spi: bcm2835: Fix controller unregister order
[linux/fpc-iii.git] / mm / mempolicy.c
bloba2be65bf5d8cc4aca4f9297ee149cc41a4c1a798
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
101 #include "internal.h"
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
110 /* Highest zone. An specific allocation for a zone below that is not
111 policied. */
112 enum zone_type policy_zone = 0;
115 * run-time system-wide default policy => local allocation
117 static struct mempolicy default_policy = {
118 .refcnt = ATOMIC_INIT(1), /* never free it */
119 .mode = MPOL_PREFERRED,
120 .flags = MPOL_F_LOCAL,
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 struct mempolicy *get_task_policy(struct task_struct *p)
127 struct mempolicy *pol = p->mempolicy;
128 int node;
130 if (pol)
131 return pol;
133 node = numa_node_id();
134 if (node != NUMA_NO_NODE) {
135 pol = &preferred_node_policy[node];
136 /* preferred_node_policy is not initialised early in boot */
137 if (pol->mode)
138 return pol;
141 return &default_policy;
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 return pol->flags & MPOL_MODE_FLAGS;
169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 const nodemask_t *rel)
172 nodemask_t tmp;
173 nodes_fold(tmp, *orig, nodes_weight(*rel));
174 nodes_onto(*ret, tmp, *rel);
177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 if (nodes_empty(*nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 if (!nodes)
188 pol->flags |= MPOL_F_LOCAL; /* local allocation */
189 else if (nodes_empty(*nodes))
190 return -EINVAL; /* no allowed nodes */
191 else
192 pol->v.preferred_node = first_node(*nodes);
193 return 0;
196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 if (nodes_empty(*nodes))
199 return -EINVAL;
200 pol->v.nodes = *nodes;
201 return 0;
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 static int mpol_set_nodemask(struct mempolicy *pol,
214 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 int ret;
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 if (pol == NULL)
220 return 0;
221 /* Check N_MEMORY */
222 nodes_and(nsc->mask1,
223 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 VM_BUG_ON(!nodes);
226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 nodes = NULL; /* explicit local allocation */
228 else {
229 if (pol->flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 else
232 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 if (mpol_store_user_nodemask(pol))
235 pol->w.user_nodemask = *nodes;
236 else
237 pol->w.cpuset_mems_allowed =
238 cpuset_current_mems_allowed;
241 if (nodes)
242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 else
244 ret = mpol_ops[pol->mode].create(pol, NULL);
245 return ret;
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 nodemask_t *nodes)
255 struct mempolicy *policy;
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 if (mode == MPOL_DEFAULT) {
261 if (nodes && !nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 return NULL;
265 VM_BUG_ON(!nodes);
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
272 if (mode == MPOL_PREFERRED) {
273 if (nodes_empty(*nodes)) {
274 if (((flags & MPOL_F_STATIC_NODES) ||
275 (flags & MPOL_F_RELATIVE_NODES)))
276 return ERR_PTR(-EINVAL);
278 } else if (mode == MPOL_LOCAL) {
279 if (!nodes_empty(*nodes))
280 return ERR_PTR(-EINVAL);
281 mode = MPOL_PREFERRED;
282 } else if (nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
285 if (!policy)
286 return ERR_PTR(-ENOMEM);
287 atomic_set(&policy->refcnt, 1);
288 policy->mode = mode;
289 policy->flags = flags;
291 return policy;
294 /* Slow path of a mpol destructor. */
295 void __mpol_put(struct mempolicy *p)
297 if (!atomic_dec_and_test(&p->refcnt))
298 return;
299 kmem_cache_free(policy_cache, p);
302 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
308 * step:
309 * MPOL_REBIND_ONCE - do rebind work at once
310 * MPOL_REBIND_STEP1 - set all the newly nodes
311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
314 enum mpol_rebind_step step)
316 nodemask_t tmp;
318 if (pol->flags & MPOL_F_STATIC_NODES)
319 nodes_and(tmp, pol->w.user_nodemask, *nodes);
320 else if (pol->flags & MPOL_F_RELATIVE_NODES)
321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
322 else {
324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
325 * result
327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
328 nodes_remap(tmp, pol->v.nodes,
329 pol->w.cpuset_mems_allowed, *nodes);
330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
331 } else if (step == MPOL_REBIND_STEP2) {
332 tmp = pol->w.cpuset_mems_allowed;
333 pol->w.cpuset_mems_allowed = *nodes;
334 } else
335 BUG();
338 if (nodes_empty(tmp))
339 tmp = *nodes;
341 if (step == MPOL_REBIND_STEP1)
342 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
344 pol->v.nodes = tmp;
345 else
346 BUG();
348 if (!node_isset(current->il_next, tmp)) {
349 current->il_next = next_node_in(current->il_next, tmp);
350 if (current->il_next >= MAX_NUMNODES)
351 current->il_next = numa_node_id();
355 static void mpol_rebind_preferred(struct mempolicy *pol,
356 const nodemask_t *nodes,
357 enum mpol_rebind_step step)
359 nodemask_t tmp;
361 if (pol->flags & MPOL_F_STATIC_NODES) {
362 int node = first_node(pol->w.user_nodemask);
364 if (node_isset(node, *nodes)) {
365 pol->v.preferred_node = node;
366 pol->flags &= ~MPOL_F_LOCAL;
367 } else
368 pol->flags |= MPOL_F_LOCAL;
369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
371 pol->v.preferred_node = first_node(tmp);
372 } else if (!(pol->flags & MPOL_F_LOCAL)) {
373 pol->v.preferred_node = node_remap(pol->v.preferred_node,
374 pol->w.cpuset_mems_allowed,
375 *nodes);
376 pol->w.cpuset_mems_allowed = *nodes;
381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
383 * If read-side task has no lock to protect task->mempolicy, write-side
384 * task will rebind the task->mempolicy by two step. The first step is
385 * setting all the newly nodes, and the second step is cleaning all the
386 * disallowed nodes. In this way, we can avoid finding no node to alloc
387 * page.
388 * If we have a lock to protect task->mempolicy in read-side, we do
389 * rebind directly.
391 * step:
392 * MPOL_REBIND_ONCE - do rebind work at once
393 * MPOL_REBIND_STEP1 - set all the newly nodes
394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
396 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
397 enum mpol_rebind_step step)
399 if (!pol)
400 return;
401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
403 return;
405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
406 return;
408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
409 BUG();
411 if (step == MPOL_REBIND_STEP1)
412 pol->flags |= MPOL_F_REBINDING;
413 else if (step == MPOL_REBIND_STEP2)
414 pol->flags &= ~MPOL_F_REBINDING;
415 else if (step >= MPOL_REBIND_NSTEP)
416 BUG();
418 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 * Wrapper for mpol_rebind_policy() that just requires task
423 * pointer, and updates task mempolicy.
425 * Called with task's alloc_lock held.
428 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
429 enum mpol_rebind_step step)
431 mpol_rebind_policy(tsk->mempolicy, new, step);
435 * Rebind each vma in mm to new nodemask.
437 * Call holding a reference to mm. Takes mm->mmap_sem during call.
440 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
442 struct vm_area_struct *vma;
444 down_write(&mm->mmap_sem);
445 for (vma = mm->mmap; vma; vma = vma->vm_next)
446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
447 up_write(&mm->mmap_sem);
450 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
451 [MPOL_DEFAULT] = {
452 .rebind = mpol_rebind_default,
454 [MPOL_INTERLEAVE] = {
455 .create = mpol_new_interleave,
456 .rebind = mpol_rebind_nodemask,
458 [MPOL_PREFERRED] = {
459 .create = mpol_new_preferred,
460 .rebind = mpol_rebind_preferred,
462 [MPOL_BIND] = {
463 .create = mpol_new_bind,
464 .rebind = mpol_rebind_nodemask,
468 static void migrate_page_add(struct page *page, struct list_head *pagelist,
469 unsigned long flags);
471 struct queue_pages {
472 struct list_head *pagelist;
473 unsigned long flags;
474 nodemask_t *nmask;
475 struct vm_area_struct *prev;
479 * Scan through pages checking if pages follow certain conditions,
480 * and move them to the pagelist if they do.
482 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
483 unsigned long end, struct mm_walk *walk)
485 struct vm_area_struct *vma = walk->vma;
486 struct page *page;
487 struct queue_pages *qp = walk->private;
488 unsigned long flags = qp->flags;
489 int nid, ret;
490 pte_t *pte;
491 spinlock_t *ptl;
493 if (pmd_trans_huge(*pmd)) {
494 ptl = pmd_lock(walk->mm, pmd);
495 if (pmd_trans_huge(*pmd)) {
496 page = pmd_page(*pmd);
497 if (is_huge_zero_page(page)) {
498 spin_unlock(ptl);
499 split_huge_pmd(vma, pmd, addr);
500 } else {
501 get_page(page);
502 spin_unlock(ptl);
503 lock_page(page);
504 ret = split_huge_page(page);
505 unlock_page(page);
506 put_page(page);
507 if (ret)
508 return 0;
510 } else {
511 spin_unlock(ptl);
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 retry:
518 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 for (; addr != end; pte++, addr += PAGE_SIZE) {
520 if (!pte_present(*pte))
521 continue;
522 page = vm_normal_page(vma, addr, *pte);
523 if (!page)
524 continue;
526 * vm_normal_page() filters out zero pages, but there might
527 * still be PageReserved pages to skip, perhaps in a VDSO.
529 if (PageReserved(page))
530 continue;
531 nid = page_to_nid(page);
532 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
533 continue;
534 if (PageTransCompound(page)) {
535 get_page(page);
536 pte_unmap_unlock(pte, ptl);
537 lock_page(page);
538 ret = split_huge_page(page);
539 unlock_page(page);
540 put_page(page);
541 /* Failed to split -- skip. */
542 if (ret) {
543 pte = pte_offset_map_lock(walk->mm, pmd,
544 addr, &ptl);
545 continue;
547 goto retry;
550 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
551 if (!vma_migratable(vma))
552 break;
553 migrate_page_add(page, qp->pagelist, flags);
554 } else
555 break;
557 pte_unmap_unlock(pte - 1, ptl);
558 cond_resched();
559 return addr != end ? -EIO : 0;
562 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
563 unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = qp->flags;
569 int nid;
570 struct page *page;
571 spinlock_t *ptl;
572 pte_t entry;
574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 entry = huge_ptep_get(pte);
576 if (!pte_present(entry))
577 goto unlock;
578 page = pte_page(entry);
579 nid = page_to_nid(page);
580 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
581 goto unlock;
582 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
583 if (flags & (MPOL_MF_MOVE_ALL) ||
584 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
585 isolate_huge_page(page, qp->pagelist);
586 unlock:
587 spin_unlock(ptl);
588 #else
589 BUG();
590 #endif
591 return 0;
594 #ifdef CONFIG_NUMA_BALANCING
596 * This is used to mark a range of virtual addresses to be inaccessible.
597 * These are later cleared by a NUMA hinting fault. Depending on these
598 * faults, pages may be migrated for better NUMA placement.
600 * This is assuming that NUMA faults are handled using PROT_NONE. If
601 * an architecture makes a different choice, it will need further
602 * changes to the core.
604 unsigned long change_prot_numa(struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
607 int nr_updated;
609 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
610 if (nr_updated)
611 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
613 return nr_updated;
615 #else
616 static unsigned long change_prot_numa(struct vm_area_struct *vma,
617 unsigned long addr, unsigned long end)
619 return 0;
621 #endif /* CONFIG_NUMA_BALANCING */
623 static int queue_pages_test_walk(unsigned long start, unsigned long end,
624 struct mm_walk *walk)
626 struct vm_area_struct *vma = walk->vma;
627 struct queue_pages *qp = walk->private;
628 unsigned long endvma = vma->vm_end;
629 unsigned long flags = qp->flags;
632 * Need check MPOL_MF_STRICT to return -EIO if possible
633 * regardless of vma_migratable
635 if (!vma_migratable(vma) &&
636 !(flags & MPOL_MF_STRICT))
637 return 1;
639 if (endvma > end)
640 endvma = end;
641 if (vma->vm_start > start)
642 start = vma->vm_start;
644 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
645 if (!vma->vm_next && vma->vm_end < end)
646 return -EFAULT;
647 if (qp->prev && qp->prev->vm_end < vma->vm_start)
648 return -EFAULT;
651 qp->prev = vma;
653 if (flags & MPOL_MF_LAZY) {
654 /* Similar to task_numa_work, skip inaccessible VMAs */
655 if (!is_vm_hugetlb_page(vma) &&
656 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
657 !(vma->vm_flags & VM_MIXEDMAP))
658 change_prot_numa(vma, start, endvma);
659 return 1;
662 /* queue pages from current vma */
663 if (flags & MPOL_MF_VALID)
664 return 0;
665 return 1;
669 * Walk through page tables and collect pages to be migrated.
671 * If pages found in a given range are on a set of nodes (determined by
672 * @nodes and @flags,) it's isolated and queued to the pagelist which is
673 * passed via @private.)
675 static int
676 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
677 nodemask_t *nodes, unsigned long flags,
678 struct list_head *pagelist)
680 struct queue_pages qp = {
681 .pagelist = pagelist,
682 .flags = flags,
683 .nmask = nodes,
684 .prev = NULL,
686 struct mm_walk queue_pages_walk = {
687 .hugetlb_entry = queue_pages_hugetlb,
688 .pmd_entry = queue_pages_pte_range,
689 .test_walk = queue_pages_test_walk,
690 .mm = mm,
691 .private = &qp,
694 return walk_page_range(start, end, &queue_pages_walk);
698 * Apply policy to a single VMA
699 * This must be called with the mmap_sem held for writing.
701 static int vma_replace_policy(struct vm_area_struct *vma,
702 struct mempolicy *pol)
704 int err;
705 struct mempolicy *old;
706 struct mempolicy *new;
708 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
709 vma->vm_start, vma->vm_end, vma->vm_pgoff,
710 vma->vm_ops, vma->vm_file,
711 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
713 new = mpol_dup(pol);
714 if (IS_ERR(new))
715 return PTR_ERR(new);
717 if (vma->vm_ops && vma->vm_ops->set_policy) {
718 err = vma->vm_ops->set_policy(vma, new);
719 if (err)
720 goto err_out;
723 old = vma->vm_policy;
724 vma->vm_policy = new; /* protected by mmap_sem */
725 mpol_put(old);
727 return 0;
728 err_out:
729 mpol_put(new);
730 return err;
733 /* Step 2: apply policy to a range and do splits. */
734 static int mbind_range(struct mm_struct *mm, unsigned long start,
735 unsigned long end, struct mempolicy *new_pol)
737 struct vm_area_struct *next;
738 struct vm_area_struct *prev;
739 struct vm_area_struct *vma;
740 int err = 0;
741 pgoff_t pgoff;
742 unsigned long vmstart;
743 unsigned long vmend;
745 vma = find_vma(mm, start);
746 if (!vma || vma->vm_start > start)
747 return -EFAULT;
749 prev = vma->vm_prev;
750 if (start > vma->vm_start)
751 prev = vma;
753 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
754 next = vma->vm_next;
755 vmstart = max(start, vma->vm_start);
756 vmend = min(end, vma->vm_end);
758 if (mpol_equal(vma_policy(vma), new_pol))
759 continue;
761 pgoff = vma->vm_pgoff +
762 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
763 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
764 vma->anon_vma, vma->vm_file, pgoff,
765 new_pol, vma->vm_userfaultfd_ctx);
766 if (prev) {
767 vma = prev;
768 next = vma->vm_next;
769 if (mpol_equal(vma_policy(vma), new_pol))
770 continue;
771 /* vma_merge() joined vma && vma->next, case 8 */
772 goto replace;
774 if (vma->vm_start != vmstart) {
775 err = split_vma(vma->vm_mm, vma, vmstart, 1);
776 if (err)
777 goto out;
779 if (vma->vm_end != vmend) {
780 err = split_vma(vma->vm_mm, vma, vmend, 0);
781 if (err)
782 goto out;
784 replace:
785 err = vma_replace_policy(vma, new_pol);
786 if (err)
787 goto out;
790 out:
791 return err;
794 /* Set the process memory policy */
795 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
796 nodemask_t *nodes)
798 struct mempolicy *new, *old;
799 NODEMASK_SCRATCH(scratch);
800 int ret;
802 if (!scratch)
803 return -ENOMEM;
805 new = mpol_new(mode, flags, nodes);
806 if (IS_ERR(new)) {
807 ret = PTR_ERR(new);
808 goto out;
811 task_lock(current);
812 ret = mpol_set_nodemask(new, nodes, scratch);
813 if (ret) {
814 task_unlock(current);
815 mpol_put(new);
816 goto out;
818 old = current->mempolicy;
819 current->mempolicy = new;
820 if (new && new->mode == MPOL_INTERLEAVE &&
821 nodes_weight(new->v.nodes))
822 current->il_next = first_node(new->v.nodes);
823 task_unlock(current);
824 mpol_put(old);
825 ret = 0;
826 out:
827 NODEMASK_SCRATCH_FREE(scratch);
828 return ret;
832 * Return nodemask for policy for get_mempolicy() query
834 * Called with task's alloc_lock held
836 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
838 nodes_clear(*nodes);
839 if (p == &default_policy)
840 return;
842 switch (p->mode) {
843 case MPOL_BIND:
844 /* Fall through */
845 case MPOL_INTERLEAVE:
846 *nodes = p->v.nodes;
847 break;
848 case MPOL_PREFERRED:
849 if (!(p->flags & MPOL_F_LOCAL))
850 node_set(p->v.preferred_node, *nodes);
851 /* else return empty node mask for local allocation */
852 break;
853 default:
854 BUG();
858 static int lookup_node(unsigned long addr)
860 struct page *p;
861 int err;
863 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
864 if (err >= 0) {
865 err = page_to_nid(p);
866 put_page(p);
868 return err;
871 /* Retrieve NUMA policy */
872 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
873 unsigned long addr, unsigned long flags)
875 int err;
876 struct mm_struct *mm = current->mm;
877 struct vm_area_struct *vma = NULL;
878 struct mempolicy *pol = current->mempolicy;
880 if (flags &
881 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
882 return -EINVAL;
884 if (flags & MPOL_F_MEMS_ALLOWED) {
885 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
886 return -EINVAL;
887 *policy = 0; /* just so it's initialized */
888 task_lock(current);
889 *nmask = cpuset_current_mems_allowed;
890 task_unlock(current);
891 return 0;
894 if (flags & MPOL_F_ADDR) {
896 * Do NOT fall back to task policy if the
897 * vma/shared policy at addr is NULL. We
898 * want to return MPOL_DEFAULT in this case.
900 down_read(&mm->mmap_sem);
901 vma = find_vma_intersection(mm, addr, addr+1);
902 if (!vma) {
903 up_read(&mm->mmap_sem);
904 return -EFAULT;
906 if (vma->vm_ops && vma->vm_ops->get_policy)
907 pol = vma->vm_ops->get_policy(vma, addr);
908 else
909 pol = vma->vm_policy;
910 } else if (addr)
911 return -EINVAL;
913 if (!pol)
914 pol = &default_policy; /* indicates default behavior */
916 if (flags & MPOL_F_NODE) {
917 if (flags & MPOL_F_ADDR) {
918 err = lookup_node(addr);
919 if (err < 0)
920 goto out;
921 *policy = err;
922 } else if (pol == current->mempolicy &&
923 pol->mode == MPOL_INTERLEAVE) {
924 *policy = current->il_next;
925 } else {
926 err = -EINVAL;
927 goto out;
929 } else {
930 *policy = pol == &default_policy ? MPOL_DEFAULT :
931 pol->mode;
933 * Internal mempolicy flags must be masked off before exposing
934 * the policy to userspace.
936 *policy |= (pol->flags & MPOL_MODE_FLAGS);
939 err = 0;
940 if (nmask) {
941 if (mpol_store_user_nodemask(pol)) {
942 *nmask = pol->w.user_nodemask;
943 } else {
944 task_lock(current);
945 get_policy_nodemask(pol, nmask);
946 task_unlock(current);
950 out:
951 mpol_cond_put(pol);
952 if (vma)
953 up_read(&current->mm->mmap_sem);
954 return err;
957 #ifdef CONFIG_MIGRATION
959 * page migration
961 static void migrate_page_add(struct page *page, struct list_head *pagelist,
962 unsigned long flags)
965 * Avoid migrating a page that is shared with others.
967 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
968 if (!isolate_lru_page(page)) {
969 list_add_tail(&page->lru, pagelist);
970 inc_node_page_state(page, NR_ISOLATED_ANON +
971 page_is_file_cache(page));
976 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
978 if (PageHuge(page))
979 return alloc_huge_page_node(page_hstate(compound_head(page)),
980 node);
981 else
982 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
983 __GFP_THISNODE, 0);
987 * Migrate pages from one node to a target node.
988 * Returns error or the number of pages not migrated.
990 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
991 int flags)
993 nodemask_t nmask;
994 LIST_HEAD(pagelist);
995 int err = 0;
997 nodes_clear(nmask);
998 node_set(source, nmask);
1001 * This does not "check" the range but isolates all pages that
1002 * need migration. Between passing in the full user address
1003 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1005 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1006 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1007 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1009 if (!list_empty(&pagelist)) {
1010 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1011 MIGRATE_SYNC, MR_SYSCALL);
1012 if (err)
1013 putback_movable_pages(&pagelist);
1016 return err;
1020 * Move pages between the two nodesets so as to preserve the physical
1021 * layout as much as possible.
1023 * Returns the number of page that could not be moved.
1025 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1026 const nodemask_t *to, int flags)
1028 int busy = 0;
1029 int err;
1030 nodemask_t tmp;
1032 err = migrate_prep();
1033 if (err)
1034 return err;
1036 down_read(&mm->mmap_sem);
1039 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1040 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1041 * bit in 'tmp', and return that <source, dest> pair for migration.
1042 * The pair of nodemasks 'to' and 'from' define the map.
1044 * If no pair of bits is found that way, fallback to picking some
1045 * pair of 'source' and 'dest' bits that are not the same. If the
1046 * 'source' and 'dest' bits are the same, this represents a node
1047 * that will be migrating to itself, so no pages need move.
1049 * If no bits are left in 'tmp', or if all remaining bits left
1050 * in 'tmp' correspond to the same bit in 'to', return false
1051 * (nothing left to migrate).
1053 * This lets us pick a pair of nodes to migrate between, such that
1054 * if possible the dest node is not already occupied by some other
1055 * source node, minimizing the risk of overloading the memory on a
1056 * node that would happen if we migrated incoming memory to a node
1057 * before migrating outgoing memory source that same node.
1059 * A single scan of tmp is sufficient. As we go, we remember the
1060 * most recent <s, d> pair that moved (s != d). If we find a pair
1061 * that not only moved, but what's better, moved to an empty slot
1062 * (d is not set in tmp), then we break out then, with that pair.
1063 * Otherwise when we finish scanning from_tmp, we at least have the
1064 * most recent <s, d> pair that moved. If we get all the way through
1065 * the scan of tmp without finding any node that moved, much less
1066 * moved to an empty node, then there is nothing left worth migrating.
1069 tmp = *from;
1070 while (!nodes_empty(tmp)) {
1071 int s,d;
1072 int source = NUMA_NO_NODE;
1073 int dest = 0;
1075 for_each_node_mask(s, tmp) {
1078 * do_migrate_pages() tries to maintain the relative
1079 * node relationship of the pages established between
1080 * threads and memory areas.
1082 * However if the number of source nodes is not equal to
1083 * the number of destination nodes we can not preserve
1084 * this node relative relationship. In that case, skip
1085 * copying memory from a node that is in the destination
1086 * mask.
1088 * Example: [2,3,4] -> [3,4,5] moves everything.
1089 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1092 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1093 (node_isset(s, *to)))
1094 continue;
1096 d = node_remap(s, *from, *to);
1097 if (s == d)
1098 continue;
1100 source = s; /* Node moved. Memorize */
1101 dest = d;
1103 /* dest not in remaining from nodes? */
1104 if (!node_isset(dest, tmp))
1105 break;
1107 if (source == NUMA_NO_NODE)
1108 break;
1110 node_clear(source, tmp);
1111 err = migrate_to_node(mm, source, dest, flags);
1112 if (err > 0)
1113 busy += err;
1114 if (err < 0)
1115 break;
1117 up_read(&mm->mmap_sem);
1118 if (err < 0)
1119 return err;
1120 return busy;
1125 * Allocate a new page for page migration based on vma policy.
1126 * Start by assuming the page is mapped by the same vma as contains @start.
1127 * Search forward from there, if not. N.B., this assumes that the
1128 * list of pages handed to migrate_pages()--which is how we get here--
1129 * is in virtual address order.
1131 static struct page *new_page(struct page *page, unsigned long start, int **x)
1133 struct vm_area_struct *vma;
1134 unsigned long uninitialized_var(address);
1136 vma = find_vma(current->mm, start);
1137 while (vma) {
1138 address = page_address_in_vma(page, vma);
1139 if (address != -EFAULT)
1140 break;
1141 vma = vma->vm_next;
1144 if (PageHuge(page)) {
1145 BUG_ON(!vma);
1146 return alloc_huge_page_noerr(vma, address, 1);
1149 * if !vma, alloc_page_vma() will use task or system default policy
1151 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1153 #else
1155 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1156 unsigned long flags)
1160 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1161 const nodemask_t *to, int flags)
1163 return -ENOSYS;
1166 static struct page *new_page(struct page *page, unsigned long start, int **x)
1168 return NULL;
1170 #endif
1172 static long do_mbind(unsigned long start, unsigned long len,
1173 unsigned short mode, unsigned short mode_flags,
1174 nodemask_t *nmask, unsigned long flags)
1176 struct mm_struct *mm = current->mm;
1177 struct mempolicy *new;
1178 unsigned long end;
1179 int err;
1180 LIST_HEAD(pagelist);
1182 if (flags & ~(unsigned long)MPOL_MF_VALID)
1183 return -EINVAL;
1184 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1185 return -EPERM;
1187 if (start & ~PAGE_MASK)
1188 return -EINVAL;
1190 if (mode == MPOL_DEFAULT)
1191 flags &= ~MPOL_MF_STRICT;
1193 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1194 end = start + len;
1196 if (end < start)
1197 return -EINVAL;
1198 if (end == start)
1199 return 0;
1201 new = mpol_new(mode, mode_flags, nmask);
1202 if (IS_ERR(new))
1203 return PTR_ERR(new);
1205 if (flags & MPOL_MF_LAZY)
1206 new->flags |= MPOL_F_MOF;
1209 * If we are using the default policy then operation
1210 * on discontinuous address spaces is okay after all
1212 if (!new)
1213 flags |= MPOL_MF_DISCONTIG_OK;
1215 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1216 start, start + len, mode, mode_flags,
1217 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1219 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1221 err = migrate_prep();
1222 if (err)
1223 goto mpol_out;
1226 NODEMASK_SCRATCH(scratch);
1227 if (scratch) {
1228 down_write(&mm->mmap_sem);
1229 task_lock(current);
1230 err = mpol_set_nodemask(new, nmask, scratch);
1231 task_unlock(current);
1232 if (err)
1233 up_write(&mm->mmap_sem);
1234 } else
1235 err = -ENOMEM;
1236 NODEMASK_SCRATCH_FREE(scratch);
1238 if (err)
1239 goto mpol_out;
1241 err = queue_pages_range(mm, start, end, nmask,
1242 flags | MPOL_MF_INVERT, &pagelist);
1243 if (!err)
1244 err = mbind_range(mm, start, end, new);
1246 if (!err) {
1247 int nr_failed = 0;
1249 if (!list_empty(&pagelist)) {
1250 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1251 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1252 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1253 if (nr_failed)
1254 putback_movable_pages(&pagelist);
1257 if (nr_failed && (flags & MPOL_MF_STRICT))
1258 err = -EIO;
1259 } else
1260 putback_movable_pages(&pagelist);
1262 up_write(&mm->mmap_sem);
1263 mpol_out:
1264 mpol_put(new);
1265 return err;
1269 * User space interface with variable sized bitmaps for nodelists.
1272 /* Copy a node mask from user space. */
1273 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1274 unsigned long maxnode)
1276 unsigned long k;
1277 unsigned long t;
1278 unsigned long nlongs;
1279 unsigned long endmask;
1281 --maxnode;
1282 nodes_clear(*nodes);
1283 if (maxnode == 0 || !nmask)
1284 return 0;
1285 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1286 return -EINVAL;
1288 nlongs = BITS_TO_LONGS(maxnode);
1289 if ((maxnode % BITS_PER_LONG) == 0)
1290 endmask = ~0UL;
1291 else
1292 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1295 * When the user specified more nodes than supported just check
1296 * if the non supported part is all zero.
1298 * If maxnode have more longs than MAX_NUMNODES, check
1299 * the bits in that area first. And then go through to
1300 * check the rest bits which equal or bigger than MAX_NUMNODES.
1301 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1303 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1304 if (nlongs > PAGE_SIZE/sizeof(long))
1305 return -EINVAL;
1306 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1307 if (get_user(t, nmask + k))
1308 return -EFAULT;
1309 if (k == nlongs - 1) {
1310 if (t & endmask)
1311 return -EINVAL;
1312 } else if (t)
1313 return -EINVAL;
1315 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1316 endmask = ~0UL;
1319 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1320 unsigned long valid_mask = endmask;
1322 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1323 if (get_user(t, nmask + nlongs - 1))
1324 return -EFAULT;
1325 if (t & valid_mask)
1326 return -EINVAL;
1329 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1330 return -EFAULT;
1331 nodes_addr(*nodes)[nlongs-1] &= endmask;
1332 return 0;
1335 /* Copy a kernel node mask to user space */
1336 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1337 nodemask_t *nodes)
1339 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1340 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1342 if (copy > nbytes) {
1343 if (copy > PAGE_SIZE)
1344 return -EINVAL;
1345 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1346 return -EFAULT;
1347 copy = nbytes;
1349 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1352 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1353 unsigned long, mode, const unsigned long __user *, nmask,
1354 unsigned long, maxnode, unsigned, flags)
1356 nodemask_t nodes;
1357 int err;
1358 unsigned short mode_flags;
1360 mode_flags = mode & MPOL_MODE_FLAGS;
1361 mode &= ~MPOL_MODE_FLAGS;
1362 if (mode >= MPOL_MAX)
1363 return -EINVAL;
1364 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1365 (mode_flags & MPOL_F_RELATIVE_NODES))
1366 return -EINVAL;
1367 err = get_nodes(&nodes, nmask, maxnode);
1368 if (err)
1369 return err;
1370 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1373 /* Set the process memory policy */
1374 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1375 unsigned long, maxnode)
1377 int err;
1378 nodemask_t nodes;
1379 unsigned short flags;
1381 flags = mode & MPOL_MODE_FLAGS;
1382 mode &= ~MPOL_MODE_FLAGS;
1383 if ((unsigned int)mode >= MPOL_MAX)
1384 return -EINVAL;
1385 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1386 return -EINVAL;
1387 err = get_nodes(&nodes, nmask, maxnode);
1388 if (err)
1389 return err;
1390 return do_set_mempolicy(mode, flags, &nodes);
1393 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1394 const unsigned long __user *, old_nodes,
1395 const unsigned long __user *, new_nodes)
1397 const struct cred *cred = current_cred(), *tcred;
1398 struct mm_struct *mm = NULL;
1399 struct task_struct *task;
1400 nodemask_t task_nodes;
1401 int err;
1402 nodemask_t *old;
1403 nodemask_t *new;
1404 NODEMASK_SCRATCH(scratch);
1406 if (!scratch)
1407 return -ENOMEM;
1409 old = &scratch->mask1;
1410 new = &scratch->mask2;
1412 err = get_nodes(old, old_nodes, maxnode);
1413 if (err)
1414 goto out;
1416 err = get_nodes(new, new_nodes, maxnode);
1417 if (err)
1418 goto out;
1420 /* Find the mm_struct */
1421 rcu_read_lock();
1422 task = pid ? find_task_by_vpid(pid) : current;
1423 if (!task) {
1424 rcu_read_unlock();
1425 err = -ESRCH;
1426 goto out;
1428 get_task_struct(task);
1430 err = -EINVAL;
1433 * Check if this process has the right to modify the specified
1434 * process. The right exists if the process has administrative
1435 * capabilities, superuser privileges or the same
1436 * userid as the target process.
1438 tcred = __task_cred(task);
1439 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1440 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1441 !capable(CAP_SYS_NICE)) {
1442 rcu_read_unlock();
1443 err = -EPERM;
1444 goto out_put;
1446 rcu_read_unlock();
1448 task_nodes = cpuset_mems_allowed(task);
1449 /* Is the user allowed to access the target nodes? */
1450 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1451 err = -EPERM;
1452 goto out_put;
1455 task_nodes = cpuset_mems_allowed(current);
1456 nodes_and(*new, *new, task_nodes);
1457 if (nodes_empty(*new))
1458 goto out_put;
1460 nodes_and(*new, *new, node_states[N_MEMORY]);
1461 if (nodes_empty(*new))
1462 goto out_put;
1464 err = security_task_movememory(task);
1465 if (err)
1466 goto out_put;
1468 mm = get_task_mm(task);
1469 put_task_struct(task);
1471 if (!mm) {
1472 err = -EINVAL;
1473 goto out;
1476 err = do_migrate_pages(mm, old, new,
1477 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1479 mmput(mm);
1480 out:
1481 NODEMASK_SCRATCH_FREE(scratch);
1483 return err;
1485 out_put:
1486 put_task_struct(task);
1487 goto out;
1492 /* Retrieve NUMA policy */
1493 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1494 unsigned long __user *, nmask, unsigned long, maxnode,
1495 unsigned long, addr, unsigned long, flags)
1497 int err;
1498 int uninitialized_var(pval);
1499 nodemask_t nodes;
1501 if (nmask != NULL && maxnode < nr_node_ids)
1502 return -EINVAL;
1504 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1506 if (err)
1507 return err;
1509 if (policy && put_user(pval, policy))
1510 return -EFAULT;
1512 if (nmask)
1513 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1515 return err;
1518 #ifdef CONFIG_COMPAT
1520 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1521 compat_ulong_t __user *, nmask,
1522 compat_ulong_t, maxnode,
1523 compat_ulong_t, addr, compat_ulong_t, flags)
1525 long err;
1526 unsigned long __user *nm = NULL;
1527 unsigned long nr_bits, alloc_size;
1528 DECLARE_BITMAP(bm, MAX_NUMNODES);
1530 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1531 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1533 if (nmask)
1534 nm = compat_alloc_user_space(alloc_size);
1536 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1538 if (!err && nmask) {
1539 unsigned long copy_size;
1540 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1541 err = copy_from_user(bm, nm, copy_size);
1542 /* ensure entire bitmap is zeroed */
1543 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1544 err |= compat_put_bitmap(nmask, bm, nr_bits);
1547 return err;
1550 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1551 compat_ulong_t, maxnode)
1553 unsigned long __user *nm = NULL;
1554 unsigned long nr_bits, alloc_size;
1555 DECLARE_BITMAP(bm, MAX_NUMNODES);
1557 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1560 if (nmask) {
1561 if (compat_get_bitmap(bm, nmask, nr_bits))
1562 return -EFAULT;
1563 nm = compat_alloc_user_space(alloc_size);
1564 if (copy_to_user(nm, bm, alloc_size))
1565 return -EFAULT;
1568 return sys_set_mempolicy(mode, nm, nr_bits+1);
1571 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1572 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1573 compat_ulong_t, maxnode, compat_ulong_t, flags)
1575 unsigned long __user *nm = NULL;
1576 unsigned long nr_bits, alloc_size;
1577 nodemask_t bm;
1579 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1580 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1582 if (nmask) {
1583 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1584 return -EFAULT;
1585 nm = compat_alloc_user_space(alloc_size);
1586 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1587 return -EFAULT;
1590 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1593 #endif
1595 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1596 unsigned long addr)
1598 struct mempolicy *pol = NULL;
1600 if (vma) {
1601 if (vma->vm_ops && vma->vm_ops->get_policy) {
1602 pol = vma->vm_ops->get_policy(vma, addr);
1603 } else if (vma->vm_policy) {
1604 pol = vma->vm_policy;
1607 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1608 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1609 * count on these policies which will be dropped by
1610 * mpol_cond_put() later
1612 if (mpol_needs_cond_ref(pol))
1613 mpol_get(pol);
1617 return pol;
1621 * get_vma_policy(@vma, @addr)
1622 * @vma: virtual memory area whose policy is sought
1623 * @addr: address in @vma for shared policy lookup
1625 * Returns effective policy for a VMA at specified address.
1626 * Falls back to current->mempolicy or system default policy, as necessary.
1627 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1628 * count--added by the get_policy() vm_op, as appropriate--to protect against
1629 * freeing by another task. It is the caller's responsibility to free the
1630 * extra reference for shared policies.
1632 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1633 unsigned long addr)
1635 struct mempolicy *pol = __get_vma_policy(vma, addr);
1637 if (!pol)
1638 pol = get_task_policy(current);
1640 return pol;
1643 bool vma_policy_mof(struct vm_area_struct *vma)
1645 struct mempolicy *pol;
1647 if (vma->vm_ops && vma->vm_ops->get_policy) {
1648 bool ret = false;
1650 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1651 if (pol && (pol->flags & MPOL_F_MOF))
1652 ret = true;
1653 mpol_cond_put(pol);
1655 return ret;
1658 pol = vma->vm_policy;
1659 if (!pol)
1660 pol = get_task_policy(current);
1662 return pol->flags & MPOL_F_MOF;
1665 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1667 enum zone_type dynamic_policy_zone = policy_zone;
1669 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1672 * if policy->v.nodes has movable memory only,
1673 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1675 * policy->v.nodes is intersect with node_states[N_MEMORY].
1676 * so if the following test faile, it implies
1677 * policy->v.nodes has movable memory only.
1679 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1680 dynamic_policy_zone = ZONE_MOVABLE;
1682 return zone >= dynamic_policy_zone;
1686 * Return a nodemask representing a mempolicy for filtering nodes for
1687 * page allocation
1689 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1691 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1692 if (unlikely(policy->mode == MPOL_BIND) &&
1693 apply_policy_zone(policy, gfp_zone(gfp)) &&
1694 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1695 return &policy->v.nodes;
1697 return NULL;
1700 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1701 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1702 int nd)
1704 switch (policy->mode) {
1705 case MPOL_PREFERRED:
1706 if (!(policy->flags & MPOL_F_LOCAL))
1707 nd = policy->v.preferred_node;
1708 break;
1709 case MPOL_BIND:
1711 * Normally, MPOL_BIND allocations are node-local within the
1712 * allowed nodemask. However, if __GFP_THISNODE is set and the
1713 * current node isn't part of the mask, we use the zonelist for
1714 * the first node in the mask instead.
1716 if (unlikely(gfp & __GFP_THISNODE) &&
1717 unlikely(!node_isset(nd, policy->v.nodes)))
1718 nd = first_node(policy->v.nodes);
1719 break;
1720 default:
1721 BUG();
1723 return node_zonelist(nd, gfp);
1726 /* Do dynamic interleaving for a process */
1727 static unsigned interleave_nodes(struct mempolicy *policy)
1729 unsigned nid, next;
1730 struct task_struct *me = current;
1732 nid = me->il_next;
1733 next = next_node_in(nid, policy->v.nodes);
1734 if (next < MAX_NUMNODES)
1735 me->il_next = next;
1736 return nid;
1740 * Depending on the memory policy provide a node from which to allocate the
1741 * next slab entry.
1743 unsigned int mempolicy_slab_node(void)
1745 struct mempolicy *policy;
1746 int node = numa_mem_id();
1748 if (in_interrupt())
1749 return node;
1751 policy = current->mempolicy;
1752 if (!policy || policy->flags & MPOL_F_LOCAL)
1753 return node;
1755 switch (policy->mode) {
1756 case MPOL_PREFERRED:
1758 * handled MPOL_F_LOCAL above
1760 return policy->v.preferred_node;
1762 case MPOL_INTERLEAVE:
1763 return interleave_nodes(policy);
1765 case MPOL_BIND: {
1766 struct zoneref *z;
1769 * Follow bind policy behavior and start allocation at the
1770 * first node.
1772 struct zonelist *zonelist;
1773 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1774 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1775 z = first_zones_zonelist(zonelist, highest_zoneidx,
1776 &policy->v.nodes);
1777 return z->zone ? z->zone->node : node;
1780 default:
1781 BUG();
1786 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1787 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1788 * number of present nodes.
1790 static unsigned offset_il_node(struct mempolicy *pol,
1791 struct vm_area_struct *vma, unsigned long n)
1793 unsigned nnodes = nodes_weight(pol->v.nodes);
1794 unsigned target;
1795 int i;
1796 int nid;
1798 if (!nnodes)
1799 return numa_node_id();
1800 target = (unsigned int)n % nnodes;
1801 nid = first_node(pol->v.nodes);
1802 for (i = 0; i < target; i++)
1803 nid = next_node(nid, pol->v.nodes);
1804 return nid;
1807 /* Determine a node number for interleave */
1808 static inline unsigned interleave_nid(struct mempolicy *pol,
1809 struct vm_area_struct *vma, unsigned long addr, int shift)
1811 if (vma) {
1812 unsigned long off;
1815 * for small pages, there is no difference between
1816 * shift and PAGE_SHIFT, so the bit-shift is safe.
1817 * for huge pages, since vm_pgoff is in units of small
1818 * pages, we need to shift off the always 0 bits to get
1819 * a useful offset.
1821 BUG_ON(shift < PAGE_SHIFT);
1822 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1823 off += (addr - vma->vm_start) >> shift;
1824 return offset_il_node(pol, vma, off);
1825 } else
1826 return interleave_nodes(pol);
1829 #ifdef CONFIG_HUGETLBFS
1831 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1832 * @vma: virtual memory area whose policy is sought
1833 * @addr: address in @vma for shared policy lookup and interleave policy
1834 * @gfp_flags: for requested zone
1835 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1836 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1838 * Returns a zonelist suitable for a huge page allocation and a pointer
1839 * to the struct mempolicy for conditional unref after allocation.
1840 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1841 * @nodemask for filtering the zonelist.
1843 * Must be protected by read_mems_allowed_begin()
1845 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1846 gfp_t gfp_flags, struct mempolicy **mpol,
1847 nodemask_t **nodemask)
1849 struct zonelist *zl;
1851 *mpol = get_vma_policy(vma, addr);
1852 *nodemask = NULL; /* assume !MPOL_BIND */
1854 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1855 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1856 huge_page_shift(hstate_vma(vma))), gfp_flags);
1857 } else {
1858 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1859 if ((*mpol)->mode == MPOL_BIND)
1860 *nodemask = &(*mpol)->v.nodes;
1862 return zl;
1866 * init_nodemask_of_mempolicy
1868 * If the current task's mempolicy is "default" [NULL], return 'false'
1869 * to indicate default policy. Otherwise, extract the policy nodemask
1870 * for 'bind' or 'interleave' policy into the argument nodemask, or
1871 * initialize the argument nodemask to contain the single node for
1872 * 'preferred' or 'local' policy and return 'true' to indicate presence
1873 * of non-default mempolicy.
1875 * We don't bother with reference counting the mempolicy [mpol_get/put]
1876 * because the current task is examining it's own mempolicy and a task's
1877 * mempolicy is only ever changed by the task itself.
1879 * N.B., it is the caller's responsibility to free a returned nodemask.
1881 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1883 struct mempolicy *mempolicy;
1884 int nid;
1886 if (!(mask && current->mempolicy))
1887 return false;
1889 task_lock(current);
1890 mempolicy = current->mempolicy;
1891 switch (mempolicy->mode) {
1892 case MPOL_PREFERRED:
1893 if (mempolicy->flags & MPOL_F_LOCAL)
1894 nid = numa_node_id();
1895 else
1896 nid = mempolicy->v.preferred_node;
1897 init_nodemask_of_node(mask, nid);
1898 break;
1900 case MPOL_BIND:
1901 /* Fall through */
1902 case MPOL_INTERLEAVE:
1903 *mask = mempolicy->v.nodes;
1904 break;
1906 default:
1907 BUG();
1909 task_unlock(current);
1911 return true;
1913 #endif
1916 * mempolicy_nodemask_intersects
1918 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1919 * policy. Otherwise, check for intersection between mask and the policy
1920 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1921 * policy, always return true since it may allocate elsewhere on fallback.
1923 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1925 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1926 const nodemask_t *mask)
1928 struct mempolicy *mempolicy;
1929 bool ret = true;
1931 if (!mask)
1932 return ret;
1933 task_lock(tsk);
1934 mempolicy = tsk->mempolicy;
1935 if (!mempolicy)
1936 goto out;
1938 switch (mempolicy->mode) {
1939 case MPOL_PREFERRED:
1941 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1942 * allocate from, they may fallback to other nodes when oom.
1943 * Thus, it's possible for tsk to have allocated memory from
1944 * nodes in mask.
1946 break;
1947 case MPOL_BIND:
1948 case MPOL_INTERLEAVE:
1949 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1950 break;
1951 default:
1952 BUG();
1954 out:
1955 task_unlock(tsk);
1956 return ret;
1959 /* Allocate a page in interleaved policy.
1960 Own path because it needs to do special accounting. */
1961 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1962 unsigned nid)
1964 struct zonelist *zl;
1965 struct page *page;
1967 zl = node_zonelist(nid, gfp);
1968 page = __alloc_pages(gfp, order, zl);
1969 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1970 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1971 return page;
1975 * alloc_pages_vma - Allocate a page for a VMA.
1977 * @gfp:
1978 * %GFP_USER user allocation.
1979 * %GFP_KERNEL kernel allocations,
1980 * %GFP_HIGHMEM highmem/user allocations,
1981 * %GFP_FS allocation should not call back into a file system.
1982 * %GFP_ATOMIC don't sleep.
1984 * @order:Order of the GFP allocation.
1985 * @vma: Pointer to VMA or NULL if not available.
1986 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1987 * @node: Which node to prefer for allocation (modulo policy).
1988 * @hugepage: for hugepages try only the preferred node if possible
1990 * This function allocates a page from the kernel page pool and applies
1991 * a NUMA policy associated with the VMA or the current process.
1992 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1993 * mm_struct of the VMA to prevent it from going away. Should be used for
1994 * all allocations for pages that will be mapped into user space. Returns
1995 * NULL when no page can be allocated.
1997 struct page *
1998 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1999 unsigned long addr, int node, bool hugepage)
2001 struct mempolicy *pol;
2002 struct page *page;
2003 unsigned int cpuset_mems_cookie;
2004 struct zonelist *zl;
2005 nodemask_t *nmask;
2007 retry_cpuset:
2008 pol = get_vma_policy(vma, addr);
2009 cpuset_mems_cookie = read_mems_allowed_begin();
2011 if (pol->mode == MPOL_INTERLEAVE) {
2012 unsigned nid;
2014 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2015 mpol_cond_put(pol);
2016 page = alloc_page_interleave(gfp, order, nid);
2017 goto out;
2020 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2021 int hpage_node = node;
2024 * For hugepage allocation and non-interleave policy which
2025 * allows the current node (or other explicitly preferred
2026 * node) we only try to allocate from the current/preferred
2027 * node and don't fall back to other nodes, as the cost of
2028 * remote accesses would likely offset THP benefits.
2030 * If the policy is interleave, or does not allow the current
2031 * node in its nodemask, we allocate the standard way.
2033 if (pol->mode == MPOL_PREFERRED &&
2034 !(pol->flags & MPOL_F_LOCAL))
2035 hpage_node = pol->v.preferred_node;
2037 nmask = policy_nodemask(gfp, pol);
2038 if (!nmask || node_isset(hpage_node, *nmask)) {
2039 mpol_cond_put(pol);
2041 * We cannot invoke reclaim if __GFP_THISNODE
2042 * is set. Invoking reclaim with
2043 * __GFP_THISNODE set, would cause THP
2044 * allocations to trigger heavy swapping
2045 * despite there may be tons of free memory
2046 * (including potentially plenty of THP
2047 * already available in the buddy) on all the
2048 * other NUMA nodes.
2050 * At most we could invoke compaction when
2051 * __GFP_THISNODE is set (but we would need to
2052 * refrain from invoking reclaim even if
2053 * compaction returned COMPACT_SKIPPED because
2054 * there wasn't not enough memory to succeed
2055 * compaction). For now just avoid
2056 * __GFP_THISNODE instead of limiting the
2057 * allocation path to a strict and single
2058 * compaction invocation.
2060 * Supposedly if direct reclaim was enabled by
2061 * the caller, the app prefers THP regardless
2062 * of the node it comes from so this would be
2063 * more desiderable behavior than only
2064 * providing THP originated from the local
2065 * node in such case.
2067 if (!(gfp & __GFP_DIRECT_RECLAIM))
2068 gfp |= __GFP_THISNODE;
2069 page = __alloc_pages_node(hpage_node, gfp, order);
2070 goto out;
2074 nmask = policy_nodemask(gfp, pol);
2075 zl = policy_zonelist(gfp, pol, node);
2076 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2077 mpol_cond_put(pol);
2078 out:
2079 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2080 goto retry_cpuset;
2081 return page;
2085 * alloc_pages_current - Allocate pages.
2087 * @gfp:
2088 * %GFP_USER user allocation,
2089 * %GFP_KERNEL kernel allocation,
2090 * %GFP_HIGHMEM highmem allocation,
2091 * %GFP_FS don't call back into a file system.
2092 * %GFP_ATOMIC don't sleep.
2093 * @order: Power of two of allocation size in pages. 0 is a single page.
2095 * Allocate a page from the kernel page pool. When not in
2096 * interrupt context and apply the current process NUMA policy.
2097 * Returns NULL when no page can be allocated.
2099 * Don't call cpuset_update_task_memory_state() unless
2100 * 1) it's ok to take cpuset_sem (can WAIT), and
2101 * 2) allocating for current task (not interrupt).
2103 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2105 struct mempolicy *pol = &default_policy;
2106 struct page *page;
2107 unsigned int cpuset_mems_cookie;
2109 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2110 pol = get_task_policy(current);
2112 retry_cpuset:
2113 cpuset_mems_cookie = read_mems_allowed_begin();
2116 * No reference counting needed for current->mempolicy
2117 * nor system default_policy
2119 if (pol->mode == MPOL_INTERLEAVE)
2120 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2121 else
2122 page = __alloc_pages_nodemask(gfp, order,
2123 policy_zonelist(gfp, pol, numa_node_id()),
2124 policy_nodemask(gfp, pol));
2126 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2127 goto retry_cpuset;
2129 return page;
2131 EXPORT_SYMBOL(alloc_pages_current);
2133 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2135 struct mempolicy *pol = mpol_dup(vma_policy(src));
2137 if (IS_ERR(pol))
2138 return PTR_ERR(pol);
2139 dst->vm_policy = pol;
2140 return 0;
2144 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2145 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2146 * with the mems_allowed returned by cpuset_mems_allowed(). This
2147 * keeps mempolicies cpuset relative after its cpuset moves. See
2148 * further kernel/cpuset.c update_nodemask().
2150 * current's mempolicy may be rebinded by the other task(the task that changes
2151 * cpuset's mems), so we needn't do rebind work for current task.
2154 /* Slow path of a mempolicy duplicate */
2155 struct mempolicy *__mpol_dup(struct mempolicy *old)
2157 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2159 if (!new)
2160 return ERR_PTR(-ENOMEM);
2162 /* task's mempolicy is protected by alloc_lock */
2163 if (old == current->mempolicy) {
2164 task_lock(current);
2165 *new = *old;
2166 task_unlock(current);
2167 } else
2168 *new = *old;
2170 if (current_cpuset_is_being_rebound()) {
2171 nodemask_t mems = cpuset_mems_allowed(current);
2172 if (new->flags & MPOL_F_REBINDING)
2173 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2174 else
2175 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2177 atomic_set(&new->refcnt, 1);
2178 return new;
2181 /* Slow path of a mempolicy comparison */
2182 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2184 if (!a || !b)
2185 return false;
2186 if (a->mode != b->mode)
2187 return false;
2188 if (a->flags != b->flags)
2189 return false;
2190 if (mpol_store_user_nodemask(a))
2191 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2192 return false;
2194 switch (a->mode) {
2195 case MPOL_BIND:
2196 /* Fall through */
2197 case MPOL_INTERLEAVE:
2198 return !!nodes_equal(a->v.nodes, b->v.nodes);
2199 case MPOL_PREFERRED:
2200 /* a's ->flags is the same as b's */
2201 if (a->flags & MPOL_F_LOCAL)
2202 return true;
2203 return a->v.preferred_node == b->v.preferred_node;
2204 default:
2205 BUG();
2206 return false;
2211 * Shared memory backing store policy support.
2213 * Remember policies even when nobody has shared memory mapped.
2214 * The policies are kept in Red-Black tree linked from the inode.
2215 * They are protected by the sp->lock rwlock, which should be held
2216 * for any accesses to the tree.
2220 * lookup first element intersecting start-end. Caller holds sp->lock for
2221 * reading or for writing
2223 static struct sp_node *
2224 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2226 struct rb_node *n = sp->root.rb_node;
2228 while (n) {
2229 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2231 if (start >= p->end)
2232 n = n->rb_right;
2233 else if (end <= p->start)
2234 n = n->rb_left;
2235 else
2236 break;
2238 if (!n)
2239 return NULL;
2240 for (;;) {
2241 struct sp_node *w = NULL;
2242 struct rb_node *prev = rb_prev(n);
2243 if (!prev)
2244 break;
2245 w = rb_entry(prev, struct sp_node, nd);
2246 if (w->end <= start)
2247 break;
2248 n = prev;
2250 return rb_entry(n, struct sp_node, nd);
2254 * Insert a new shared policy into the list. Caller holds sp->lock for
2255 * writing.
2257 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2259 struct rb_node **p = &sp->root.rb_node;
2260 struct rb_node *parent = NULL;
2261 struct sp_node *nd;
2263 while (*p) {
2264 parent = *p;
2265 nd = rb_entry(parent, struct sp_node, nd);
2266 if (new->start < nd->start)
2267 p = &(*p)->rb_left;
2268 else if (new->end > nd->end)
2269 p = &(*p)->rb_right;
2270 else
2271 BUG();
2273 rb_link_node(&new->nd, parent, p);
2274 rb_insert_color(&new->nd, &sp->root);
2275 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2276 new->policy ? new->policy->mode : 0);
2279 /* Find shared policy intersecting idx */
2280 struct mempolicy *
2281 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2283 struct mempolicy *pol = NULL;
2284 struct sp_node *sn;
2286 if (!sp->root.rb_node)
2287 return NULL;
2288 read_lock(&sp->lock);
2289 sn = sp_lookup(sp, idx, idx+1);
2290 if (sn) {
2291 mpol_get(sn->policy);
2292 pol = sn->policy;
2294 read_unlock(&sp->lock);
2295 return pol;
2298 static void sp_free(struct sp_node *n)
2300 mpol_put(n->policy);
2301 kmem_cache_free(sn_cache, n);
2305 * mpol_misplaced - check whether current page node is valid in policy
2307 * @page: page to be checked
2308 * @vma: vm area where page mapped
2309 * @addr: virtual address where page mapped
2311 * Lookup current policy node id for vma,addr and "compare to" page's
2312 * node id.
2314 * Returns:
2315 * -1 - not misplaced, page is in the right node
2316 * node - node id where the page should be
2318 * Policy determination "mimics" alloc_page_vma().
2319 * Called from fault path where we know the vma and faulting address.
2321 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2323 struct mempolicy *pol;
2324 struct zoneref *z;
2325 int curnid = page_to_nid(page);
2326 unsigned long pgoff;
2327 int thiscpu = raw_smp_processor_id();
2328 int thisnid = cpu_to_node(thiscpu);
2329 int polnid = -1;
2330 int ret = -1;
2332 BUG_ON(!vma);
2334 pol = get_vma_policy(vma, addr);
2335 if (!(pol->flags & MPOL_F_MOF))
2336 goto out;
2338 switch (pol->mode) {
2339 case MPOL_INTERLEAVE:
2340 BUG_ON(addr >= vma->vm_end);
2341 BUG_ON(addr < vma->vm_start);
2343 pgoff = vma->vm_pgoff;
2344 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2345 polnid = offset_il_node(pol, vma, pgoff);
2346 break;
2348 case MPOL_PREFERRED:
2349 if (pol->flags & MPOL_F_LOCAL)
2350 polnid = numa_node_id();
2351 else
2352 polnid = pol->v.preferred_node;
2353 break;
2355 case MPOL_BIND:
2358 * allows binding to multiple nodes.
2359 * use current page if in policy nodemask,
2360 * else select nearest allowed node, if any.
2361 * If no allowed nodes, use current [!misplaced].
2363 if (node_isset(curnid, pol->v.nodes))
2364 goto out;
2365 z = first_zones_zonelist(
2366 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2367 gfp_zone(GFP_HIGHUSER),
2368 &pol->v.nodes);
2369 polnid = z->zone->node;
2370 break;
2372 default:
2373 BUG();
2376 /* Migrate the page towards the node whose CPU is referencing it */
2377 if (pol->flags & MPOL_F_MORON) {
2378 polnid = thisnid;
2380 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2381 goto out;
2384 if (curnid != polnid)
2385 ret = polnid;
2386 out:
2387 mpol_cond_put(pol);
2389 return ret;
2393 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2394 * dropped after task->mempolicy is set to NULL so that any allocation done as
2395 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2396 * policy.
2398 void mpol_put_task_policy(struct task_struct *task)
2400 struct mempolicy *pol;
2402 task_lock(task);
2403 pol = task->mempolicy;
2404 task->mempolicy = NULL;
2405 task_unlock(task);
2406 mpol_put(pol);
2409 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2411 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2412 rb_erase(&n->nd, &sp->root);
2413 sp_free(n);
2416 static void sp_node_init(struct sp_node *node, unsigned long start,
2417 unsigned long end, struct mempolicy *pol)
2419 node->start = start;
2420 node->end = end;
2421 node->policy = pol;
2424 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2425 struct mempolicy *pol)
2427 struct sp_node *n;
2428 struct mempolicy *newpol;
2430 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2431 if (!n)
2432 return NULL;
2434 newpol = mpol_dup(pol);
2435 if (IS_ERR(newpol)) {
2436 kmem_cache_free(sn_cache, n);
2437 return NULL;
2439 newpol->flags |= MPOL_F_SHARED;
2440 sp_node_init(n, start, end, newpol);
2442 return n;
2445 /* Replace a policy range. */
2446 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2447 unsigned long end, struct sp_node *new)
2449 struct sp_node *n;
2450 struct sp_node *n_new = NULL;
2451 struct mempolicy *mpol_new = NULL;
2452 int ret = 0;
2454 restart:
2455 write_lock(&sp->lock);
2456 n = sp_lookup(sp, start, end);
2457 /* Take care of old policies in the same range. */
2458 while (n && n->start < end) {
2459 struct rb_node *next = rb_next(&n->nd);
2460 if (n->start >= start) {
2461 if (n->end <= end)
2462 sp_delete(sp, n);
2463 else
2464 n->start = end;
2465 } else {
2466 /* Old policy spanning whole new range. */
2467 if (n->end > end) {
2468 if (!n_new)
2469 goto alloc_new;
2471 *mpol_new = *n->policy;
2472 atomic_set(&mpol_new->refcnt, 1);
2473 sp_node_init(n_new, end, n->end, mpol_new);
2474 n->end = start;
2475 sp_insert(sp, n_new);
2476 n_new = NULL;
2477 mpol_new = NULL;
2478 break;
2479 } else
2480 n->end = start;
2482 if (!next)
2483 break;
2484 n = rb_entry(next, struct sp_node, nd);
2486 if (new)
2487 sp_insert(sp, new);
2488 write_unlock(&sp->lock);
2489 ret = 0;
2491 err_out:
2492 if (mpol_new)
2493 mpol_put(mpol_new);
2494 if (n_new)
2495 kmem_cache_free(sn_cache, n_new);
2497 return ret;
2499 alloc_new:
2500 write_unlock(&sp->lock);
2501 ret = -ENOMEM;
2502 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2503 if (!n_new)
2504 goto err_out;
2505 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2506 if (!mpol_new)
2507 goto err_out;
2508 goto restart;
2512 * mpol_shared_policy_init - initialize shared policy for inode
2513 * @sp: pointer to inode shared policy
2514 * @mpol: struct mempolicy to install
2516 * Install non-NULL @mpol in inode's shared policy rb-tree.
2517 * On entry, the current task has a reference on a non-NULL @mpol.
2518 * This must be released on exit.
2519 * This is called at get_inode() calls and we can use GFP_KERNEL.
2521 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2523 int ret;
2525 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2526 rwlock_init(&sp->lock);
2528 if (mpol) {
2529 struct vm_area_struct pvma;
2530 struct mempolicy *new;
2531 NODEMASK_SCRATCH(scratch);
2533 if (!scratch)
2534 goto put_mpol;
2535 /* contextualize the tmpfs mount point mempolicy */
2536 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2537 if (IS_ERR(new))
2538 goto free_scratch; /* no valid nodemask intersection */
2540 task_lock(current);
2541 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2542 task_unlock(current);
2543 if (ret)
2544 goto put_new;
2546 /* Create pseudo-vma that contains just the policy */
2547 memset(&pvma, 0, sizeof(struct vm_area_struct));
2548 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2549 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2551 put_new:
2552 mpol_put(new); /* drop initial ref */
2553 free_scratch:
2554 NODEMASK_SCRATCH_FREE(scratch);
2555 put_mpol:
2556 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2560 int mpol_set_shared_policy(struct shared_policy *info,
2561 struct vm_area_struct *vma, struct mempolicy *npol)
2563 int err;
2564 struct sp_node *new = NULL;
2565 unsigned long sz = vma_pages(vma);
2567 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2568 vma->vm_pgoff,
2569 sz, npol ? npol->mode : -1,
2570 npol ? npol->flags : -1,
2571 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2573 if (npol) {
2574 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2575 if (!new)
2576 return -ENOMEM;
2578 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2579 if (err && new)
2580 sp_free(new);
2581 return err;
2584 /* Free a backing policy store on inode delete. */
2585 void mpol_free_shared_policy(struct shared_policy *p)
2587 struct sp_node *n;
2588 struct rb_node *next;
2590 if (!p->root.rb_node)
2591 return;
2592 write_lock(&p->lock);
2593 next = rb_first(&p->root);
2594 while (next) {
2595 n = rb_entry(next, struct sp_node, nd);
2596 next = rb_next(&n->nd);
2597 sp_delete(p, n);
2599 write_unlock(&p->lock);
2602 #ifdef CONFIG_NUMA_BALANCING
2603 static int __initdata numabalancing_override;
2605 static void __init check_numabalancing_enable(void)
2607 bool numabalancing_default = false;
2609 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2610 numabalancing_default = true;
2612 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2613 if (numabalancing_override)
2614 set_numabalancing_state(numabalancing_override == 1);
2616 if (num_online_nodes() > 1 && !numabalancing_override) {
2617 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2618 numabalancing_default ? "Enabling" : "Disabling");
2619 set_numabalancing_state(numabalancing_default);
2623 static int __init setup_numabalancing(char *str)
2625 int ret = 0;
2626 if (!str)
2627 goto out;
2629 if (!strcmp(str, "enable")) {
2630 numabalancing_override = 1;
2631 ret = 1;
2632 } else if (!strcmp(str, "disable")) {
2633 numabalancing_override = -1;
2634 ret = 1;
2636 out:
2637 if (!ret)
2638 pr_warn("Unable to parse numa_balancing=\n");
2640 return ret;
2642 __setup("numa_balancing=", setup_numabalancing);
2643 #else
2644 static inline void __init check_numabalancing_enable(void)
2647 #endif /* CONFIG_NUMA_BALANCING */
2649 /* assumes fs == KERNEL_DS */
2650 void __init numa_policy_init(void)
2652 nodemask_t interleave_nodes;
2653 unsigned long largest = 0;
2654 int nid, prefer = 0;
2656 policy_cache = kmem_cache_create("numa_policy",
2657 sizeof(struct mempolicy),
2658 0, SLAB_PANIC, NULL);
2660 sn_cache = kmem_cache_create("shared_policy_node",
2661 sizeof(struct sp_node),
2662 0, SLAB_PANIC, NULL);
2664 for_each_node(nid) {
2665 preferred_node_policy[nid] = (struct mempolicy) {
2666 .refcnt = ATOMIC_INIT(1),
2667 .mode = MPOL_PREFERRED,
2668 .flags = MPOL_F_MOF | MPOL_F_MORON,
2669 .v = { .preferred_node = nid, },
2674 * Set interleaving policy for system init. Interleaving is only
2675 * enabled across suitably sized nodes (default is >= 16MB), or
2676 * fall back to the largest node if they're all smaller.
2678 nodes_clear(interleave_nodes);
2679 for_each_node_state(nid, N_MEMORY) {
2680 unsigned long total_pages = node_present_pages(nid);
2682 /* Preserve the largest node */
2683 if (largest < total_pages) {
2684 largest = total_pages;
2685 prefer = nid;
2688 /* Interleave this node? */
2689 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2690 node_set(nid, interleave_nodes);
2693 /* All too small, use the largest */
2694 if (unlikely(nodes_empty(interleave_nodes)))
2695 node_set(prefer, interleave_nodes);
2697 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2698 pr_err("%s: interleaving failed\n", __func__);
2700 check_numabalancing_enable();
2703 /* Reset policy of current process to default */
2704 void numa_default_policy(void)
2706 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2710 * Parse and format mempolicy from/to strings
2714 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2716 static const char * const policy_modes[] =
2718 [MPOL_DEFAULT] = "default",
2719 [MPOL_PREFERRED] = "prefer",
2720 [MPOL_BIND] = "bind",
2721 [MPOL_INTERLEAVE] = "interleave",
2722 [MPOL_LOCAL] = "local",
2726 #ifdef CONFIG_TMPFS
2728 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2729 * @str: string containing mempolicy to parse
2730 * @mpol: pointer to struct mempolicy pointer, returned on success.
2732 * Format of input:
2733 * <mode>[=<flags>][:<nodelist>]
2735 * On success, returns 0, else 1
2737 int mpol_parse_str(char *str, struct mempolicy **mpol)
2739 struct mempolicy *new = NULL;
2740 unsigned short mode;
2741 unsigned short mode_flags;
2742 nodemask_t nodes;
2743 char *nodelist = strchr(str, ':');
2744 char *flags = strchr(str, '=');
2745 int err = 1;
2747 if (flags)
2748 *flags++ = '\0'; /* terminate mode string */
2750 if (nodelist) {
2751 /* NUL-terminate mode or flags string */
2752 *nodelist++ = '\0';
2753 if (nodelist_parse(nodelist, nodes))
2754 goto out;
2755 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2756 goto out;
2757 } else
2758 nodes_clear(nodes);
2760 for (mode = 0; mode < MPOL_MAX; mode++) {
2761 if (!strcmp(str, policy_modes[mode])) {
2762 break;
2765 if (mode >= MPOL_MAX)
2766 goto out;
2768 switch (mode) {
2769 case MPOL_PREFERRED:
2771 * Insist on a nodelist of one node only, although later
2772 * we use first_node(nodes) to grab a single node, so here
2773 * nodelist (or nodes) cannot be empty.
2775 if (nodelist) {
2776 char *rest = nodelist;
2777 while (isdigit(*rest))
2778 rest++;
2779 if (*rest)
2780 goto out;
2781 if (nodes_empty(nodes))
2782 goto out;
2784 break;
2785 case MPOL_INTERLEAVE:
2787 * Default to online nodes with memory if no nodelist
2789 if (!nodelist)
2790 nodes = node_states[N_MEMORY];
2791 break;
2792 case MPOL_LOCAL:
2794 * Don't allow a nodelist; mpol_new() checks flags
2796 if (nodelist)
2797 goto out;
2798 mode = MPOL_PREFERRED;
2799 break;
2800 case MPOL_DEFAULT:
2802 * Insist on a empty nodelist
2804 if (!nodelist)
2805 err = 0;
2806 goto out;
2807 case MPOL_BIND:
2809 * Insist on a nodelist
2811 if (!nodelist)
2812 goto out;
2815 mode_flags = 0;
2816 if (flags) {
2818 * Currently, we only support two mutually exclusive
2819 * mode flags.
2821 if (!strcmp(flags, "static"))
2822 mode_flags |= MPOL_F_STATIC_NODES;
2823 else if (!strcmp(flags, "relative"))
2824 mode_flags |= MPOL_F_RELATIVE_NODES;
2825 else
2826 goto out;
2829 new = mpol_new(mode, mode_flags, &nodes);
2830 if (IS_ERR(new))
2831 goto out;
2834 * Save nodes for mpol_to_str() to show the tmpfs mount options
2835 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2837 if (mode != MPOL_PREFERRED)
2838 new->v.nodes = nodes;
2839 else if (nodelist)
2840 new->v.preferred_node = first_node(nodes);
2841 else
2842 new->flags |= MPOL_F_LOCAL;
2845 * Save nodes for contextualization: this will be used to "clone"
2846 * the mempolicy in a specific context [cpuset] at a later time.
2848 new->w.user_nodemask = nodes;
2850 err = 0;
2852 out:
2853 /* Restore string for error message */
2854 if (nodelist)
2855 *--nodelist = ':';
2856 if (flags)
2857 *--flags = '=';
2858 if (!err)
2859 *mpol = new;
2860 return err;
2862 #endif /* CONFIG_TMPFS */
2865 * mpol_to_str - format a mempolicy structure for printing
2866 * @buffer: to contain formatted mempolicy string
2867 * @maxlen: length of @buffer
2868 * @pol: pointer to mempolicy to be formatted
2870 * Convert @pol into a string. If @buffer is too short, truncate the string.
2871 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2872 * longest flag, "relative", and to display at least a few node ids.
2874 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2876 char *p = buffer;
2877 nodemask_t nodes = NODE_MASK_NONE;
2878 unsigned short mode = MPOL_DEFAULT;
2879 unsigned short flags = 0;
2881 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2882 mode = pol->mode;
2883 flags = pol->flags;
2886 switch (mode) {
2887 case MPOL_DEFAULT:
2888 break;
2889 case MPOL_PREFERRED:
2890 if (flags & MPOL_F_LOCAL)
2891 mode = MPOL_LOCAL;
2892 else
2893 node_set(pol->v.preferred_node, nodes);
2894 break;
2895 case MPOL_BIND:
2896 case MPOL_INTERLEAVE:
2897 nodes = pol->v.nodes;
2898 break;
2899 default:
2900 WARN_ON_ONCE(1);
2901 snprintf(p, maxlen, "unknown");
2902 return;
2905 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2907 if (flags & MPOL_MODE_FLAGS) {
2908 p += snprintf(p, buffer + maxlen - p, "=");
2911 * Currently, the only defined flags are mutually exclusive
2913 if (flags & MPOL_F_STATIC_NODES)
2914 p += snprintf(p, buffer + maxlen - p, "static");
2915 else if (flags & MPOL_F_RELATIVE_NODES)
2916 p += snprintf(p, buffer + maxlen - p, "relative");
2919 if (!nodes_empty(nodes))
2920 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2921 nodemask_pr_args(&nodes));