepage_activelist);
2855 h->next_nid_to_alloc = first_memory_node;
2856 h->next_nid_to_free = first_memory_node;
2857 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2858 huge_page_size(h)/1024);
2860 parsed_hstate = h;
2863 static int __init hugetlb_nrpages_setup(char *s)
2865 unsigned long *mhp;
2866 static unsigned long *last_mhp;
2868 if (!parsed_valid_hugepagesz) {
2869 pr_warn("hugepages = %s preceded by "
2870 "an unsupported hugepagesz, ignoring\n", s);
2871 parsed_valid_hugepagesz = true;
2872 return 1;
2875 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2876 * so this hugepages= parameter goes to the "default hstate".
2878 else if (!hugetlb_max_hstate)
2879 mhp = &default_hstate_max_huge_pages;
2880 else
2881 mhp = &parsed_hstate->max_huge_pages;
2883 if (mhp == last_mhp) {
2884 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2885 return 1;
2888 if (sscanf(s, "%lu", mhp) <= 0)
2889 *mhp = 0;
2892 * Global state is always initialized later in hugetlb_init.
2893 * But we need to allocate >= MAX_ORDER hstates here early to still
2894 * use the bootmem allocator.
2896 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2897 hugetlb_hstate_alloc_pages(parsed_hstate);
2899 last_mhp = mhp;
2901 return 1;
2903 __setup("hugepages=", hugetlb_nrpages_setup);
2905 static int __init hugetlb_default_setup(char *s)
2907 default_hstate_size = memparse(s, &s);
2908 return 1;
2910 __setup("default_hugepagesz=", hugetlb_default_setup);
2912 static unsigned int cpuset_mems_nr(unsigned int *array)
2914 int node;
2915 unsigned int nr = 0;
2917 for_each_node_mask(node, cpuset_current_mems_allowed)
2918 nr += array[node];
2920 return nr;
2923 #ifdef CONFIG_SYSCTL
2924 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2925 struct ctl_table *table, int write,
2926 void __user *buffer, size_t *length, loff_t *ppos)
2928 struct hstate *h = &default_hstate;
2929 unsigned long tmp = h->max_huge_pages;
2930 int ret;
2932 if (!hugepages_supported())
2933 return -EOPNOTSUPP;
2935 table->data = &tmp;
2936 table->maxlen = sizeof(unsigned long);
2937 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2938 if (ret)
2939 goto out;
2941 if (write)
2942 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2943 NUMA_NO_NODE, tmp, *length);
2944 out:
2945 return ret;
2948 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2949 void __user *buffer, size_t *length, loff_t *ppos)
2952 return hugetlb_sysctl_handler_common(false, table, write,
2953 buffer, length, ppos);
2956 #ifdef CONFIG_NUMA
2957 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2958 void __user *buffer, size_t *length, loff_t *ppos)
2960 return hugetlb_sysctl_handler_common(true, table, write,
2961 buffer, length, ppos);
2963 #endif /* CONFIG_NUMA */
2965 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2966 void __user *buffer,
2967 size_t *length, loff_t *ppos)
2969 struct hstate *h = &default_hstate;
2970 unsigned long tmp;
2971 int ret;
2973 if (!hugepages_supported())
2974 return -EOPNOTSUPP;
2976 tmp = h->nr_overcommit_huge_pages;
2978 if (write && hstate_is_gigantic(h))
2979 return -EINVAL;
2981 table->data = &tmp;
2982 table->maxlen = sizeof(unsigned long);
2983 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2984 if (ret)
2985 goto out;
2987 if (write) {
2988 spin_lock(&hugetlb_lock);
2989 h->nr_overcommit_huge_pages = tmp;
2990 spin_unlock(&hugetlb_lock);
2992 out:
2993 return ret;
2996 #endif /* CONFIG_SYSCTL */
2998 void hugetlb_report_meminfo(struct seq_file *m)
3000 struct hstate *h = &default_hstate;
3001 if (!hugepages_supported())
3002 return;
3003 seq_printf(m,
3004 "HugePages_Total: %5lu\n"
3005 "HugePages_Free: %5lu\n"
3006 "HugePages_Rsvd: %5lu\n"
3007 "HugePages_Surp: %5lu\n"
3008 "Hugepagesize: %8lu kB\n",
3009 h->nr_huge_pages,
3010 h->free_huge_pages,
3011 h->resv_huge_pages,
3012 h->surplus_huge_pages,
3013 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3016 int hugetlb_report_node_meminfo(int nid, char *buf)
3018 struct hstate *h = &default_hstate;
3019 if (!hugepages_supported())
3020 return 0;
3021 return sprintf(buf,
3022 "Node %d HugePages_Total: %5u\n"
3023 "Node %d HugePages_Free: %5u\n"
3024 "Node %d HugePages_Surp: %5u\n",
3025 nid, h->nr_huge_pages_node[nid],
3026 nid, h->free_huge_pages_node[nid],
3027 nid, h->surplus_huge_pages_node[nid]);
3030 void hugetlb_show_meminfo(void)
3032 struct hstate *h;
3033 int nid;
3035 if (!hugepages_supported())
3036 return;
3038 for_each_node_state(nid, N_MEMORY)
3039 for_each_hstate(h)
3040 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3041 nid,
3042 h->nr_huge_pages_node[nid],
3043 h->free_huge_pages_node[nid],
3044 h->surplus_huge_pages_node[nid],
3045 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3048 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3050 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3051 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3054 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3055 unsigned long hugetlb_total_pages(void)
3057 struct hstate *h;
3058 unsigned long nr_total_pages = 0;
3060 for_each_hstate(h)
3061 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3062 return nr_total_pages;
3065 static int hugetlb_acct_memory(struct hstate *h, long delta)
3067 int ret = -ENOMEM;
3069 spin_lock(&hugetlb_lock);
3071 * When cpuset is configured, it breaks the strict hugetlb page
3072 * reservation as the accounting is done on a global variable. Such
3073 * reservation is completely rubbish in the presence of cpuset because
3074 * the reservation is not checked against page availability for the
3075 * current cpuset. Application can still potentially OOM'ed by kernel
3076 * with lack of free htlb page in cpuset that the task is in.
3077 * Attempt to enforce strict accounting with cpuset is almost
3078 * impossible (or too ugly) because cpuset is too fluid that
3079 * task or memory node can be dynamically moved between cpusets.
3081 * The change of semantics for shared hugetlb mapping with cpuset is
3082 * undesirable. However, in order to preserve some of the semantics,
3083 * we fall back to check against current free page availability as
3084 * a best attempt and hopefully to minimize the impact of changing
3085 * semantics that cpuset has.
3087 if (delta > 0) {
3088 if (gather_surplus_pages(h, delta) < 0)
3089 goto out;
3091 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3092 return_unused_surplus_pages(h, delta);
3093 goto out;
3097 ret = 0;
3098 if (delta < 0)
3099 return_unused_surplus_pages(h, (unsigned long) -delta);
3101 out:
3102 spin_unlock(&hugetlb_lock);
3103 return ret;
3106 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3108 struct resv_map *resv = vma_resv_map(vma);
3111 * This new VMA should share its siblings reservation map if present.
3112 * The VMA will only ever have a valid reservation map pointer where
3113 * it is being copied for another still existing VMA. As that VMA
3114 * has a reference to the reservation map it cannot disappear until
3115 * after this open call completes. It is therefore safe to take a
3116 * new reference here without additional locking.
3118 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3119 kref_get(&resv->refs);
3122 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3124 struct hstate *h = hstate_vma(vma);
3125 struct resv_map *resv = vma_resv_map(vma);
3126 struct hugepage_subpool *spool = subpool_vma(vma);
3127 unsigned long reserve, start, end;
3128 long gbl_reserve;
3130 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3131 return;
3133 start = vma_hugecache_offset(h, vma, vma->vm_start);
3134 end = vma_hugecache_offset(h, vma, vma->vm_end);
3136 reserve = (end - start) - region_count(resv, start, end);
3138 kref_put(&resv->refs, resv_map_release);
3140 if (reserve) {
3142 * Decrement reserve counts. The global reserve count may be
3143 * adjusted if the subpool has a minimum size.
3145 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3146 hugetlb_acct_memory(h, -gbl_reserve);
3150 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3152 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3153 return -EINVAL;
3154 return 0;
3158 * We cannot handle pagefaults against hugetlb pages at all. They cause
3159 * handle_mm_fault() to try to instantiate regular-sized pages in the
3160 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3161 * this far.
3163 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3165 BUG();
3166 return 0;
3169 const struct vm_operations_struct hugetlb_vm_ops = {
3170 .fault = hugetlb_vm_op_fault,
3171 .open = hugetlb_vm_op_open,
3172 .close = hugetlb_vm_op_close,
3173 .split = hugetlb_vm_op_split,
3176 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3177 int writable)
3179 pte_t entry;
3181 if (writable) {
3182 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3183 vma->vm_page_prot)));
3184 } else {
3185 entry = huge_pte_wrprotect(mk_huge_pte(page,
3186 vma->vm_page_prot));
3188 entry = pte_mkyoung(entry);
3189 entry = pte_mkhuge(entry);
3190 entry = arch_make_huge_pte(entry, vma, page, writable);
3192 return entry;
3195 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3196 unsigned long address, pte_t *ptep)
3198 pte_t entry;
3200 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3201 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3202 update_mmu_cache(vma, address, ptep);
3205 static int is_hugetlb_entry_migration(pte_t pte)
3207 swp_entry_t swp;
3209 if (huge_pte_none(pte) || pte_present(pte))
3210 return 0;
3211 swp = pte_to_swp_entry(pte);
3212 if (non_swap_entry(swp) && is_migration_entry(swp))
3213 return 1;
3214 else
3215 return 0;
3218 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3220 swp_entry_t swp;
3222 if (huge_pte_none(pte) || pte_present(pte))
3223 return 0;
3224 swp = pte_to_swp_entry(pte);
3225 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3226 return 1;
3227 else
3228 return 0;
3231 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3232 struct vm_area_struct *vma)
3234 pte_t *src_pte, *dst_pte, entry, dst_entry;
3235 struct page *ptepage;
3236 unsigned long addr;
3237 int cow;
3238 struct hstate *h = hstate_vma(vma);
3239 unsigned long sz = huge_page_size(h);
3240 unsigned long mmun_start; /* For mmu_notifiers */
3241 unsigned long mmun_end; /* For mmu_notifiers */
3242 int ret = 0;
3244 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3246 mmun_start = vma->vm_start;
3247 mmun_end = vma->vm_end;
3248 if (cow)
3249 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3251 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3252 spinlock_t *src_ptl, *dst_ptl;
3253 src_pte = huge_pte_offset(src, addr);
3254 if (!src_pte)
3255 continue;
3256 dst_pte = huge_pte_alloc(dst, addr, sz);
3257 if (!dst_pte) {
3258 ret = -ENOMEM;
3259 break;
3263 * If the pagetables are shared don't copy or take references.
3264 * dst_pte == src_pte is the common case of src/dest sharing.
3266 * However, src could have 'unshared' and dst shares with
3267 * another vma. If dst_pte !none, this implies sharing.
3268 * Check here before taking page table lock, and once again
3269 * after taking the lock below.
3271 dst_entry = huge_ptep_get(dst_pte);
3272 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3273 continue;
3275 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3276 src_ptl = huge_pte_lockptr(h, src, src_pte);
3277 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3278 entry = huge_ptep_get(src_pte);
3279 dst_entry = huge_ptep_get(dst_pte);
3280 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3282 * Skip if src entry none. Also, skip in the
3283 * unlikely case dst entry !none as this implies
3284 * sharing with another vma.
3287 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3288 is_hugetlb_entry_hwpoisoned(entry))) {
3289 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3291 if (is_write_migration_entry(swp_entry) && cow) {
3293 * COW mappings require pages in both
3294 * parent and child to be set to read.
3296 make_migration_entry_read(&swp_entry);
3297 entry = swp_entry_to_pte(swp_entry);
3298 set_huge_pte_at(src, addr, src_pte, entry);
3300 set_huge_pte_at(dst, addr, dst_pte, entry);
3301 } else {
3302 if (cow) {
3303 huge_ptep_set_wrprotect(src, addr, src_pte);
3304 mmu_notifier_invalidate_range(src, mmun_start,
3305 mmun_end);
3307 entry = huge_ptep_get(src_pte);
3308 ptepage = pte_page(entry);
3309 get_page(ptepage);
3310 page_dup_rmap(ptepage, true);
3311 set_huge_pte_at(dst, addr, dst_pte, entry);
3312 hugetlb_count_add(pages_per_huge_page(h), dst);
3314 spin_unlock(src_ptl);
3315 spin_unlock(dst_ptl);
3318 if (cow)
3319 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3321 return ret;
3324 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3325 unsigned long start, unsigned long end,
3326 struct page *ref_page)
3328 struct mm_struct *mm = vma->vm_mm;
3329 unsigned long address;
3330 pte_t *ptep;
3331 pte_t pte;
3332 spinlock_t *ptl;
3333 struct page *page;
3334 struct hstate *h = hstate_vma(vma);
3335 unsigned long sz = huge_page_size(h);
3336 const unsigned long mmun_start = start; /* For mmu_notifiers */
3337 const unsigned long mmun_end = end; /* For mmu_notifiers */
3339 WARN_ON(!is_vm_hugetlb_page(vma));
3340 BUG_ON(start & ~huge_page_mask(h));
3341 BUG_ON(end & ~huge_page_mask(h));
3343 tlb_start_vma(tlb, vma);
3344 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3345 address = start;
3346 for (; address < end; address += sz) {
3347 ptep = huge_pte_offset(mm, address);
3348 if (!ptep)
3349 continue;
3351 ptl = huge_pte_lock(h, mm, ptep);
3352 if (huge_pmd_unshare(mm, &address, ptep)) {
3353 spin_unlock(ptl);
3354 continue;
3357 pte = huge_ptep_get(ptep);
3358 if (huge_pte_none(pte)) {
3359 spin_unlock(ptl);
3360 continue;
3364 * Migrating hugepage or HWPoisoned hugepage is already
3365 * unmapped and its refcount is dropped, so just clear pte here.
3367 if (unlikely(!pte_present(pte))) {
3368 huge_pte_clear(mm, address, ptep);
3369 spin_unlock(ptl);
3370 continue;
3373 page = pte_page(pte);
3375 * If a reference page is supplied, it is because a specific
3376 * page is being unmapped, not a range. Ensure the page we
3377 * are about to unmap is the actual page of interest.
3379 if (ref_page) {
3380 if (page != ref_page) {
3381 spin_unlock(ptl);
3382 continue;
3385 * Mark the VMA as having unmapped its page so that
3386 * future faults in this VMA will fail rather than
3387 * looking like data was lost
3389 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3392 pte = huge_ptep_get_and_clear(mm, address, ptep);
3393 tlb_remove_tlb_entry(tlb, ptep, address);
3394 if (huge_pte_dirty(pte))
3395 set_page_dirty(page);
3397 hugetlb_count_sub(pages_per_huge_page(h), mm);
3398 page_remove_rmap(page, true);
3400 spin_unlock(ptl);
3401 tlb_remove_page_size(tlb, page, huge_page_size(h));
3403 * Bail out after unmapping reference page if supplied
3405 if (ref_page)
3406 break;
3408 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3409 tlb_end_vma(tlb, vma);
3412 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3413 struct vm_area_struct *vma, unsigned long start,
3414 unsigned long end, struct page *ref_page)
3416 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3419 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3420 * test will fail on a vma being torn down, and not grab a page table
3421 * on its way out. We're lucky that the flag has such an appropriate
3422 * name, and can in fact be safely cleared here. We could clear it
3423 * before the __unmap_hugepage_range above, but all that's necessary
3424 * is to clear it before releasing the i_mmap_rwsem. This works
3425 * because in the context this is called, the VMA is about to be
3426 * destroyed and the i_mmap_rwsem is held.
3428 vma->vm_flags &= ~VM_MAYSHARE;
3431 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3432 unsigned long end, struct page *ref_page)
3434 struct mm_struct *mm;
3435 struct mmu_gather tlb;
3437 mm = vma->vm_mm;
3439 tlb_gather_mmu(&tlb, mm, start, end);
3440 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3441 tlb_finish_mmu(&tlb, start, end);
3445 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3446 * mappping it owns the reserve page for. The intention is to unmap the page
3447 * from other VMAs and let the children be SIGKILLed if they are faulting the
3448 * same region.
3450 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3451 struct page *page, unsigned long address)
3453 struct hstate *h = hstate_vma(vma);
3454 struct vm_area_struct *iter_vma;
3455 struct address_space *mapping;
3456 pgoff_t pgoff;
3459 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3460 * from page cache lookup which is in HPAGE_SIZE units.
3462 address = address & huge_page_mask(h);
3463 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3464 vma->vm_pgoff;
3465 mapping = vma->vm_file->f_mapping;
3468 * Take the mapping lock for the duration of the table walk. As
3469 * this mapping should be shared between all the VMAs,
3470 * __unmap_hugepage_range() is called as the lock is already held
3472 i_mmap_lock_write(mapping);
3473 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3474 /* Do not unmap the current VMA */
3475 if (iter_vma == vma)
3476 continue;
3479 * Shared VMAs have their own reserves and do not affect
3480 * MAP_PRIVATE accounting but it is possible that a shared
3481 * VMA is using the same page so check and skip such VMAs.
3483 if (iter_vma->vm_flags & VM_MAYSHARE)
3484 continue;
3487 * Unmap the page from other VMAs without their own reserves.
3488 * They get marked to be SIGKILLed if they fault in these
3489 * areas. This is because a future no-page fault on this VMA
3490 * could insert a zeroed page instead of the data existing
3491 * from the time of fork. This would look like data corruption
3493 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3494 unmap_hugepage_range(iter_vma, address,
3495 address + huge_page_size(h), page);
3497 i_mmap_unlock_write(mapping);
3501 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3502 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3503 * cannot race with other handlers or page migration.
3504 * Keep the pte_same checks anyway to make transition from the mutex easier.
3506 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3507 unsigned long address, pte_t *ptep,
3508 struct page *pagecache_page, spinlock_t *ptl)
3510 pte_t pte;
3511 struct hstate *h = hstate_vma(vma);
3512 struct page *old_page, *new_page;
3513 int ret = 0, outside_reserve = 0;
3514 unsigned long mmun_start; /* For mmu_notifiers */
3515 unsigned long mmun_end; /* For mmu_notifiers */
3517 pte = huge_ptep_get(ptep);
3518 old_page = pte_page(pte);
3520 retry_avoidcopy:
3521 /* If no-one else is actually using this page, avoid the copy
3522 * and just make the page writable */
3523 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3524 page_move_anon_rmap(old_page, vma);
3525 set_huge_ptep_writable(vma, address, ptep);
3526 return 0;
3530 * If the process that created a MAP_PRIVATE mapping is about to
3531 * perform a COW due to a shared page count, attempt to satisfy
3532 * the allocation without using the existing reserves. The pagecache
3533 * page is used to determine if the reserve at this address was
3534 * consumed or not. If reserves were used, a partial faulted mapping
3535 * at the time of fork() could consume its reserves on COW instead
3536 * of the full address range.
3538 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3539 old_page != pagecache_page)
3540 outside_reserve = 1;
3542 get_page(old_page);
3545 * Drop page table lock as buddy allocator may be called. It will
3546 * be acquired again before returning to the caller, as expected.
3548 spin_unlock(ptl);
3549 new_page = alloc_huge_page(vma, address, outside_reserve);
3551 if (IS_ERR(new_page)) {
3553 * If a process owning a MAP_PRIVATE mapping fails to COW,
3554 * it is due to references held by a child and an insufficient
3555 * huge page pool. To guarantee the original mappers
3556 * reliability, unmap the page from child processes. The child
3557 * may get SIGKILLed if it later faults.
3559 if (outside_reserve) {
3560 put_page(old_page);
3561 BUG_ON(huge_pte_none(pte));
3562 unmap_ref_private(mm, vma, old_page, address);
3563 BUG_ON(huge_pte_none(pte));
3564 spin_lock(ptl);
3565 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3566 if (likely(ptep &&
3567 pte_same(huge_ptep_get(ptep), pte)))
3568 goto retry_avoidcopy;
3570 * race occurs while re-acquiring page table
3571 * lock, and our job is done.
3573 return 0;
3576 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3577 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3578 goto out_release_old;
3582 * When the original hugepage is shared one, it does not have
3583 * anon_vma prepared.
3585 if (unlikely(anon_vma_prepare(vma))) {
3586 ret = VM_FAULT_OOM;
3587 goto out_release_all;
3590 copy_user_huge_page(new_page, old_page, address, vma,
3591 pages_per_huge_page(h));
3592 __SetPageUptodate(new_page);
3594 mmun_start = address & huge_page_mask(h);
3595 mmun_end = mmun_start + huge_page_size(h);
3596 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3599 * Retake the page table lock to check for racing updates
3600 * before the page tables are altered
3602 spin_lock(ptl);
3603 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3604 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605 ClearPagePrivate(new_page);
3607 /* Break COW */
3608 huge_ptep_clear_flush(vma, address, ptep);
3609 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610 set_huge_pte_at(mm, address, ptep,
3611 make_huge_pte(vma, new_page, 1));
3612 page_remove_rmap(old_page, true);
3613 hugepage_add_new_anon_rmap(new_page, vma, address);
3614 set_page_huge_active(new_page);
3615 /* Make the old page be freed below */
3616 new_page = old_page;
3618 spin_unlock(ptl);
3619 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3620 out_release_all:
3621 restore_reserve_on_error(h, vma, address, new_page);
3622 put_page(new_page);
3623 out_release_old:
3624 put_page(old_page);
3626 spin_lock(ptl); /* Caller expects lock to be held */
3627 return ret;
3630 /* Return the pagecache page at a given address within a VMA */
3631 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3632 struct vm_area_struct *vma, unsigned long address)
3634 struct address_space *mapping;
3635 pgoff_t idx;
3637 mapping = vma->vm_file->f_mapping;
3638 idx = vma_hugecache_offset(h, vma, address);
3640 return find_lock_page(mapping, idx);
3644 * Return whether there is a pagecache page to back given address within VMA.
3645 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3647 static bool hugetlbfs_pagecache_present(struct hstate *h,
3648 struct vm_area_struct *vma, unsigned long address)
3650 struct address_space *mapping;
3651 pgoff_t idx;
3652 struct page *page;
3654 mapping = vma->vm_file->f_mapping;
3655 idx = vma_hugecache_offset(h, vma, address);
3657 page = find_get_page(mapping, idx);
3658 if (page)
3659 put_page(page);
3660 return page != NULL;
3663 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3664 pgoff_t idx)
3666 struct inode *inode = mapping->host;
3667 struct hstate *h = hstate_inode(inode);
3668 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3670 if (err)
3671 return err;
3672 ClearPagePrivate(page);
3675 * set page dirty so that it will not be removed from cache/file
3676 * by non-hugetlbfs specific code paths.
3678 set_page_dirty(page);
3680 spin_lock(&inode->i_lock);
3681 inode->i_blocks += blocks_per_huge_page(h);
3682 spin_unlock(&inode->i_lock);
3683 return 0;
3686 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3687 struct address_space *mapping, pgoff_t idx,
3688 unsigned long address, pte_t *ptep, unsigned int flags)
3690 struct hstate *h = hstate_vma(vma);
3691 int ret = VM_FAULT_SIGBUS;
3692 int anon_rmap = 0;
3693 unsigned long size;
3694 struct page *page;
3695 pte_t new_pte;
3696 spinlock_t *ptl;
3697 bool new_page = false;
3700 * Currently, we are forced to kill the process in the event the
3701 * original mapper has unmapped pages from the child due to a failed
3702 * COW. Warn that such a situation has occurred as it may not be obvious
3704 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3705 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3706 current->pid);
3707 return ret;
3711 * Use page lock to guard against racing truncation
3712 * before we get page_table_lock.
3714 retry:
3715 page = find_lock_page(mapping, idx);
3716 if (!page) {
3717 size = i_size_read(mapping->host) >> huge_page_shift(h);
3718 if (idx >= size)
3719 goto out;
3720 page = alloc_huge_page(vma, address, 0);
3721 if (IS_ERR(page)) {
3722 ret = PTR_ERR(page);
3723 if (ret == -ENOMEM)
3724 ret = VM_FAULT_OOM;
3725 else
3726 ret = VM_FAULT_SIGBUS;
3727 goto out;
3729 clear_huge_page(page, address, pages_per_huge_page(h));
3730 __SetPageUptodate(page);
3731 new_page = true;
3733 if (vma->vm_flags & VM_MAYSHARE) {
3734 int err = huge_add_to_page_cache(page, mapping, idx);
3735 if (err) {
3736 put_page(page);
3737 if (err == -EEXIST)
3738 goto retry;
3739 goto out;
3741 } else {
3742 lock_page(page);
3743 if (unlikely(anon_vma_prepare(vma))) {
3744 ret = VM_FAULT_OOM;
3745 goto backout_unlocked;
3747 anon_rmap = 1;
3749 } else {
3751 * If memory error occurs between mmap() and fault, some process
3752 * don't have hwpoisoned swap entry for errored virtual address.
3753 * So we need to block hugepage fault by PG_hwpoison bit check.
3755 if (unlikely(PageHWPoison(page))) {
3756 ret = VM_FAULT_HWPOISON |
3757 VM_FAULT_SET_HINDEX(hstate_index(h));
3758 goto backout_unlocked;
3763 * If we are going to COW a private mapping later, we examine the
3764 * pending reservations for this page now. This will ensure that
3765 * any allocations necessary to record that reservation occur outside
3766 * the spinlock.
3768 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3769 if (vma_needs_reservation(h, vma, address) < 0) {
3770 ret = VM_FAULT_OOM;
3771 goto backout_unlocked;
3773 /* Just decrements count, does not deallocate */
3774 vma_end_reservation(h, vma, address);
3777 ptl = huge_pte_lockptr(h, mm, ptep);
3778 spin_lock(ptl);
3779 size = i_size_read(mapping->host) >> huge_page_shift(h);
3780 if (idx >= size)
3781 goto backout;
3783 ret = 0;
3784 if (!huge_pte_none(huge_ptep_get(ptep)))
3785 goto backout;
3787 if (anon_rmap) {
3788 ClearPagePrivate(page);
3789 hugepage_add_new_anon_rmap(page, vma, address);
3790 } else
3791 page_dup_rmap(page, true);
3792 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3793 && (vma->vm_flags & VM_SHARED)));
3794 set_huge_pte_at(mm, address, ptep, new_pte);
3796 hugetlb_count_add(pages_per_huge_page(h), mm);
3797 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3798 /* Optimization, do the COW without a second fault */
3799 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3802 spin_unlock(ptl);
3805 * Only make newly allocated pages active. Existing pages found
3806 * in the pagecache could be !page_huge_active() if they have been
3807 * isolated for migration.
3809 if (new_page)
3810 set_page_huge_active(page);
3812 unlock_page(page);
3813 out:
3814 return ret;
3816 backout:
3817 spin_unlock(ptl);
3818 backout_unlocked:
3819 unlock_page(page);
3820 restore_reserve_on_error(h, vma, address, page);
3821 put_page(page);
3822 goto out;
3825 #ifdef CONFIG_SMP
3826 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3827 pgoff_t idx, unsigned long address)
3829 unsigned long key[2];
3830 u32 hash;
3832 key[0] = (unsigned long) mapping;
3833 key[1] = idx;
3835 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3837 return hash & (num_fault_mutexes - 1);
3839 #else
3841 * For uniprocesor systems we always use a single mutex, so just
3842 * return 0 and avoid the hashing overhead.
3844 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3845 pgoff_t idx, unsigned long address)
3847 return 0;
3849 #endif
3851 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3852 unsigned long address, unsigned int flags)
3854 pte_t *ptep, entry;
3855 spinlock_t *ptl;
3856 int ret;
3857 u32 hash;
3858 pgoff_t idx;
3859 struct page *page = NULL;
3860 struct page *pagecache_page = NULL;
3861 struct hstate *h = hstate_vma(vma);
3862 struct address_space *mapping;
3863 int need_wait_lock = 0;
3865 address &= huge_page_mask(h);
3867 ptep = huge_pte_offset(mm, address);
3868 if (ptep) {
3869 entry = huge_ptep_get(ptep);
3870 if (unlikely(is_hugetlb_entry_migration(entry))) {
3871 migration_entry_wait_huge(vma, mm, ptep);
3872 return 0;
3873 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3874 return VM_FAULT_HWPOISON_LARGE |
3875 VM_FAULT_SET_HINDEX(hstate_index(h));
3876 } else {
3877 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3878 if (!ptep)
3879 return VM_FAULT_OOM;
3882 mapping = vma->vm_file->f_mapping;
3883 idx = vma_hugecache_offset(h, vma, address);
3886 * Serialize hugepage allocation and instantiation, so that we don't
3887 * get spurious allocation failures if two CPUs race to instantiate
3888 * the same page in the page cache.
3890 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3891 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3893 entry = huge_ptep_get(ptep);
3894 if (huge_pte_none(entry)) {
3895 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3896 goto out_mutex;
3899 ret = 0;
3902 * entry could be a migration/hwpoison entry at this point, so this
3903 * check prevents the kernel from going below assuming that we have
3904 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3905 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3906 * handle it.
3908 if (!pte_present(entry))
3909 goto out_mutex;
3912 * If we are going to COW the mapping later, we examine the pending
3913 * reservations for this page now. This will ensure that any
3914 * allocations necessary to record that reservation occur outside the
3915 * spinlock. For private mappings, we also lookup the pagecache
3916 * page now as it is used to determine if a reservation has been
3917 * consumed.
3919 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3920 if (vma_needs_reservation(h, vma, address) < 0) {
3921 ret = VM_FAULT_OOM;
3922 goto out_mutex;
3924 /* Just decrements count, does not deallocate */
3925 vma_end_reservation(h, vma, address);
3927 if (!(vma->vm_flags & VM_MAYSHARE))
3928 pagecache_page = hugetlbfs_pagecache_page(h,
3929 vma, address);
3932 ptl = huge_pte_lock(h, mm, ptep);
3934 /* Check for a racing update before calling hugetlb_cow */
3935 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3936 goto out_ptl;
3939 * hugetlb_cow() requires page locks of pte_page(entry) and
3940 * pagecache_page, so here we need take the former one
3941 * when page != pagecache_page or !pagecache_page.
3943 page = pte_page(entry);
3944 if (page != pagecache_page)
3945 if (!trylock_page(page)) {
3946 need_wait_lock = 1;
3947 goto out_ptl;
3950 get_page(page);
3952 if (flags & FAULT_FLAG_WRITE) {
3953 if (!huge_pte_write(entry)) {
3954 ret = hugetlb_cow(mm, vma, address, ptep,
3955 pagecache_page, ptl);
3956 goto out_put_page;
3958 entry = huge_pte_mkdirty(entry);
3960 entry = pte_mkyoung(entry);
3961 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3962 flags & FAULT_FLAG_WRITE))
3963 update_mmu_cache(vma, address, ptep);
3964 out_put_page:
3965 if (page != pagecache_page)
3966 unlock_page(page);
3967 put_page(page);
3968 out_ptl:
3969 spin_unlock(ptl);
3971 if (pagecache_page) {
3972 unlock_page(pagecache_page);
3973 put_page(pagecache_page);
3975 out_mutex:
3976 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3978 * Generally it's safe to hold refcount during waiting page lock. But
3979 * here we just wait to defer the next page fault to avoid busy loop and
3980 * the page is not used after unlocked before returning from the current
3981 * page fault. So we are safe from accessing freed page, even if we wait
3982 * here without taking refcount.
3984 if (need_wait_lock)
3985 wait_on_page_locked(page);
3986 return ret;
3989 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3990 struct page **pages, struct vm_area_struct **vmas,
3991 unsigned long *position, unsigned long *nr_pages,
3992 long i, unsigned int flags)
3994 unsigned long pfn_offset;
3995 unsigned long vaddr = *position;
3996 unsigned long remainder = *nr_pages;
3997 struct hstate *h = hstate_vma(vma);
3998 int err = -EFAULT;
4000 while (vaddr < vma->vm_end && remainder) {
4001 pte_t *pte;
4002 spinlock_t *ptl = NULL;
4003 int absent;
4004 struct page *page;
4007 * If we have a pending SIGKILL, don't keep faulting pages and
4008 * potentially allocating memory.
4010 if (unlikely(fatal_signal_pending(current))) {
4011 remainder = 0;
4012 break;
4016 * Some archs (sparc64, sh*) have multiple pte_ts to
4017 * each hugepage. We have to make sure we get the
4018 * first, for the page indexing below to work.
4020 * Note that page table lock is not held when pte is null.
4022 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4023 if (pte)
4024 ptl = huge_pte_lock(h, mm, pte);
4025 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4028 * When coredumping, it suits get_dump_page if we just return
4029 * an error where there's an empty slot with no huge pagecache
4030 * to back it. This way, we avoid allocating a hugepage, and
4031 * the sparse dumpfile avoids allocating disk blocks, but its
4032 * huge holes still show up with zeroes where they need to be.
4034 if (absent && (flags & FOLL_DUMP) &&
4035 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4036 if (pte)
4037 spin_unlock(ptl);
4038 remainder = 0;
4039 break;
4043 * We need call hugetlb_fault for both hugepages under migration
4044 * (in which case hugetlb_fault waits for the migration,) and
4045 * hwpoisoned hugepages (in which case we need to prevent the
4046 * caller from accessing to them.) In order to do this, we use
4047 * here is_swap_pte instead of is_hugetlb_entry_migration and
4048 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4049 * both cases, and because we can't follow correct pages
4050 * directly from any kind of swap entries.
4052 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4053 ((flags & FOLL_WRITE) &&
4054 !huge_pte_write(huge_ptep_get(pte)))) {
4055 int ret;
4057 if (pte)
4058 spin_unlock(ptl);
4059 ret = hugetlb_fault(mm, vma, vaddr,
4060 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4061 if (!(ret & VM_FAULT_ERROR))
4062 continue;
4064 remainder = 0;
4065 break;
4068 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4069 page = pte_page(huge_ptep_get(pte));
4072 * Instead of doing 'try_get_page()' below in the same_page
4073 * loop, just check the count once here.
4075 if (unlikely(page_count(page) <= 0)) {
4076 if (pages) {
4077 spin_unlock(ptl);
4078 remainder = 0;
4079 err = -ENOMEM;
4080 break;
4083 same_page:
4084 if (pages) {
4085 pages[i] = mem_map_offset(page, pfn_offset);
4086 get_page(pages[i]);
4089 if (vmas)
4090 vmas[i] = vma;
4092 vaddr += PAGE_SIZE;
4093 ++pfn_offset;
4094 --remainder;
4095 ++i;
4096 if (vaddr < vma->vm_end && remainder &&
4097 pfn_offset < pages_per_huge_page(h)) {
4099 * We use pfn_offset to avoid touching the pageframes
4100 * of this compound page.
4102 goto same_page;
4104 spin_unlock(ptl);
4106 *nr_pages = remainder;
4107 *position = vaddr;
4109 return i ? i : err;
4112 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4114 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4115 * implement this.
4117 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4118 #endif
4120 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4121 unsigned long address, unsigned long end, pgprot_t newprot)
4123 struct mm_struct *mm = vma->vm_mm;
4124 unsigned long start = address;
4125 pte_t *ptep;
4126 pte_t pte;
4127 struct hstate *h = hstate_vma(vma);
4128 unsigned long pages = 0;
4130 BUG_ON(address >= end);
4131 flush_cache_range(vma, address, end);
4133 mmu_notifier_invalidate_range_start(mm, start, end);
4134 i_mmap_lock_write(vma->vm_file->f_mapping);
4135 for (; address < end; address += huge_page_size(h)) {
4136 spinlock_t *ptl;
4137 ptep = huge_pte_offset(mm, address);
4138 if (!ptep)
4139 continue;
4140 ptl = huge_pte_lock(h, mm, ptep);
4141 if (huge_pmd_unshare(mm, &address, ptep)) {
4142 pages++;
4143 spin_unlock(ptl);
4144 continue;
4146 pte = huge_ptep_get(ptep);
4147 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4148 spin_unlock(ptl);
4149 continue;
4151 if (unlikely(is_hugetlb_entry_migration(pte))) {
4152 swp_entry_t entry = pte_to_swp_entry(pte);
4154 if (is_write_migration_entry(entry)) {
4155 pte_t newpte;
4157 make_migration_entry_read(&entry);
4158 newpte = swp_entry_to_pte(entry);
4159 set_huge_pte_at(mm, address, ptep, newpte);
4160 pages++;
4162 spin_unlock(ptl);
4163 continue;
4165 if (!huge_pte_none(pte)) {
4166 pte = huge_ptep_get_and_clear(mm, address, ptep);
4167 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4168 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4169 set_huge_pte_at(mm, address, ptep, pte);
4170 pages++;
4172 spin_unlock(ptl);
4175 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4176 * may have cleared our pud entry and done put_page on the page table:
4177 * once we release i_mmap_rwsem, another task can do the final put_page
4178 * and that page table be reused and filled with junk.
4180 flush_hugetlb_tlb_range(vma, start, end);
4181 mmu_notifier_invalidate_range(mm, start, end);
4182 i_mmap_unlock_write(vma->vm_file->f_mapping);
4183 mmu_notifier_invalidate_range_end(mm, start, end);
4185 return pages << h->order;
4188 int hugetlb_reserve_pages(struct inode *inode,
4189 long from, long to,
4190 struct vm_area_struct *vma,
4191 vm_flags_t vm_flags)
4193 long ret, chg;
4194 struct hstate *h = hstate_inode(inode);
4195 struct hugepage_subpool *spool = subpool_inode(inode);
4196 struct resv_map *resv_map;
4197 long gbl_reserve;
4199 /* This should never happen */
4200 if (from > to) {
4201 VM_WARN(1, "%s called with a negative range\n", __func__);
4202 return -EINVAL;
4206 * Only apply hugepage reservation if asked. At fault time, an
4207 * attempt will be made for VM_NORESERVE to allocate a page
4208 * without using reserves
4210 if (vm_flags & VM_NORESERVE)
4211 return 0;
4214 * Shared mappings base their reservation on the number of pages that
4215 * are already allocated on behalf of the file. Private mappings need
4216 * to reserve the full area even if read-only as mprotect() may be
4217 * called to make the mapping read-write. Assume !vma is a shm mapping
4219 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4220 resv_map = inode_resv_map(inode);
4222 chg = region_chg(resv_map, from, to);
4224 } else {
4225 resv_map = resv_map_alloc();
4226 if (!resv_map)
4227 return -ENOMEM;
4229 chg = to - from;
4231 set_vma_resv_map(vma, resv_map);
4232 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4235 if (chg < 0) {
4236 ret = chg;
4237 goto out_err;
4241 * There must be enough pages in the subpool for the mapping. If
4242 * the subpool has a minimum size, there may be some global
4243 * reservations already in place (gbl_reserve).
4245 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4246 if (gbl_reserve < 0) {
4247 ret = -ENOSPC;
4248 goto out_err;
4252 * Check enough hugepages are available for the reservation.
4253 * Hand the pages back to the subpool if there are not
4255 ret = hugetlb_acct_memory(h, gbl_reserve);
4256 if (ret < 0) {
4257 /* put back original number of pages, chg */
4258 (void)hugepage_subpool_put_pages(spool, chg);
4259 goto out_err;
4263 * Account for the reservations made. Shared mappings record regions
4264 * that have reservations as they are shared by multiple VMAs.
4265 * When the last VMA disappears, the region map says how much
4266 * the reservation was and the page cache tells how much of
4267 * the reservation was consumed. Private mappings are per-VMA and
4268 * only the consumed reservations are tracked. When the VMA
4269 * disappears, the original reservation is the VMA size and the
4270 * consumed reservations are stored in the map. Hence, nothing
4271 * else has to be done for private mappings here
4273 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4274 long add = region_add(resv_map, from, to);
4276 if (unlikely(chg > add)) {
4278 * pages in this range were added to the reserve
4279 * map between region_chg and region_add. This
4280 * indicates a race with alloc_huge_page. Adjust
4281 * the subpool and reserve counts modified above
4282 * based on the difference.
4284 long rsv_adjust;
4286 rsv_adjust = hugepage_subpool_put_pages(spool,
4287 chg - add);
4288 hugetlb_acct_memory(h, -rsv_adjust);
4291 return 0;
4292 out_err:
4293 if (!vma || vma->vm_flags & VM_MAYSHARE)
4294 /* Don't call region_abort if region_chg failed */
4295 if (chg >= 0)
4296 region_abort(resv_map, from, to);
4297 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4298 kref_put(&resv_map->refs, resv_map_release);
4299 return ret;
4302 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4303 long freed)
4305 struct hstate *h = hstate_inode(inode);
4306 struct resv_map *resv_map = inode_resv_map(inode);
4307 long chg = 0;
4308 struct hugepage_subpool *spool = subpool_inode(inode);
4309 long gbl_reserve;
4311 if (resv_map) {
4312 chg = region_del(resv_map, start, end);
4314 * region_del() can fail in the rare case where a region
4315 * must be split and another region descriptor can not be
4316 * allocated. If end == LONG_MAX, it will not fail.
4318 if (chg < 0)
4319 return chg;
4322 spin_lock(&inode->i_lock);
4323 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4324 spin_unlock(&inode->i_lock);
4327 * If the subpool has a minimum size, the number of global
4328 * reservations to be released may be adjusted.
4330 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4331 hugetlb_acct_memory(h, -gbl_reserve);
4333 return 0;
4336 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4337 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4338 struct vm_area_struct *vma,
4339 unsigned long addr, pgoff_t idx)
4341 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4342 svma->vm_start;
4343 unsigned long sbase = saddr & PUD_MASK;
4344 unsigned long s_end = sbase + PUD_SIZE;
4346 /* Allow segments to share if only one is marked locked */
4347 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4348 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4351 * match the virtual addresses, permission and the alignment of the
4352 * page table page.
4354 if (pmd_index(addr) != pmd_index(saddr) ||
4355 vm_flags != svm_flags ||
4356 sbase < svma->vm_start || svma->vm_end < s_end)
4357 return 0;
4359 return saddr;
4362 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4364 unsigned long base = addr & PUD_MASK;
4365 unsigned long end = base + PUD_SIZE;
4368 * check on proper vm_flags and page table alignment
4370 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4371 return true;
4372 return false;
4376 * Determine if start,end range within vma could be mapped by shared pmd.
4377 * If yes, adjust start and end to cover range associated with possible
4378 * shared pmd mappings.
4380 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4381 unsigned long *start, unsigned long *end)
4383 unsigned long check_addr = *start;
4385 if (!(vma->vm_flags & VM_MAYSHARE))
4386 return;
4388 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4389 unsigned long a_start = check_addr & PUD_MASK;
4390 unsigned long a_end = a_start + PUD_SIZE;
4393 * If sharing is possible, adjust start/end if necessary.
4395 if (range_in_vma(vma, a_start, a_end)) {
4396 if (a_start < *start)
4397 *start = a_start;
4398 if (a_end > *end)
4399 *end = a_end;
4405 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4406 * and returns the corresponding pte. While this is not necessary for the
4407 * !shared pmd case because we can allocate the pmd later as well, it makes the
4408 * code much cleaner. pmd allocation is essential for the shared case because
4409 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4410 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4411 * bad pmd for sharing.
4413 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4415 struct vm_area_struct *vma = find_vma(mm, addr);
4416 struct address_space *mapping = vma->vm_file->f_mapping;
4417 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4418 vma->vm_pgoff;
4419 struct vm_area_struct *svma;
4420 unsigned long saddr;
4421 pte_t *spte = NULL;
4422 pte_t *pte;
4423 spinlock_t *ptl;
4425 if (!vma_shareable(vma, addr))
4426 return (pte_t *)pmd_alloc(mm, pud, addr);
4428 i_mmap_lock_write(mapping);
4429 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4430 if (svma == vma)
4431 continue;
4433 saddr = page_table_shareable(svma, vma, addr, idx);
4434 if (saddr) {
4435 spte = huge_pte_offset(svma->vm_mm, saddr);
4436 if (spte) {
4437 get_page(virt_to_page(spte));
4438 break;
4443 if (!spte)
4444 goto out;
4446 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4447 spin_lock(ptl);
4448 if (pud_none(*pud)) {
4449 pud_populate(mm, pud,
4450 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4451 mm_inc_nr_pmds(mm);
4452 } else {
4453 put_page(virt_to_page(spte));
4455 spin_unlock(ptl);
4456 out:
4457 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4458 i_mmap_unlock_write(mapping);
4459 return pte;
4463 * unmap huge page backed by shared pte.
4465 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4466 * indicated by page_count > 1, unmap is achieved by clearing pud and
4467 * decrementing the ref count. If count == 1, the pte page is not shared.
4469 * called with page table lock held.
4471 * returns: 1 successfully unmapped a shared pte page
4472 * 0 the underlying pte page is not shared, or it is the last user
4474 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4476 pgd_t *pgd = pgd_offset(mm, *addr);
4477 pud_t *pud = pud_offset(pgd, *addr);
4479 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4480 if (page_count(virt_to_page(ptep)) == 1)
4481 return 0;
4483 pud_clear(pud);
4484 put_page(virt_to_page(ptep));
4485 mm_dec_nr_pmds(mm);
4486 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4487 return 1;
4489 #define want_pmd_share() (1)
4490 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4491 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4493 return NULL;
4496 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4498 return 0;
4501 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4502 unsigned long *start, unsigned long *end)
4505 #define want_pmd_share() (0)
4506 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4508 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4509 pte_t *huge_pte_alloc(struct mm_struct *mm,
4510 unsigned long addr, unsigned long sz)
4512 pgd_t *pgd;
4513 pud_t *pud;
4514 pte_t *pte = NULL;
4516 pgd = pgd_offset(mm, addr);
4517 pud = pud_alloc(mm, pgd, addr);
4518 if (pud) {
4519 if (sz == PUD_SIZE) {
4520 pte = (pte_t *)pud;
4521 } else {
4522 BUG_ON(sz != PMD_SIZE);
4523 if (want_pmd_share() && pud_none(*pud))
4524 pte = huge_pmd_share(mm, addr, pud);
4525 else
4526 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4529 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4531 return pte;
4534 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4536 pgd_t *pgd;
4537 pud_t *pud;
4538 pmd_t *pmd = NULL;
4540 pgd = pgd_offset(mm, addr);
4541 if (pgd_present(*pgd)) {
4542 pud = pud_offset(pgd, addr);
4543 if (pud_present(*pud)) {
4544 if (pud_huge(*pud))
4545 return (pte_t *)pud;
4546 pmd = pmd_offset(pud, addr);
4549 return (pte_t *) pmd;
4552 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4555 * These functions are overwritable if your architecture needs its own
4556 * behavior.
4558 struct page * __weak
4559 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4560 int write)
4562 return ERR_PTR(-EINVAL);
4565 struct page * __weak
4566 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4567 pmd_t *pmd, int flags)
4569 struct page *page = NULL;
4570 spinlock_t *ptl;
4571 pte_t pte;
4572 retry:
4573 ptl = pmd_lockptr(mm, pmd);
4574 spin_lock(ptl);
4576 * make sure that the address range covered by this pmd is not
4577 * unmapped from other threads.
4579 if (!pmd_huge(*pmd))
4580 goto out;
4581 pte = huge_ptep_get((pte_t *)pmd);
4582 if (pte_present(pte)) {
4583 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4584 if (flags & FOLL_GET)
4585 get_page(page);
4586 } else {
4587 if (is_hugetlb_entry_migration(pte)) {
4588 spin_unlock(ptl);
4589 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4590 goto retry;
4593 * hwpoisoned entry is treated as no_page_table in
4594 * follow_page_mask().
4597 out:
4598 spin_unlock(ptl);
4599 return page;
4602 struct page * __weak
4603 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4604 pud_t *pud, int flags)
4606 if (flags & FOLL_GET)
4607 return NULL;
4609 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4612 #ifdef CONFIG_MEMORY_FAILURE
4615 * This function is called from memory failure code.
4617 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4619 struct hstate *h = page_hstate(hpage);
4620 int nid = page_to_nid(hpage);
4621 int ret = -EBUSY;
4623 spin_lock(&hugetlb_lock);
4625 * Just checking !page_huge_active is not enough, because that could be
4626 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4628 if (!page_huge_active(hpage) && !page_count(hpage)) {
4630 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4631 * but dangling hpage->lru can trigger list-debug warnings
4632 * (this happens when we call unpoison_memory() on it),
4633 * so let it point to itself with list_del_init().
4635 list_del_init(&hpage->lru);
4636 set_page_refcounted(hpage);
4637 h->free_huge_pages--;
4638 h->free_huge_pages_node[nid]--;
4639 ret = 0;
4641 spin_unlock(&hugetlb_lock);
4642 return ret;
4644 #endif
4646 bool isolate_huge_page(struct page *page, struct list_head *list)
4648 bool ret = true;
4650 VM_BUG_ON_PAGE(!PageHead(page), page);
4651 spin_lock(&hugetlb_lock);
4652 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4653 ret = false;
4654 goto unlock;
4656 clear_page_huge_active(page);
4657 list_move_tail(&page->lru, list);
4658 unlock:
4659 spin_unlock(&hugetlb_lock);
4660 return ret;
4663 void putback_active_hugepage(struct page *page)
4665 VM_BUG_ON_PAGE(!PageHead(page), page);
4666 spin_lock(&hugetlb_lock);
4667 set_page_huge_active(page);
4668 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4669 spin_unlock(&hugetlb_lock);
4670 put_page(page);