2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
101 #include "internal.h"
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107 static struct kmem_cache
*policy_cache
;
108 static struct kmem_cache
*sn_cache
;
110 /* Highest zone. An specific allocation for a zone below that is not
112 enum zone_type policy_zone
= 0;
115 * run-time system-wide default policy => local allocation
117 static struct mempolicy default_policy
= {
118 .refcnt
= ATOMIC_INIT(1), /* never free it */
119 .mode
= MPOL_PREFERRED
,
120 .flags
= MPOL_F_LOCAL
,
123 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
125 struct mempolicy
*get_task_policy(struct task_struct
*p
)
127 struct mempolicy
*pol
= p
->mempolicy
;
133 node
= numa_node_id();
134 if (node
!= NUMA_NO_NODE
) {
135 pol
= &preferred_node_policy
[node
];
136 /* preferred_node_policy is not initialised early in boot */
141 return &default_policy
;
144 static const struct mempolicy_operations
{
145 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * If we have a lock to protect task->mempolicy in read-side, we do
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
161 enum mpol_rebind_step step
);
162 } mpol_ops
[MPOL_MAX
];
164 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
166 return pol
->flags
& MPOL_MODE_FLAGS
;
169 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
170 const nodemask_t
*rel
)
173 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
174 nodes_onto(*ret
, tmp
, *rel
);
177 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
179 if (nodes_empty(*nodes
))
181 pol
->v
.nodes
= *nodes
;
185 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
188 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
189 else if (nodes_empty(*nodes
))
190 return -EINVAL
; /* no allowed nodes */
192 pol
->v
.preferred_node
= first_node(*nodes
);
196 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
198 if (nodes_empty(*nodes
))
200 pol
->v
.nodes
= *nodes
;
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 static int mpol_set_nodemask(struct mempolicy
*pol
,
214 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
222 nodes_and(nsc
->mask1
,
223 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
226 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
227 nodes
= NULL
; /* explicit local allocation */
229 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
230 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
232 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
234 if (mpol_store_user_nodemask(pol
))
235 pol
->w
.user_nodemask
= *nodes
;
237 pol
->w
.cpuset_mems_allowed
=
238 cpuset_current_mems_allowed
;
242 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
244 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
255 struct mempolicy
*policy
;
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
260 if (mode
== MPOL_DEFAULT
) {
261 if (nodes
&& !nodes_empty(*nodes
))
262 return ERR_PTR(-EINVAL
);
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
272 if (mode
== MPOL_PREFERRED
) {
273 if (nodes_empty(*nodes
)) {
274 if (((flags
& MPOL_F_STATIC_NODES
) ||
275 (flags
& MPOL_F_RELATIVE_NODES
)))
276 return ERR_PTR(-EINVAL
);
278 } else if (mode
== MPOL_LOCAL
) {
279 if (!nodes_empty(*nodes
))
280 return ERR_PTR(-EINVAL
);
281 mode
= MPOL_PREFERRED
;
282 } else if (nodes_empty(*nodes
))
283 return ERR_PTR(-EINVAL
);
284 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
286 return ERR_PTR(-ENOMEM
);
287 atomic_set(&policy
->refcnt
, 1);
289 policy
->flags
= flags
;
294 /* Slow path of a mpol destructor. */
295 void __mpol_put(struct mempolicy
*p
)
297 if (!atomic_dec_and_test(&p
->refcnt
))
299 kmem_cache_free(policy_cache
, p
);
302 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
303 enum mpol_rebind_step step
)
309 * MPOL_REBIND_ONCE - do rebind work at once
310 * MPOL_REBIND_STEP1 - set all the newly nodes
311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
314 enum mpol_rebind_step step
)
318 if (pol
->flags
& MPOL_F_STATIC_NODES
)
319 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
320 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
321 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
327 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
328 nodes_remap(tmp
, pol
->v
.nodes
,
329 pol
->w
.cpuset_mems_allowed
, *nodes
);
330 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
331 } else if (step
== MPOL_REBIND_STEP2
) {
332 tmp
= pol
->w
.cpuset_mems_allowed
;
333 pol
->w
.cpuset_mems_allowed
= *nodes
;
338 if (nodes_empty(tmp
))
341 if (step
== MPOL_REBIND_STEP1
)
342 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
343 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
348 if (!node_isset(current
->il_next
, tmp
)) {
349 current
->il_next
= next_node_in(current
->il_next
, tmp
);
350 if (current
->il_next
>= MAX_NUMNODES
)
351 current
->il_next
= numa_node_id();
355 static void mpol_rebind_preferred(struct mempolicy
*pol
,
356 const nodemask_t
*nodes
,
357 enum mpol_rebind_step step
)
361 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
362 int node
= first_node(pol
->w
.user_nodemask
);
364 if (node_isset(node
, *nodes
)) {
365 pol
->v
.preferred_node
= node
;
366 pol
->flags
&= ~MPOL_F_LOCAL
;
368 pol
->flags
|= MPOL_F_LOCAL
;
369 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
370 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
371 pol
->v
.preferred_node
= first_node(tmp
);
372 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
373 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
374 pol
->w
.cpuset_mems_allowed
,
376 pol
->w
.cpuset_mems_allowed
= *nodes
;
381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
383 * If read-side task has no lock to protect task->mempolicy, write-side
384 * task will rebind the task->mempolicy by two step. The first step is
385 * setting all the newly nodes, and the second step is cleaning all the
386 * disallowed nodes. In this way, we can avoid finding no node to alloc
388 * If we have a lock to protect task->mempolicy in read-side, we do
392 * MPOL_REBIND_ONCE - do rebind work at once
393 * MPOL_REBIND_STEP1 - set all the newly nodes
394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
396 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
397 enum mpol_rebind_step step
)
401 if (!mpol_store_user_nodemask(pol
) && step
== MPOL_REBIND_ONCE
&&
402 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
405 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
408 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
411 if (step
== MPOL_REBIND_STEP1
)
412 pol
->flags
|= MPOL_F_REBINDING
;
413 else if (step
== MPOL_REBIND_STEP2
)
414 pol
->flags
&= ~MPOL_F_REBINDING
;
415 else if (step
>= MPOL_REBIND_NSTEP
)
418 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
422 * Wrapper for mpol_rebind_policy() that just requires task
423 * pointer, and updates task mempolicy.
425 * Called with task's alloc_lock held.
428 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
429 enum mpol_rebind_step step
)
431 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
435 * Rebind each vma in mm to new nodemask.
437 * Call holding a reference to mm. Takes mm->mmap_sem during call.
440 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
442 struct vm_area_struct
*vma
;
444 down_write(&mm
->mmap_sem
);
445 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
446 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
447 up_write(&mm
->mmap_sem
);
450 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
452 .rebind
= mpol_rebind_default
,
454 [MPOL_INTERLEAVE
] = {
455 .create
= mpol_new_interleave
,
456 .rebind
= mpol_rebind_nodemask
,
459 .create
= mpol_new_preferred
,
460 .rebind
= mpol_rebind_preferred
,
463 .create
= mpol_new_bind
,
464 .rebind
= mpol_rebind_nodemask
,
468 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
469 unsigned long flags
);
472 struct list_head
*pagelist
;
475 struct vm_area_struct
*prev
;
479 * Scan through pages checking if pages follow certain conditions,
480 * and move them to the pagelist if they do.
482 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
483 unsigned long end
, struct mm_walk
*walk
)
485 struct vm_area_struct
*vma
= walk
->vma
;
487 struct queue_pages
*qp
= walk
->private;
488 unsigned long flags
= qp
->flags
;
493 if (pmd_trans_huge(*pmd
)) {
494 ptl
= pmd_lock(walk
->mm
, pmd
);
495 if (pmd_trans_huge(*pmd
)) {
496 page
= pmd_page(*pmd
);
497 if (is_huge_zero_page(page
)) {
499 split_huge_pmd(vma
, pmd
, addr
);
504 ret
= split_huge_page(page
);
515 if (pmd_trans_unstable(pmd
))
518 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
519 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
520 if (!pte_present(*pte
))
522 page
= vm_normal_page(vma
, addr
, *pte
);
526 * vm_normal_page() filters out zero pages, but there might
527 * still be PageReserved pages to skip, perhaps in a VDSO.
529 if (PageReserved(page
))
531 nid
= page_to_nid(page
);
532 if (node_isset(nid
, *qp
->nmask
) == !!(flags
& MPOL_MF_INVERT
))
534 if (PageTransCompound(page
)) {
536 pte_unmap_unlock(pte
, ptl
);
538 ret
= split_huge_page(page
);
541 /* Failed to split -- skip. */
543 pte
= pte_offset_map_lock(walk
->mm
, pmd
,
550 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
551 if (!vma_migratable(vma
))
553 migrate_page_add(page
, qp
->pagelist
, flags
);
557 pte_unmap_unlock(pte
- 1, ptl
);
559 return addr
!= end
? -EIO
: 0;
562 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
563 unsigned long addr
, unsigned long end
,
564 struct mm_walk
*walk
)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages
*qp
= walk
->private;
568 unsigned long flags
= qp
->flags
;
574 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
575 entry
= huge_ptep_get(pte
);
576 if (!pte_present(entry
))
578 page
= pte_page(entry
);
579 nid
= page_to_nid(page
);
580 if (node_isset(nid
, *qp
->nmask
) == !!(flags
& MPOL_MF_INVERT
))
582 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
583 if (flags
& (MPOL_MF_MOVE_ALL
) ||
584 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
585 isolate_huge_page(page
, qp
->pagelist
);
594 #ifdef CONFIG_NUMA_BALANCING
596 * This is used to mark a range of virtual addresses to be inaccessible.
597 * These are later cleared by a NUMA hinting fault. Depending on these
598 * faults, pages may be migrated for better NUMA placement.
600 * This is assuming that NUMA faults are handled using PROT_NONE. If
601 * an architecture makes a different choice, it will need further
602 * changes to the core.
604 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
605 unsigned long addr
, unsigned long end
)
609 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
611 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
616 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
617 unsigned long addr
, unsigned long end
)
621 #endif /* CONFIG_NUMA_BALANCING */
623 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
624 struct mm_walk
*walk
)
626 struct vm_area_struct
*vma
= walk
->vma
;
627 struct queue_pages
*qp
= walk
->private;
628 unsigned long endvma
= vma
->vm_end
;
629 unsigned long flags
= qp
->flags
;
632 * Need check MPOL_MF_STRICT to return -EIO if possible
633 * regardless of vma_migratable
635 if (!vma_migratable(vma
) &&
636 !(flags
& MPOL_MF_STRICT
))
641 if (vma
->vm_start
> start
)
642 start
= vma
->vm_start
;
644 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
645 if (!vma
->vm_next
&& vma
->vm_end
< end
)
647 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
653 if (flags
& MPOL_MF_LAZY
) {
654 /* Similar to task_numa_work, skip inaccessible VMAs */
655 if (!is_vm_hugetlb_page(vma
) &&
656 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
657 !(vma
->vm_flags
& VM_MIXEDMAP
))
658 change_prot_numa(vma
, start
, endvma
);
662 /* queue pages from current vma */
663 if (flags
& MPOL_MF_VALID
)
669 * Walk through page tables and collect pages to be migrated.
671 * If pages found in a given range are on a set of nodes (determined by
672 * @nodes and @flags,) it's isolated and queued to the pagelist which is
673 * passed via @private.)
676 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
677 nodemask_t
*nodes
, unsigned long flags
,
678 struct list_head
*pagelist
)
680 struct queue_pages qp
= {
681 .pagelist
= pagelist
,
686 struct mm_walk queue_pages_walk
= {
687 .hugetlb_entry
= queue_pages_hugetlb
,
688 .pmd_entry
= queue_pages_pte_range
,
689 .test_walk
= queue_pages_test_walk
,
694 return walk_page_range(start
, end
, &queue_pages_walk
);
698 * Apply policy to a single VMA
699 * This must be called with the mmap_sem held for writing.
701 static int vma_replace_policy(struct vm_area_struct
*vma
,
702 struct mempolicy
*pol
)
705 struct mempolicy
*old
;
706 struct mempolicy
*new;
708 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
709 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
710 vma
->vm_ops
, vma
->vm_file
,
711 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
717 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
718 err
= vma
->vm_ops
->set_policy(vma
, new);
723 old
= vma
->vm_policy
;
724 vma
->vm_policy
= new; /* protected by mmap_sem */
733 /* Step 2: apply policy to a range and do splits. */
734 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
735 unsigned long end
, struct mempolicy
*new_pol
)
737 struct vm_area_struct
*next
;
738 struct vm_area_struct
*prev
;
739 struct vm_area_struct
*vma
;
742 unsigned long vmstart
;
745 vma
= find_vma(mm
, start
);
746 if (!vma
|| vma
->vm_start
> start
)
750 if (start
> vma
->vm_start
)
753 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
755 vmstart
= max(start
, vma
->vm_start
);
756 vmend
= min(end
, vma
->vm_end
);
758 if (mpol_equal(vma_policy(vma
), new_pol
))
761 pgoff
= vma
->vm_pgoff
+
762 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
763 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
764 vma
->anon_vma
, vma
->vm_file
, pgoff
,
765 new_pol
, vma
->vm_userfaultfd_ctx
);
769 if (mpol_equal(vma_policy(vma
), new_pol
))
771 /* vma_merge() joined vma && vma->next, case 8 */
774 if (vma
->vm_start
!= vmstart
) {
775 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
779 if (vma
->vm_end
!= vmend
) {
780 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
785 err
= vma_replace_policy(vma
, new_pol
);
794 /* Set the process memory policy */
795 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
798 struct mempolicy
*new, *old
;
799 NODEMASK_SCRATCH(scratch
);
805 new = mpol_new(mode
, flags
, nodes
);
812 ret
= mpol_set_nodemask(new, nodes
, scratch
);
814 task_unlock(current
);
818 old
= current
->mempolicy
;
819 current
->mempolicy
= new;
820 if (new && new->mode
== MPOL_INTERLEAVE
&&
821 nodes_weight(new->v
.nodes
))
822 current
->il_next
= first_node(new->v
.nodes
);
823 task_unlock(current
);
827 NODEMASK_SCRATCH_FREE(scratch
);
832 * Return nodemask for policy for get_mempolicy() query
834 * Called with task's alloc_lock held
836 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
839 if (p
== &default_policy
)
845 case MPOL_INTERLEAVE
:
849 if (!(p
->flags
& MPOL_F_LOCAL
))
850 node_set(p
->v
.preferred_node
, *nodes
);
851 /* else return empty node mask for local allocation */
858 static int lookup_node(unsigned long addr
)
863 err
= get_user_pages(addr
& PAGE_MASK
, 1, 0, &p
, NULL
);
865 err
= page_to_nid(p
);
871 /* Retrieve NUMA policy */
872 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
873 unsigned long addr
, unsigned long flags
)
876 struct mm_struct
*mm
= current
->mm
;
877 struct vm_area_struct
*vma
= NULL
;
878 struct mempolicy
*pol
= current
->mempolicy
;
881 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
884 if (flags
& MPOL_F_MEMS_ALLOWED
) {
885 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
887 *policy
= 0; /* just so it's initialized */
889 *nmask
= cpuset_current_mems_allowed
;
890 task_unlock(current
);
894 if (flags
& MPOL_F_ADDR
) {
896 * Do NOT fall back to task policy if the
897 * vma/shared policy at addr is NULL. We
898 * want to return MPOL_DEFAULT in this case.
900 down_read(&mm
->mmap_sem
);
901 vma
= find_vma_intersection(mm
, addr
, addr
+1);
903 up_read(&mm
->mmap_sem
);
906 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
907 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
909 pol
= vma
->vm_policy
;
914 pol
= &default_policy
; /* indicates default behavior */
916 if (flags
& MPOL_F_NODE
) {
917 if (flags
& MPOL_F_ADDR
) {
918 err
= lookup_node(addr
);
922 } else if (pol
== current
->mempolicy
&&
923 pol
->mode
== MPOL_INTERLEAVE
) {
924 *policy
= current
->il_next
;
930 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
933 * Internal mempolicy flags must be masked off before exposing
934 * the policy to userspace.
936 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
941 if (mpol_store_user_nodemask(pol
)) {
942 *nmask
= pol
->w
.user_nodemask
;
945 get_policy_nodemask(pol
, nmask
);
946 task_unlock(current
);
953 up_read(¤t
->mm
->mmap_sem
);
957 #ifdef CONFIG_MIGRATION
961 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
965 * Avoid migrating a page that is shared with others.
967 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
968 if (!isolate_lru_page(page
)) {
969 list_add_tail(&page
->lru
, pagelist
);
970 inc_node_page_state(page
, NR_ISOLATED_ANON
+
971 page_is_file_cache(page
));
976 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
979 return alloc_huge_page_node(page_hstate(compound_head(page
)),
982 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
987 * Migrate pages from one node to a target node.
988 * Returns error or the number of pages not migrated.
990 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
998 node_set(source
, nmask
);
1001 * This does not "check" the range but isolates all pages that
1002 * need migration. Between passing in the full user address
1003 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1005 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1006 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1007 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1009 if (!list_empty(&pagelist
)) {
1010 err
= migrate_pages(&pagelist
, new_node_page
, NULL
, dest
,
1011 MIGRATE_SYNC
, MR_SYSCALL
);
1013 putback_movable_pages(&pagelist
);
1020 * Move pages between the two nodesets so as to preserve the physical
1021 * layout as much as possible.
1023 * Returns the number of page that could not be moved.
1025 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1026 const nodemask_t
*to
, int flags
)
1032 err
= migrate_prep();
1036 down_read(&mm
->mmap_sem
);
1039 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1040 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1041 * bit in 'tmp', and return that <source, dest> pair for migration.
1042 * The pair of nodemasks 'to' and 'from' define the map.
1044 * If no pair of bits is found that way, fallback to picking some
1045 * pair of 'source' and 'dest' bits that are not the same. If the
1046 * 'source' and 'dest' bits are the same, this represents a node
1047 * that will be migrating to itself, so no pages need move.
1049 * If no bits are left in 'tmp', or if all remaining bits left
1050 * in 'tmp' correspond to the same bit in 'to', return false
1051 * (nothing left to migrate).
1053 * This lets us pick a pair of nodes to migrate between, such that
1054 * if possible the dest node is not already occupied by some other
1055 * source node, minimizing the risk of overloading the memory on a
1056 * node that would happen if we migrated incoming memory to a node
1057 * before migrating outgoing memory source that same node.
1059 * A single scan of tmp is sufficient. As we go, we remember the
1060 * most recent <s, d> pair that moved (s != d). If we find a pair
1061 * that not only moved, but what's better, moved to an empty slot
1062 * (d is not set in tmp), then we break out then, with that pair.
1063 * Otherwise when we finish scanning from_tmp, we at least have the
1064 * most recent <s, d> pair that moved. If we get all the way through
1065 * the scan of tmp without finding any node that moved, much less
1066 * moved to an empty node, then there is nothing left worth migrating.
1070 while (!nodes_empty(tmp
)) {
1072 int source
= NUMA_NO_NODE
;
1075 for_each_node_mask(s
, tmp
) {
1078 * do_migrate_pages() tries to maintain the relative
1079 * node relationship of the pages established between
1080 * threads and memory areas.
1082 * However if the number of source nodes is not equal to
1083 * the number of destination nodes we can not preserve
1084 * this node relative relationship. In that case, skip
1085 * copying memory from a node that is in the destination
1088 * Example: [2,3,4] -> [3,4,5] moves everything.
1089 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1092 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1093 (node_isset(s
, *to
)))
1096 d
= node_remap(s
, *from
, *to
);
1100 source
= s
; /* Node moved. Memorize */
1103 /* dest not in remaining from nodes? */
1104 if (!node_isset(dest
, tmp
))
1107 if (source
== NUMA_NO_NODE
)
1110 node_clear(source
, tmp
);
1111 err
= migrate_to_node(mm
, source
, dest
, flags
);
1117 up_read(&mm
->mmap_sem
);
1125 * Allocate a new page for page migration based on vma policy.
1126 * Start by assuming the page is mapped by the same vma as contains @start.
1127 * Search forward from there, if not. N.B., this assumes that the
1128 * list of pages handed to migrate_pages()--which is how we get here--
1129 * is in virtual address order.
1131 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1133 struct vm_area_struct
*vma
;
1134 unsigned long uninitialized_var(address
);
1136 vma
= find_vma(current
->mm
, start
);
1138 address
= page_address_in_vma(page
, vma
);
1139 if (address
!= -EFAULT
)
1144 if (PageHuge(page
)) {
1146 return alloc_huge_page_noerr(vma
, address
, 1);
1149 * if !vma, alloc_page_vma() will use task or system default policy
1151 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1155 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1156 unsigned long flags
)
1160 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1161 const nodemask_t
*to
, int flags
)
1166 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1172 static long do_mbind(unsigned long start
, unsigned long len
,
1173 unsigned short mode
, unsigned short mode_flags
,
1174 nodemask_t
*nmask
, unsigned long flags
)
1176 struct mm_struct
*mm
= current
->mm
;
1177 struct mempolicy
*new;
1180 LIST_HEAD(pagelist
);
1182 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1184 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1187 if (start
& ~PAGE_MASK
)
1190 if (mode
== MPOL_DEFAULT
)
1191 flags
&= ~MPOL_MF_STRICT
;
1193 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1201 new = mpol_new(mode
, mode_flags
, nmask
);
1203 return PTR_ERR(new);
1205 if (flags
& MPOL_MF_LAZY
)
1206 new->flags
|= MPOL_F_MOF
;
1209 * If we are using the default policy then operation
1210 * on discontinuous address spaces is okay after all
1213 flags
|= MPOL_MF_DISCONTIG_OK
;
1215 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1216 start
, start
+ len
, mode
, mode_flags
,
1217 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1219 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1221 err
= migrate_prep();
1226 NODEMASK_SCRATCH(scratch
);
1228 down_write(&mm
->mmap_sem
);
1230 err
= mpol_set_nodemask(new, nmask
, scratch
);
1231 task_unlock(current
);
1233 up_write(&mm
->mmap_sem
);
1236 NODEMASK_SCRATCH_FREE(scratch
);
1241 err
= queue_pages_range(mm
, start
, end
, nmask
,
1242 flags
| MPOL_MF_INVERT
, &pagelist
);
1244 err
= mbind_range(mm
, start
, end
, new);
1249 if (!list_empty(&pagelist
)) {
1250 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1251 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1252 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1254 putback_movable_pages(&pagelist
);
1257 if (nr_failed
&& (flags
& MPOL_MF_STRICT
))
1260 putback_movable_pages(&pagelist
);
1262 up_write(&mm
->mmap_sem
);
1269 * User space interface with variable sized bitmaps for nodelists.
1272 /* Copy a node mask from user space. */
1273 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1274 unsigned long maxnode
)
1278 unsigned long nlongs
;
1279 unsigned long endmask
;
1282 nodes_clear(*nodes
);
1283 if (maxnode
== 0 || !nmask
)
1285 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1288 nlongs
= BITS_TO_LONGS(maxnode
);
1289 if ((maxnode
% BITS_PER_LONG
) == 0)
1292 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1295 * When the user specified more nodes than supported just check
1296 * if the non supported part is all zero.
1298 * If maxnode have more longs than MAX_NUMNODES, check
1299 * the bits in that area first. And then go through to
1300 * check the rest bits which equal or bigger than MAX_NUMNODES.
1301 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1303 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1304 if (nlongs
> PAGE_SIZE
/sizeof(long))
1306 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1307 if (get_user(t
, nmask
+ k
))
1309 if (k
== nlongs
- 1) {
1315 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1319 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1320 unsigned long valid_mask
= endmask
;
1322 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1323 if (get_user(t
, nmask
+ nlongs
- 1))
1329 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1331 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1335 /* Copy a kernel node mask to user space */
1336 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1339 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1340 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1342 if (copy
> nbytes
) {
1343 if (copy
> PAGE_SIZE
)
1345 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1349 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1352 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1353 unsigned long, mode
, const unsigned long __user
*, nmask
,
1354 unsigned long, maxnode
, unsigned, flags
)
1358 unsigned short mode_flags
;
1360 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1361 mode
&= ~MPOL_MODE_FLAGS
;
1362 if (mode
>= MPOL_MAX
)
1364 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1365 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1367 err
= get_nodes(&nodes
, nmask
, maxnode
);
1370 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1373 /* Set the process memory policy */
1374 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1375 unsigned long, maxnode
)
1379 unsigned short flags
;
1381 flags
= mode
& MPOL_MODE_FLAGS
;
1382 mode
&= ~MPOL_MODE_FLAGS
;
1383 if ((unsigned int)mode
>= MPOL_MAX
)
1385 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1387 err
= get_nodes(&nodes
, nmask
, maxnode
);
1390 return do_set_mempolicy(mode
, flags
, &nodes
);
1393 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1394 const unsigned long __user
*, old_nodes
,
1395 const unsigned long __user
*, new_nodes
)
1397 const struct cred
*cred
= current_cred(), *tcred
;
1398 struct mm_struct
*mm
= NULL
;
1399 struct task_struct
*task
;
1400 nodemask_t task_nodes
;
1404 NODEMASK_SCRATCH(scratch
);
1409 old
= &scratch
->mask1
;
1410 new = &scratch
->mask2
;
1412 err
= get_nodes(old
, old_nodes
, maxnode
);
1416 err
= get_nodes(new, new_nodes
, maxnode
);
1420 /* Find the mm_struct */
1422 task
= pid
? find_task_by_vpid(pid
) : current
;
1428 get_task_struct(task
);
1433 * Check if this process has the right to modify the specified
1434 * process. The right exists if the process has administrative
1435 * capabilities, superuser privileges or the same
1436 * userid as the target process.
1438 tcred
= __task_cred(task
);
1439 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1440 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1441 !capable(CAP_SYS_NICE
)) {
1448 task_nodes
= cpuset_mems_allowed(task
);
1449 /* Is the user allowed to access the target nodes? */
1450 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1455 task_nodes
= cpuset_mems_allowed(current
);
1456 nodes_and(*new, *new, task_nodes
);
1457 if (nodes_empty(*new))
1460 nodes_and(*new, *new, node_states
[N_MEMORY
]);
1461 if (nodes_empty(*new))
1464 err
= security_task_movememory(task
);
1468 mm
= get_task_mm(task
);
1469 put_task_struct(task
);
1476 err
= do_migrate_pages(mm
, old
, new,
1477 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1481 NODEMASK_SCRATCH_FREE(scratch
);
1486 put_task_struct(task
);
1492 /* Retrieve NUMA policy */
1493 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1494 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1495 unsigned long, addr
, unsigned long, flags
)
1498 int uninitialized_var(pval
);
1501 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1504 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1509 if (policy
&& put_user(pval
, policy
))
1513 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1518 #ifdef CONFIG_COMPAT
1520 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1521 compat_ulong_t __user
*, nmask
,
1522 compat_ulong_t
, maxnode
,
1523 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1526 unsigned long __user
*nm
= NULL
;
1527 unsigned long nr_bits
, alloc_size
;
1528 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1530 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1531 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1534 nm
= compat_alloc_user_space(alloc_size
);
1536 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1538 if (!err
&& nmask
) {
1539 unsigned long copy_size
;
1540 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1541 err
= copy_from_user(bm
, nm
, copy_size
);
1542 /* ensure entire bitmap is zeroed */
1543 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1544 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1550 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1551 compat_ulong_t
, maxnode
)
1553 unsigned long __user
*nm
= NULL
;
1554 unsigned long nr_bits
, alloc_size
;
1555 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1557 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1558 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1561 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1563 nm
= compat_alloc_user_space(alloc_size
);
1564 if (copy_to_user(nm
, bm
, alloc_size
))
1568 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1571 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1572 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1573 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1575 unsigned long __user
*nm
= NULL
;
1576 unsigned long nr_bits
, alloc_size
;
1579 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1580 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1583 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1585 nm
= compat_alloc_user_space(alloc_size
);
1586 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1590 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1595 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1598 struct mempolicy
*pol
= NULL
;
1601 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1602 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1603 } else if (vma
->vm_policy
) {
1604 pol
= vma
->vm_policy
;
1607 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1608 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1609 * count on these policies which will be dropped by
1610 * mpol_cond_put() later
1612 if (mpol_needs_cond_ref(pol
))
1621 * get_vma_policy(@vma, @addr)
1622 * @vma: virtual memory area whose policy is sought
1623 * @addr: address in @vma for shared policy lookup
1625 * Returns effective policy for a VMA at specified address.
1626 * Falls back to current->mempolicy or system default policy, as necessary.
1627 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1628 * count--added by the get_policy() vm_op, as appropriate--to protect against
1629 * freeing by another task. It is the caller's responsibility to free the
1630 * extra reference for shared policies.
1632 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1635 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1638 pol
= get_task_policy(current
);
1643 bool vma_policy_mof(struct vm_area_struct
*vma
)
1645 struct mempolicy
*pol
;
1647 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1650 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1651 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1658 pol
= vma
->vm_policy
;
1660 pol
= get_task_policy(current
);
1662 return pol
->flags
& MPOL_F_MOF
;
1665 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1667 enum zone_type dynamic_policy_zone
= policy_zone
;
1669 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1672 * if policy->v.nodes has movable memory only,
1673 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1675 * policy->v.nodes is intersect with node_states[N_MEMORY].
1676 * so if the following test faile, it implies
1677 * policy->v.nodes has movable memory only.
1679 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1680 dynamic_policy_zone
= ZONE_MOVABLE
;
1682 return zone
>= dynamic_policy_zone
;
1686 * Return a nodemask representing a mempolicy for filtering nodes for
1689 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1691 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1692 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1693 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1694 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1695 return &policy
->v
.nodes
;
1700 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1701 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1704 switch (policy
->mode
) {
1705 case MPOL_PREFERRED
:
1706 if (!(policy
->flags
& MPOL_F_LOCAL
))
1707 nd
= policy
->v
.preferred_node
;
1711 * Normally, MPOL_BIND allocations are node-local within the
1712 * allowed nodemask. However, if __GFP_THISNODE is set and the
1713 * current node isn't part of the mask, we use the zonelist for
1714 * the first node in the mask instead.
1716 if (unlikely(gfp
& __GFP_THISNODE
) &&
1717 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1718 nd
= first_node(policy
->v
.nodes
);
1723 return node_zonelist(nd
, gfp
);
1726 /* Do dynamic interleaving for a process */
1727 static unsigned interleave_nodes(struct mempolicy
*policy
)
1730 struct task_struct
*me
= current
;
1733 next
= next_node_in(nid
, policy
->v
.nodes
);
1734 if (next
< MAX_NUMNODES
)
1740 * Depending on the memory policy provide a node from which to allocate the
1743 unsigned int mempolicy_slab_node(void)
1745 struct mempolicy
*policy
;
1746 int node
= numa_mem_id();
1751 policy
= current
->mempolicy
;
1752 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1755 switch (policy
->mode
) {
1756 case MPOL_PREFERRED
:
1758 * handled MPOL_F_LOCAL above
1760 return policy
->v
.preferred_node
;
1762 case MPOL_INTERLEAVE
:
1763 return interleave_nodes(policy
);
1769 * Follow bind policy behavior and start allocation at the
1772 struct zonelist
*zonelist
;
1773 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1774 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1775 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1777 return z
->zone
? z
->zone
->node
: node
;
1786 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1787 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1788 * number of present nodes.
1790 static unsigned offset_il_node(struct mempolicy
*pol
,
1791 struct vm_area_struct
*vma
, unsigned long n
)
1793 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1799 return numa_node_id();
1800 target
= (unsigned int)n
% nnodes
;
1801 nid
= first_node(pol
->v
.nodes
);
1802 for (i
= 0; i
< target
; i
++)
1803 nid
= next_node(nid
, pol
->v
.nodes
);
1807 /* Determine a node number for interleave */
1808 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1809 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1815 * for small pages, there is no difference between
1816 * shift and PAGE_SHIFT, so the bit-shift is safe.
1817 * for huge pages, since vm_pgoff is in units of small
1818 * pages, we need to shift off the always 0 bits to get
1821 BUG_ON(shift
< PAGE_SHIFT
);
1822 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1823 off
+= (addr
- vma
->vm_start
) >> shift
;
1824 return offset_il_node(pol
, vma
, off
);
1826 return interleave_nodes(pol
);
1829 #ifdef CONFIG_HUGETLBFS
1831 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1832 * @vma: virtual memory area whose policy is sought
1833 * @addr: address in @vma for shared policy lookup and interleave policy
1834 * @gfp_flags: for requested zone
1835 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1836 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1838 * Returns a zonelist suitable for a huge page allocation and a pointer
1839 * to the struct mempolicy for conditional unref after allocation.
1840 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1841 * @nodemask for filtering the zonelist.
1843 * Must be protected by read_mems_allowed_begin()
1845 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1846 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1847 nodemask_t
**nodemask
)
1849 struct zonelist
*zl
;
1851 *mpol
= get_vma_policy(vma
, addr
);
1852 *nodemask
= NULL
; /* assume !MPOL_BIND */
1854 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1855 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1856 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1858 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1859 if ((*mpol
)->mode
== MPOL_BIND
)
1860 *nodemask
= &(*mpol
)->v
.nodes
;
1866 * init_nodemask_of_mempolicy
1868 * If the current task's mempolicy is "default" [NULL], return 'false'
1869 * to indicate default policy. Otherwise, extract the policy nodemask
1870 * for 'bind' or 'interleave' policy into the argument nodemask, or
1871 * initialize the argument nodemask to contain the single node for
1872 * 'preferred' or 'local' policy and return 'true' to indicate presence
1873 * of non-default mempolicy.
1875 * We don't bother with reference counting the mempolicy [mpol_get/put]
1876 * because the current task is examining it's own mempolicy and a task's
1877 * mempolicy is only ever changed by the task itself.
1879 * N.B., it is the caller's responsibility to free a returned nodemask.
1881 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1883 struct mempolicy
*mempolicy
;
1886 if (!(mask
&& current
->mempolicy
))
1890 mempolicy
= current
->mempolicy
;
1891 switch (mempolicy
->mode
) {
1892 case MPOL_PREFERRED
:
1893 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1894 nid
= numa_node_id();
1896 nid
= mempolicy
->v
.preferred_node
;
1897 init_nodemask_of_node(mask
, nid
);
1902 case MPOL_INTERLEAVE
:
1903 *mask
= mempolicy
->v
.nodes
;
1909 task_unlock(current
);
1916 * mempolicy_nodemask_intersects
1918 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1919 * policy. Otherwise, check for intersection between mask and the policy
1920 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1921 * policy, always return true since it may allocate elsewhere on fallback.
1923 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1925 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1926 const nodemask_t
*mask
)
1928 struct mempolicy
*mempolicy
;
1934 mempolicy
= tsk
->mempolicy
;
1938 switch (mempolicy
->mode
) {
1939 case MPOL_PREFERRED
:
1941 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1942 * allocate from, they may fallback to other nodes when oom.
1943 * Thus, it's possible for tsk to have allocated memory from
1948 case MPOL_INTERLEAVE
:
1949 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1959 /* Allocate a page in interleaved policy.
1960 Own path because it needs to do special accounting. */
1961 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1964 struct zonelist
*zl
;
1967 zl
= node_zonelist(nid
, gfp
);
1968 page
= __alloc_pages(gfp
, order
, zl
);
1969 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1970 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1975 * alloc_pages_vma - Allocate a page for a VMA.
1978 * %GFP_USER user allocation.
1979 * %GFP_KERNEL kernel allocations,
1980 * %GFP_HIGHMEM highmem/user allocations,
1981 * %GFP_FS allocation should not call back into a file system.
1982 * %GFP_ATOMIC don't sleep.
1984 * @order:Order of the GFP allocation.
1985 * @vma: Pointer to VMA or NULL if not available.
1986 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1987 * @node: Which node to prefer for allocation (modulo policy).
1988 * @hugepage: for hugepages try only the preferred node if possible
1990 * This function allocates a page from the kernel page pool and applies
1991 * a NUMA policy associated with the VMA or the current process.
1992 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1993 * mm_struct of the VMA to prevent it from going away. Should be used for
1994 * all allocations for pages that will be mapped into user space. Returns
1995 * NULL when no page can be allocated.
1998 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1999 unsigned long addr
, int node
, bool hugepage
)
2001 struct mempolicy
*pol
;
2003 unsigned int cpuset_mems_cookie
;
2004 struct zonelist
*zl
;
2008 pol
= get_vma_policy(vma
, addr
);
2009 cpuset_mems_cookie
= read_mems_allowed_begin();
2011 if (pol
->mode
== MPOL_INTERLEAVE
) {
2014 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2016 page
= alloc_page_interleave(gfp
, order
, nid
);
2020 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2021 int hpage_node
= node
;
2024 * For hugepage allocation and non-interleave policy which
2025 * allows the current node (or other explicitly preferred
2026 * node) we only try to allocate from the current/preferred
2027 * node and don't fall back to other nodes, as the cost of
2028 * remote accesses would likely offset THP benefits.
2030 * If the policy is interleave, or does not allow the current
2031 * node in its nodemask, we allocate the standard way.
2033 if (pol
->mode
== MPOL_PREFERRED
&&
2034 !(pol
->flags
& MPOL_F_LOCAL
))
2035 hpage_node
= pol
->v
.preferred_node
;
2037 nmask
= policy_nodemask(gfp
, pol
);
2038 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2041 * We cannot invoke reclaim if __GFP_THISNODE
2042 * is set. Invoking reclaim with
2043 * __GFP_THISNODE set, would cause THP
2044 * allocations to trigger heavy swapping
2045 * despite there may be tons of free memory
2046 * (including potentially plenty of THP
2047 * already available in the buddy) on all the
2050 * At most we could invoke compaction when
2051 * __GFP_THISNODE is set (but we would need to
2052 * refrain from invoking reclaim even if
2053 * compaction returned COMPACT_SKIPPED because
2054 * there wasn't not enough memory to succeed
2055 * compaction). For now just avoid
2056 * __GFP_THISNODE instead of limiting the
2057 * allocation path to a strict and single
2058 * compaction invocation.
2060 * Supposedly if direct reclaim was enabled by
2061 * the caller, the app prefers THP regardless
2062 * of the node it comes from so this would be
2063 * more desiderable behavior than only
2064 * providing THP originated from the local
2065 * node in such case.
2067 if (!(gfp
& __GFP_DIRECT_RECLAIM
))
2068 gfp
|= __GFP_THISNODE
;
2069 page
= __alloc_pages_node(hpage_node
, gfp
, order
);
2074 nmask
= policy_nodemask(gfp
, pol
);
2075 zl
= policy_zonelist(gfp
, pol
, node
);
2076 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nmask
);
2079 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2085 * alloc_pages_current - Allocate pages.
2088 * %GFP_USER user allocation,
2089 * %GFP_KERNEL kernel allocation,
2090 * %GFP_HIGHMEM highmem allocation,
2091 * %GFP_FS don't call back into a file system.
2092 * %GFP_ATOMIC don't sleep.
2093 * @order: Power of two of allocation size in pages. 0 is a single page.
2095 * Allocate a page from the kernel page pool. When not in
2096 * interrupt context and apply the current process NUMA policy.
2097 * Returns NULL when no page can be allocated.
2099 * Don't call cpuset_update_task_memory_state() unless
2100 * 1) it's ok to take cpuset_sem (can WAIT), and
2101 * 2) allocating for current task (not interrupt).
2103 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2105 struct mempolicy
*pol
= &default_policy
;
2107 unsigned int cpuset_mems_cookie
;
2109 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2110 pol
= get_task_policy(current
);
2113 cpuset_mems_cookie
= read_mems_allowed_begin();
2116 * No reference counting needed for current->mempolicy
2117 * nor system default_policy
2119 if (pol
->mode
== MPOL_INTERLEAVE
)
2120 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2122 page
= __alloc_pages_nodemask(gfp
, order
,
2123 policy_zonelist(gfp
, pol
, numa_node_id()),
2124 policy_nodemask(gfp
, pol
));
2126 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2131 EXPORT_SYMBOL(alloc_pages_current
);
2133 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2135 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2138 return PTR_ERR(pol
);
2139 dst
->vm_policy
= pol
;
2144 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2145 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2146 * with the mems_allowed returned by cpuset_mems_allowed(). This
2147 * keeps mempolicies cpuset relative after its cpuset moves. See
2148 * further kernel/cpuset.c update_nodemask().
2150 * current's mempolicy may be rebinded by the other task(the task that changes
2151 * cpuset's mems), so we needn't do rebind work for current task.
2154 /* Slow path of a mempolicy duplicate */
2155 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2157 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2160 return ERR_PTR(-ENOMEM
);
2162 /* task's mempolicy is protected by alloc_lock */
2163 if (old
== current
->mempolicy
) {
2166 task_unlock(current
);
2170 if (current_cpuset_is_being_rebound()) {
2171 nodemask_t mems
= cpuset_mems_allowed(current
);
2172 if (new->flags
& MPOL_F_REBINDING
)
2173 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
2175 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
2177 atomic_set(&new->refcnt
, 1);
2181 /* Slow path of a mempolicy comparison */
2182 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2186 if (a
->mode
!= b
->mode
)
2188 if (a
->flags
!= b
->flags
)
2190 if (mpol_store_user_nodemask(a
))
2191 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2197 case MPOL_INTERLEAVE
:
2198 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2199 case MPOL_PREFERRED
:
2200 /* a's ->flags is the same as b's */
2201 if (a
->flags
& MPOL_F_LOCAL
)
2203 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2211 * Shared memory backing store policy support.
2213 * Remember policies even when nobody has shared memory mapped.
2214 * The policies are kept in Red-Black tree linked from the inode.
2215 * They are protected by the sp->lock rwlock, which should be held
2216 * for any accesses to the tree.
2220 * lookup first element intersecting start-end. Caller holds sp->lock for
2221 * reading or for writing
2223 static struct sp_node
*
2224 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2226 struct rb_node
*n
= sp
->root
.rb_node
;
2229 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2231 if (start
>= p
->end
)
2233 else if (end
<= p
->start
)
2241 struct sp_node
*w
= NULL
;
2242 struct rb_node
*prev
= rb_prev(n
);
2245 w
= rb_entry(prev
, struct sp_node
, nd
);
2246 if (w
->end
<= start
)
2250 return rb_entry(n
, struct sp_node
, nd
);
2254 * Insert a new shared policy into the list. Caller holds sp->lock for
2257 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2259 struct rb_node
**p
= &sp
->root
.rb_node
;
2260 struct rb_node
*parent
= NULL
;
2265 nd
= rb_entry(parent
, struct sp_node
, nd
);
2266 if (new->start
< nd
->start
)
2268 else if (new->end
> nd
->end
)
2269 p
= &(*p
)->rb_right
;
2273 rb_link_node(&new->nd
, parent
, p
);
2274 rb_insert_color(&new->nd
, &sp
->root
);
2275 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2276 new->policy
? new->policy
->mode
: 0);
2279 /* Find shared policy intersecting idx */
2281 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2283 struct mempolicy
*pol
= NULL
;
2286 if (!sp
->root
.rb_node
)
2288 read_lock(&sp
->lock
);
2289 sn
= sp_lookup(sp
, idx
, idx
+1);
2291 mpol_get(sn
->policy
);
2294 read_unlock(&sp
->lock
);
2298 static void sp_free(struct sp_node
*n
)
2300 mpol_put(n
->policy
);
2301 kmem_cache_free(sn_cache
, n
);
2305 * mpol_misplaced - check whether current page node is valid in policy
2307 * @page: page to be checked
2308 * @vma: vm area where page mapped
2309 * @addr: virtual address where page mapped
2311 * Lookup current policy node id for vma,addr and "compare to" page's
2315 * -1 - not misplaced, page is in the right node
2316 * node - node id where the page should be
2318 * Policy determination "mimics" alloc_page_vma().
2319 * Called from fault path where we know the vma and faulting address.
2321 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2323 struct mempolicy
*pol
;
2325 int curnid
= page_to_nid(page
);
2326 unsigned long pgoff
;
2327 int thiscpu
= raw_smp_processor_id();
2328 int thisnid
= cpu_to_node(thiscpu
);
2334 pol
= get_vma_policy(vma
, addr
);
2335 if (!(pol
->flags
& MPOL_F_MOF
))
2338 switch (pol
->mode
) {
2339 case MPOL_INTERLEAVE
:
2340 BUG_ON(addr
>= vma
->vm_end
);
2341 BUG_ON(addr
< vma
->vm_start
);
2343 pgoff
= vma
->vm_pgoff
;
2344 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2345 polnid
= offset_il_node(pol
, vma
, pgoff
);
2348 case MPOL_PREFERRED
:
2349 if (pol
->flags
& MPOL_F_LOCAL
)
2350 polnid
= numa_node_id();
2352 polnid
= pol
->v
.preferred_node
;
2358 * allows binding to multiple nodes.
2359 * use current page if in policy nodemask,
2360 * else select nearest allowed node, if any.
2361 * If no allowed nodes, use current [!misplaced].
2363 if (node_isset(curnid
, pol
->v
.nodes
))
2365 z
= first_zones_zonelist(
2366 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2367 gfp_zone(GFP_HIGHUSER
),
2369 polnid
= z
->zone
->node
;
2376 /* Migrate the page towards the node whose CPU is referencing it */
2377 if (pol
->flags
& MPOL_F_MORON
) {
2380 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2384 if (curnid
!= polnid
)
2393 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2394 * dropped after task->mempolicy is set to NULL so that any allocation done as
2395 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2398 void mpol_put_task_policy(struct task_struct
*task
)
2400 struct mempolicy
*pol
;
2403 pol
= task
->mempolicy
;
2404 task
->mempolicy
= NULL
;
2409 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2411 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2412 rb_erase(&n
->nd
, &sp
->root
);
2416 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2417 unsigned long end
, struct mempolicy
*pol
)
2419 node
->start
= start
;
2424 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2425 struct mempolicy
*pol
)
2428 struct mempolicy
*newpol
;
2430 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2434 newpol
= mpol_dup(pol
);
2435 if (IS_ERR(newpol
)) {
2436 kmem_cache_free(sn_cache
, n
);
2439 newpol
->flags
|= MPOL_F_SHARED
;
2440 sp_node_init(n
, start
, end
, newpol
);
2445 /* Replace a policy range. */
2446 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2447 unsigned long end
, struct sp_node
*new)
2450 struct sp_node
*n_new
= NULL
;
2451 struct mempolicy
*mpol_new
= NULL
;
2455 write_lock(&sp
->lock
);
2456 n
= sp_lookup(sp
, start
, end
);
2457 /* Take care of old policies in the same range. */
2458 while (n
&& n
->start
< end
) {
2459 struct rb_node
*next
= rb_next(&n
->nd
);
2460 if (n
->start
>= start
) {
2466 /* Old policy spanning whole new range. */
2471 *mpol_new
= *n
->policy
;
2472 atomic_set(&mpol_new
->refcnt
, 1);
2473 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2475 sp_insert(sp
, n_new
);
2484 n
= rb_entry(next
, struct sp_node
, nd
);
2488 write_unlock(&sp
->lock
);
2495 kmem_cache_free(sn_cache
, n_new
);
2500 write_unlock(&sp
->lock
);
2502 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2505 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2512 * mpol_shared_policy_init - initialize shared policy for inode
2513 * @sp: pointer to inode shared policy
2514 * @mpol: struct mempolicy to install
2516 * Install non-NULL @mpol in inode's shared policy rb-tree.
2517 * On entry, the current task has a reference on a non-NULL @mpol.
2518 * This must be released on exit.
2519 * This is called at get_inode() calls and we can use GFP_KERNEL.
2521 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2525 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2526 rwlock_init(&sp
->lock
);
2529 struct vm_area_struct pvma
;
2530 struct mempolicy
*new;
2531 NODEMASK_SCRATCH(scratch
);
2535 /* contextualize the tmpfs mount point mempolicy */
2536 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2538 goto free_scratch
; /* no valid nodemask intersection */
2541 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2542 task_unlock(current
);
2546 /* Create pseudo-vma that contains just the policy */
2547 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2548 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2549 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2552 mpol_put(new); /* drop initial ref */
2554 NODEMASK_SCRATCH_FREE(scratch
);
2556 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2560 int mpol_set_shared_policy(struct shared_policy
*info
,
2561 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2564 struct sp_node
*new = NULL
;
2565 unsigned long sz
= vma_pages(vma
);
2567 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2569 sz
, npol
? npol
->mode
: -1,
2570 npol
? npol
->flags
: -1,
2571 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2574 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2578 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2584 /* Free a backing policy store on inode delete. */
2585 void mpol_free_shared_policy(struct shared_policy
*p
)
2588 struct rb_node
*next
;
2590 if (!p
->root
.rb_node
)
2592 write_lock(&p
->lock
);
2593 next
= rb_first(&p
->root
);
2595 n
= rb_entry(next
, struct sp_node
, nd
);
2596 next
= rb_next(&n
->nd
);
2599 write_unlock(&p
->lock
);
2602 #ifdef CONFIG_NUMA_BALANCING
2603 static int __initdata numabalancing_override
;
2605 static void __init
check_numabalancing_enable(void)
2607 bool numabalancing_default
= false;
2609 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2610 numabalancing_default
= true;
2612 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2613 if (numabalancing_override
)
2614 set_numabalancing_state(numabalancing_override
== 1);
2616 if (num_online_nodes() > 1 && !numabalancing_override
) {
2617 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2618 numabalancing_default
? "Enabling" : "Disabling");
2619 set_numabalancing_state(numabalancing_default
);
2623 static int __init
setup_numabalancing(char *str
)
2629 if (!strcmp(str
, "enable")) {
2630 numabalancing_override
= 1;
2632 } else if (!strcmp(str
, "disable")) {
2633 numabalancing_override
= -1;
2638 pr_warn("Unable to parse numa_balancing=\n");
2642 __setup("numa_balancing=", setup_numabalancing
);
2644 static inline void __init
check_numabalancing_enable(void)
2647 #endif /* CONFIG_NUMA_BALANCING */
2649 /* assumes fs == KERNEL_DS */
2650 void __init
numa_policy_init(void)
2652 nodemask_t interleave_nodes
;
2653 unsigned long largest
= 0;
2654 int nid
, prefer
= 0;
2656 policy_cache
= kmem_cache_create("numa_policy",
2657 sizeof(struct mempolicy
),
2658 0, SLAB_PANIC
, NULL
);
2660 sn_cache
= kmem_cache_create("shared_policy_node",
2661 sizeof(struct sp_node
),
2662 0, SLAB_PANIC
, NULL
);
2664 for_each_node(nid
) {
2665 preferred_node_policy
[nid
] = (struct mempolicy
) {
2666 .refcnt
= ATOMIC_INIT(1),
2667 .mode
= MPOL_PREFERRED
,
2668 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2669 .v
= { .preferred_node
= nid
, },
2674 * Set interleaving policy for system init. Interleaving is only
2675 * enabled across suitably sized nodes (default is >= 16MB), or
2676 * fall back to the largest node if they're all smaller.
2678 nodes_clear(interleave_nodes
);
2679 for_each_node_state(nid
, N_MEMORY
) {
2680 unsigned long total_pages
= node_present_pages(nid
);
2682 /* Preserve the largest node */
2683 if (largest
< total_pages
) {
2684 largest
= total_pages
;
2688 /* Interleave this node? */
2689 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2690 node_set(nid
, interleave_nodes
);
2693 /* All too small, use the largest */
2694 if (unlikely(nodes_empty(interleave_nodes
)))
2695 node_set(prefer
, interleave_nodes
);
2697 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2698 pr_err("%s: interleaving failed\n", __func__
);
2700 check_numabalancing_enable();
2703 /* Reset policy of current process to default */
2704 void numa_default_policy(void)
2706 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2710 * Parse and format mempolicy from/to strings
2714 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2716 static const char * const policy_modes
[] =
2718 [MPOL_DEFAULT
] = "default",
2719 [MPOL_PREFERRED
] = "prefer",
2720 [MPOL_BIND
] = "bind",
2721 [MPOL_INTERLEAVE
] = "interleave",
2722 [MPOL_LOCAL
] = "local",
2728 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2729 * @str: string containing mempolicy to parse
2730 * @mpol: pointer to struct mempolicy pointer, returned on success.
2733 * <mode>[=<flags>][:<nodelist>]
2735 * On success, returns 0, else 1
2737 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2739 struct mempolicy
*new = NULL
;
2740 unsigned short mode
;
2741 unsigned short mode_flags
;
2743 char *nodelist
= strchr(str
, ':');
2744 char *flags
= strchr(str
, '=');
2748 *flags
++ = '\0'; /* terminate mode string */
2751 /* NUL-terminate mode or flags string */
2753 if (nodelist_parse(nodelist
, nodes
))
2755 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2760 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2761 if (!strcmp(str
, policy_modes
[mode
])) {
2765 if (mode
>= MPOL_MAX
)
2769 case MPOL_PREFERRED
:
2771 * Insist on a nodelist of one node only, although later
2772 * we use first_node(nodes) to grab a single node, so here
2773 * nodelist (or nodes) cannot be empty.
2776 char *rest
= nodelist
;
2777 while (isdigit(*rest
))
2781 if (nodes_empty(nodes
))
2785 case MPOL_INTERLEAVE
:
2787 * Default to online nodes with memory if no nodelist
2790 nodes
= node_states
[N_MEMORY
];
2794 * Don't allow a nodelist; mpol_new() checks flags
2798 mode
= MPOL_PREFERRED
;
2802 * Insist on a empty nodelist
2809 * Insist on a nodelist
2818 * Currently, we only support two mutually exclusive
2821 if (!strcmp(flags
, "static"))
2822 mode_flags
|= MPOL_F_STATIC_NODES
;
2823 else if (!strcmp(flags
, "relative"))
2824 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2829 new = mpol_new(mode
, mode_flags
, &nodes
);
2834 * Save nodes for mpol_to_str() to show the tmpfs mount options
2835 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2837 if (mode
!= MPOL_PREFERRED
)
2838 new->v
.nodes
= nodes
;
2840 new->v
.preferred_node
= first_node(nodes
);
2842 new->flags
|= MPOL_F_LOCAL
;
2845 * Save nodes for contextualization: this will be used to "clone"
2846 * the mempolicy in a specific context [cpuset] at a later time.
2848 new->w
.user_nodemask
= nodes
;
2853 /* Restore string for error message */
2862 #endif /* CONFIG_TMPFS */
2865 * mpol_to_str - format a mempolicy structure for printing
2866 * @buffer: to contain formatted mempolicy string
2867 * @maxlen: length of @buffer
2868 * @pol: pointer to mempolicy to be formatted
2870 * Convert @pol into a string. If @buffer is too short, truncate the string.
2871 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2872 * longest flag, "relative", and to display at least a few node ids.
2874 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2877 nodemask_t nodes
= NODE_MASK_NONE
;
2878 unsigned short mode
= MPOL_DEFAULT
;
2879 unsigned short flags
= 0;
2881 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2889 case MPOL_PREFERRED
:
2890 if (flags
& MPOL_F_LOCAL
)
2893 node_set(pol
->v
.preferred_node
, nodes
);
2896 case MPOL_INTERLEAVE
:
2897 nodes
= pol
->v
.nodes
;
2901 snprintf(p
, maxlen
, "unknown");
2905 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2907 if (flags
& MPOL_MODE_FLAGS
) {
2908 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2911 * Currently, the only defined flags are mutually exclusive
2913 if (flags
& MPOL_F_STATIC_NODES
)
2914 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2915 else if (flags
& MPOL_F_RELATIVE_NODES
)
2916 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2919 if (!nodes_empty(nodes
))
2920 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2921 nodemask_pr_args(&nodes
));