4 * Internal slab definitions
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
20 unsigned int object_size
;/* The original size of the object */
21 unsigned int size
; /* The aligned/padded/added on size */
22 unsigned int align
; /* Alignment as calculated */
23 unsigned long flags
; /* Active flags on the slab */
24 const char *name
; /* Slab name for sysfs */
25 int refcount
; /* Use counter */
26 void (*ctor
)(void *); /* Called on object slot creation */
27 struct list_head list
; /* List of all slab caches on the system */
30 #endif /* CONFIG_SLOB */
33 #include <linux/slab_def.h>
37 #include <linux/slub_def.h>
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
48 * State of the slab allocator.
50 * This is used to describe the states of the allocator during bootup.
51 * Allocators use this to gradually bootstrap themselves. Most allocators
52 * have the problem that the structures used for managing slab caches are
53 * allocated from slab caches themselves.
56 DOWN
, /* No slab functionality yet */
57 PARTIAL
, /* SLUB: kmem_cache_node available */
58 PARTIAL_NODE
, /* SLAB: kmalloc size for node struct available */
59 UP
, /* Slab caches usable but not all extras yet */
60 FULL
/* Everything is working */
63 extern enum slab_state slab_state
;
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex
;
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches
;
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache
*kmem_cache
;
74 unsigned long calculate_alignment(unsigned long flags
,
75 unsigned long align
, unsigned long size
);
78 /* Kmalloc array related functions */
79 void setup_kmalloc_cache_index_table(void);
80 void create_kmalloc_caches(unsigned long);
82 /* Find the kmalloc slab corresponding for a certain size */
83 struct kmem_cache
*kmalloc_slab(size_t, gfp_t
);
87 /* Functions provided by the slab allocators */
88 extern int __kmem_cache_create(struct kmem_cache
*, unsigned long flags
);
90 extern struct kmem_cache
*create_kmalloc_cache(const char *name
, size_t size
,
92 extern void create_boot_cache(struct kmem_cache
*, const char *name
,
93 size_t size
, unsigned long flags
);
95 int slab_unmergeable(struct kmem_cache
*s
);
96 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
97 unsigned long flags
, const char *name
, void (*ctor
)(void *));
100 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
101 unsigned long flags
, void (*ctor
)(void *));
103 unsigned long kmem_cache_flags(unsigned long object_size
,
104 unsigned long flags
, const char *name
,
105 void (*ctor
)(void *));
107 static inline struct kmem_cache
*
108 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
109 unsigned long flags
, void (*ctor
)(void *))
112 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
113 unsigned long flags
, const char *name
,
114 void (*ctor
)(void *))
121 /* Legal flag mask for kmem_cache_create(), for various configurations */
122 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
123 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
125 #if defined(CONFIG_DEBUG_SLAB)
126 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
127 #elif defined(CONFIG_SLUB_DEBUG)
128 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
131 #define SLAB_DEBUG_FLAGS (0)
134 #if defined(CONFIG_SLAB)
135 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
136 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
137 SLAB_NOTRACK | SLAB_ACCOUNT)
138 #elif defined(CONFIG_SLUB)
139 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
140 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
142 #define SLAB_CACHE_FLAGS (0)
145 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
147 int __kmem_cache_shutdown(struct kmem_cache
*);
148 void __kmem_cache_release(struct kmem_cache
*);
149 int __kmem_cache_shrink(struct kmem_cache
*);
150 void slab_kmem_cache_release(struct kmem_cache
*);
156 unsigned long active_objs
;
157 unsigned long num_objs
;
158 unsigned long active_slabs
;
159 unsigned long num_slabs
;
160 unsigned long shared_avail
;
162 unsigned int batchcount
;
164 unsigned int objects_per_slab
;
165 unsigned int cache_order
;
168 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
);
169 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
);
170 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
171 size_t count
, loff_t
*ppos
);
174 * Generic implementation of bulk operations
175 * These are useful for situations in which the allocator cannot
176 * perform optimizations. In that case segments of the object listed
177 * may be allocated or freed using these operations.
179 void __kmem_cache_free_bulk(struct kmem_cache
*, size_t, void **);
180 int __kmem_cache_alloc_bulk(struct kmem_cache
*, gfp_t
, size_t, void **);
182 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
184 * Iterate over all memcg caches of the given root cache. The caller must hold
187 #define for_each_memcg_cache(iter, root) \
188 list_for_each_entry(iter, &(root)->memcg_params.list, \
191 static inline bool is_root_cache(struct kmem_cache
*s
)
193 return s
->memcg_params
.is_root_cache
;
196 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
197 struct kmem_cache
*p
)
199 return p
== s
|| p
== s
->memcg_params
.root_cache
;
203 * We use suffixes to the name in memcg because we can't have caches
204 * created in the system with the same name. But when we print them
205 * locally, better refer to them with the base name
207 static inline const char *cache_name(struct kmem_cache
*s
)
209 if (!is_root_cache(s
))
210 s
= s
->memcg_params
.root_cache
;
215 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
216 * That said the caller must assure the memcg's cache won't go away by either
217 * taking a css reference to the owner cgroup, or holding the slab_mutex.
219 static inline struct kmem_cache
*
220 cache_from_memcg_idx(struct kmem_cache
*s
, int idx
)
222 struct kmem_cache
*cachep
;
223 struct memcg_cache_array
*arr
;
226 arr
= rcu_dereference(s
->memcg_params
.memcg_caches
);
229 * Make sure we will access the up-to-date value. The code updating
230 * memcg_caches issues a write barrier to match this (see
231 * memcg_create_kmem_cache()).
233 cachep
= lockless_dereference(arr
->entries
[idx
]);
239 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
241 if (is_root_cache(s
))
243 return s
->memcg_params
.root_cache
;
246 static __always_inline
int memcg_charge_slab(struct page
*page
,
247 gfp_t gfp
, int order
,
248 struct kmem_cache
*s
)
252 if (!memcg_kmem_enabled())
254 if (is_root_cache(s
))
257 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, s
->memcg_params
.memcg
);
261 memcg_kmem_update_page_stat(page
,
262 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
263 MEMCG_SLAB_RECLAIMABLE
: MEMCG_SLAB_UNRECLAIMABLE
,
268 static __always_inline
void memcg_uncharge_slab(struct page
*page
, int order
,
269 struct kmem_cache
*s
)
271 if (!memcg_kmem_enabled())
274 memcg_kmem_update_page_stat(page
,
275 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
276 MEMCG_SLAB_RECLAIMABLE
: MEMCG_SLAB_UNRECLAIMABLE
,
278 memcg_kmem_uncharge(page
, order
);
281 extern void slab_init_memcg_params(struct kmem_cache
*);
283 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
285 #define for_each_memcg_cache(iter, root) \
286 for ((void)(iter), (void)(root); 0; )
288 static inline bool is_root_cache(struct kmem_cache
*s
)
293 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
294 struct kmem_cache
*p
)
299 static inline const char *cache_name(struct kmem_cache
*s
)
304 static inline struct kmem_cache
*
305 cache_from_memcg_idx(struct kmem_cache
*s
, int idx
)
310 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
315 static inline int memcg_charge_slab(struct page
*page
, gfp_t gfp
, int order
,
316 struct kmem_cache
*s
)
321 static inline void memcg_uncharge_slab(struct page
*page
, int order
,
322 struct kmem_cache
*s
)
326 static inline void slab_init_memcg_params(struct kmem_cache
*s
)
329 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
331 static inline struct kmem_cache
*cache_from_obj(struct kmem_cache
*s
, void *x
)
333 struct kmem_cache
*cachep
;
337 * When kmemcg is not being used, both assignments should return the
338 * same value. but we don't want to pay the assignment price in that
339 * case. If it is not compiled in, the compiler should be smart enough
340 * to not do even the assignment. In that case, slab_equal_or_root
341 * will also be a constant.
343 if (!memcg_kmem_enabled() &&
344 !unlikely(s
->flags
& SLAB_CONSISTENCY_CHECKS
))
347 page
= virt_to_head_page(x
);
348 cachep
= page
->slab_cache
;
349 if (slab_equal_or_root(cachep
, s
))
352 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
353 __func__
, s
->name
, cachep
->name
);
358 static inline size_t slab_ksize(const struct kmem_cache
*s
)
361 return s
->object_size
;
363 #else /* CONFIG_SLUB */
364 # ifdef CONFIG_SLUB_DEBUG
366 * Debugging requires use of the padding between object
367 * and whatever may come after it.
369 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
370 return s
->object_size
;
372 if (s
->flags
& SLAB_KASAN
)
373 return s
->object_size
;
375 * If we have the need to store the freelist pointer
376 * back there or track user information then we can
377 * only use the space before that information.
379 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
382 * Else we can use all the padding etc for the allocation
388 static inline struct kmem_cache
*slab_pre_alloc_hook(struct kmem_cache
*s
,
391 flags
&= gfp_allowed_mask
;
392 lockdep_trace_alloc(flags
);
393 might_sleep_if(gfpflags_allow_blocking(flags
));
395 if (should_failslab(s
, flags
))
398 if (memcg_kmem_enabled() &&
399 ((flags
& __GFP_ACCOUNT
) || (s
->flags
& SLAB_ACCOUNT
)))
400 return memcg_kmem_get_cache(s
);
405 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
406 size_t size
, void **p
)
410 flags
&= gfp_allowed_mask
;
411 for (i
= 0; i
< size
; i
++) {
414 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
415 kmemleak_alloc_recursive(object
, s
->object_size
, 1,
417 kasan_slab_alloc(s
, object
, flags
);
420 if (memcg_kmem_enabled())
421 memcg_kmem_put_cache(s
);
426 * The slab lists for all objects.
428 struct kmem_cache_node
{
429 spinlock_t list_lock
;
432 struct list_head slabs_partial
; /* partial list first, better asm code */
433 struct list_head slabs_full
;
434 struct list_head slabs_free
;
435 unsigned long num_slabs
;
436 unsigned long free_objects
;
437 unsigned int free_limit
;
438 unsigned int colour_next
; /* Per-node cache coloring */
439 struct array_cache
*shared
; /* shared per node */
440 struct alien_cache
**alien
; /* on other nodes */
441 unsigned long next_reap
; /* updated without locking */
442 int free_touched
; /* updated without locking */
446 unsigned long nr_partial
;
447 struct list_head partial
;
448 #ifdef CONFIG_SLUB_DEBUG
449 atomic_long_t nr_slabs
;
450 atomic_long_t total_objects
;
451 struct list_head full
;
457 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
459 return s
->node
[node
];
463 * Iterator over all nodes. The body will be executed for each node that has
464 * a kmem_cache_node structure allocated (which is true for all online nodes)
466 #define for_each_kmem_cache_node(__s, __node, __n) \
467 for (__node = 0; __node < nr_node_ids; __node++) \
468 if ((__n = get_node(__s, __node)))
472 void *slab_start(struct seq_file
*m
, loff_t
*pos
);
473 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
);
474 void slab_stop(struct seq_file
*m
, void *p
);
475 int memcg_slab_show(struct seq_file
*m
, void *p
);
477 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
);
479 #ifdef CONFIG_SLAB_FREELIST_RANDOM
480 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
482 void cache_random_seq_destroy(struct kmem_cache
*cachep
);
484 static inline int cache_random_seq_create(struct kmem_cache
*cachep
,
485 unsigned int count
, gfp_t gfp
)
489 static inline void cache_random_seq_destroy(struct kmem_cache
*cachep
) { }
490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
492 #endif /* MM_SLAB_H */