spi: bcm2835: Fix controller unregister order
[linux/fpc-iii.git] / mm / util.c
blob07f46720618678acbc038a44be488be0ee8c23c0
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
18 #include "internal.h"
20 static inline int is_kernel_rodata(unsigned long addr)
22 return addr >= (unsigned long)__start_rodata &&
23 addr < (unsigned long)__end_rodata;
26 /**
27 * kfree_const - conditionally free memory
28 * @x: pointer to the memory
30 * Function calls kfree only if @x is not in .rodata section.
32 void kfree_const(const void *x)
34 if (!is_kernel_rodata((unsigned long)x))
35 kfree(x);
37 EXPORT_SYMBOL(kfree_const);
39 /**
40 * kstrdup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
44 char *kstrdup(const char *s, gfp_t gfp)
46 size_t len;
47 char *buf;
49 if (!s)
50 return NULL;
52 len = strlen(s) + 1;
53 buf = kmalloc_track_caller(len, gfp);
54 if (buf)
55 memcpy(buf, s, len);
56 return buf;
58 EXPORT_SYMBOL(kstrdup);
60 /**
61 * kstrdup_const - conditionally duplicate an existing const string
62 * @s: the string to duplicate
63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
65 * Function returns source string if it is in .rodata section otherwise it
66 * fallbacks to kstrdup.
67 * Strings allocated by kstrdup_const should be freed by kfree_const.
69 const char *kstrdup_const(const char *s, gfp_t gfp)
71 if (is_kernel_rodata((unsigned long)s))
72 return s;
74 return kstrdup(s, gfp);
76 EXPORT_SYMBOL(kstrdup_const);
78 /**
79 * kstrndup - allocate space for and copy an existing string
80 * @s: the string to duplicate
81 * @max: read at most @max chars from @s
82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
84 * Note: Use kmemdup_nul() instead if the size is known exactly.
86 char *kstrndup(const char *s, size_t max, gfp_t gfp)
88 size_t len;
89 char *buf;
91 if (!s)
92 return NULL;
94 len = strnlen(s, max);
95 buf = kmalloc_track_caller(len+1, gfp);
96 if (buf) {
97 memcpy(buf, s, len);
98 buf[len] = '\0';
100 return buf;
102 EXPORT_SYMBOL(kstrndup);
105 * kmemdup - duplicate region of memory
107 * @src: memory region to duplicate
108 * @len: memory region length
109 * @gfp: GFP mask to use
111 void *kmemdup(const void *src, size_t len, gfp_t gfp)
113 void *p;
115 p = kmalloc_track_caller(len, gfp);
116 if (p)
117 memcpy(p, src, len);
118 return p;
120 EXPORT_SYMBOL(kmemdup);
123 * kmemdup_nul - Create a NUL-terminated string from unterminated data
124 * @s: The data to stringify
125 * @len: The size of the data
126 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
128 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
130 char *buf;
132 if (!s)
133 return NULL;
135 buf = kmalloc_track_caller(len + 1, gfp);
136 if (buf) {
137 memcpy(buf, s, len);
138 buf[len] = '\0';
140 return buf;
142 EXPORT_SYMBOL(kmemdup_nul);
145 * memdup_user - duplicate memory region from user space
147 * @src: source address in user space
148 * @len: number of bytes to copy
150 * Returns an ERR_PTR() on failure.
152 void *memdup_user(const void __user *src, size_t len)
154 void *p;
157 * Always use GFP_KERNEL, since copy_from_user() can sleep and
158 * cause pagefault, which makes it pointless to use GFP_NOFS
159 * or GFP_ATOMIC.
161 p = kmalloc_track_caller(len, GFP_KERNEL);
162 if (!p)
163 return ERR_PTR(-ENOMEM);
165 if (copy_from_user(p, src, len)) {
166 kfree(p);
167 return ERR_PTR(-EFAULT);
170 return p;
172 EXPORT_SYMBOL(memdup_user);
175 * strndup_user - duplicate an existing string from user space
176 * @s: The string to duplicate
177 * @n: Maximum number of bytes to copy, including the trailing NUL.
179 char *strndup_user(const char __user *s, long n)
181 char *p;
182 long length;
184 length = strnlen_user(s, n);
186 if (!length)
187 return ERR_PTR(-EFAULT);
189 if (length > n)
190 return ERR_PTR(-EINVAL);
192 p = memdup_user(s, length);
194 if (IS_ERR(p))
195 return p;
197 p[length - 1] = '\0';
199 return p;
201 EXPORT_SYMBOL(strndup_user);
204 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
206 * @src: source address in user space
207 * @len: number of bytes to copy
209 * Returns an ERR_PTR() on failure.
211 void *memdup_user_nul(const void __user *src, size_t len)
213 char *p;
216 * Always use GFP_KERNEL, since copy_from_user() can sleep and
217 * cause pagefault, which makes it pointless to use GFP_NOFS
218 * or GFP_ATOMIC.
220 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
221 if (!p)
222 return ERR_PTR(-ENOMEM);
224 if (copy_from_user(p, src, len)) {
225 kfree(p);
226 return ERR_PTR(-EFAULT);
228 p[len] = '\0';
230 return p;
232 EXPORT_SYMBOL(memdup_user_nul);
234 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
235 struct vm_area_struct *prev, struct rb_node *rb_parent)
237 struct vm_area_struct *next;
239 vma->vm_prev = prev;
240 if (prev) {
241 next = prev->vm_next;
242 prev->vm_next = vma;
243 } else {
244 mm->mmap = vma;
245 if (rb_parent)
246 next = rb_entry(rb_parent,
247 struct vm_area_struct, vm_rb);
248 else
249 next = NULL;
251 vma->vm_next = next;
252 if (next)
253 next->vm_prev = vma;
256 /* Check if the vma is being used as a stack by this task */
257 int vma_is_stack_for_current(struct vm_area_struct *vma)
259 struct task_struct * __maybe_unused t = current;
261 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
264 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
265 void arch_pick_mmap_layout(struct mm_struct *mm)
267 mm->mmap_base = TASK_UNMAPPED_BASE;
268 mm->get_unmapped_area = arch_get_unmapped_area;
270 #endif
273 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
274 * back to the regular GUP.
275 * If the architecture not support this function, simply return with no
276 * page pinned
278 int __weak __get_user_pages_fast(unsigned long start,
279 int nr_pages, int write, struct page **pages)
281 return 0;
283 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
286 * get_user_pages_fast() - pin user pages in memory
287 * @start: starting user address
288 * @nr_pages: number of pages from start to pin
289 * @write: whether pages will be written to
290 * @pages: array that receives pointers to the pages pinned.
291 * Should be at least nr_pages long.
293 * Returns number of pages pinned. This may be fewer than the number
294 * requested. If nr_pages is 0 or negative, returns 0. If no pages
295 * were pinned, returns -errno.
297 * get_user_pages_fast provides equivalent functionality to get_user_pages,
298 * operating on current and current->mm, with force=0 and vma=NULL. However
299 * unlike get_user_pages, it must be called without mmap_sem held.
301 * get_user_pages_fast may take mmap_sem and page table locks, so no
302 * assumptions can be made about lack of locking. get_user_pages_fast is to be
303 * implemented in a way that is advantageous (vs get_user_pages()) when the
304 * user memory area is already faulted in and present in ptes. However if the
305 * pages have to be faulted in, it may turn out to be slightly slower so
306 * callers need to carefully consider what to use. On many architectures,
307 * get_user_pages_fast simply falls back to get_user_pages.
309 int __weak get_user_pages_fast(unsigned long start,
310 int nr_pages, int write, struct page **pages)
312 return get_user_pages_unlocked(start, nr_pages, pages,
313 write ? FOLL_WRITE : 0);
315 EXPORT_SYMBOL_GPL(get_user_pages_fast);
317 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
318 unsigned long len, unsigned long prot,
319 unsigned long flag, unsigned long pgoff)
321 unsigned long ret;
322 struct mm_struct *mm = current->mm;
323 unsigned long populate;
325 ret = security_mmap_file(file, prot, flag);
326 if (!ret) {
327 if (down_write_killable(&mm->mmap_sem))
328 return -EINTR;
329 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
330 &populate);
331 up_write(&mm->mmap_sem);
332 if (populate)
333 mm_populate(ret, populate);
335 return ret;
338 unsigned long vm_mmap(struct file *file, unsigned long addr,
339 unsigned long len, unsigned long prot,
340 unsigned long flag, unsigned long offset)
342 if (unlikely(offset + PAGE_ALIGN(len) < offset))
343 return -EINVAL;
344 if (unlikely(offset_in_page(offset)))
345 return -EINVAL;
347 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
349 EXPORT_SYMBOL(vm_mmap);
351 void kvfree(const void *addr)
353 if (is_vmalloc_addr(addr))
354 vfree(addr);
355 else
356 kfree(addr);
358 EXPORT_SYMBOL(kvfree);
360 static inline void *__page_rmapping(struct page *page)
362 unsigned long mapping;
364 mapping = (unsigned long)page->mapping;
365 mapping &= ~PAGE_MAPPING_FLAGS;
367 return (void *)mapping;
370 /* Neutral page->mapping pointer to address_space or anon_vma or other */
371 void *page_rmapping(struct page *page)
373 page = compound_head(page);
374 return __page_rmapping(page);
378 * Return true if this page is mapped into pagetables.
379 * For compound page it returns true if any subpage of compound page is mapped.
381 bool page_mapped(struct page *page)
383 int i;
385 if (likely(!PageCompound(page)))
386 return atomic_read(&page->_mapcount) >= 0;
387 page = compound_head(page);
388 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
389 return true;
390 if (PageHuge(page))
391 return false;
392 for (i = 0; i < (1 << compound_order(page)); i++) {
393 if (atomic_read(&page[i]._mapcount) >= 0)
394 return true;
396 return false;
398 EXPORT_SYMBOL(page_mapped);
400 struct anon_vma *page_anon_vma(struct page *page)
402 unsigned long mapping;
404 page = compound_head(page);
405 mapping = (unsigned long)page->mapping;
406 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
407 return NULL;
408 return __page_rmapping(page);
411 struct address_space *page_mapping(struct page *page)
413 struct address_space *mapping;
415 page = compound_head(page);
417 /* This happens if someone calls flush_dcache_page on slab page */
418 if (unlikely(PageSlab(page)))
419 return NULL;
421 if (unlikely(PageSwapCache(page))) {
422 swp_entry_t entry;
424 entry.val = page_private(page);
425 return swap_address_space(entry);
428 mapping = page->mapping;
429 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
430 return NULL;
432 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
434 EXPORT_SYMBOL(page_mapping);
436 /* Slow path of page_mapcount() for compound pages */
437 int __page_mapcount(struct page *page)
439 int ret;
441 ret = atomic_read(&page->_mapcount) + 1;
443 * For file THP page->_mapcount contains total number of mapping
444 * of the page: no need to look into compound_mapcount.
446 if (!PageAnon(page) && !PageHuge(page))
447 return ret;
448 page = compound_head(page);
449 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
450 if (PageDoubleMap(page))
451 ret--;
452 return ret;
454 EXPORT_SYMBOL_GPL(__page_mapcount);
456 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
457 int sysctl_overcommit_ratio __read_mostly = 50;
458 unsigned long sysctl_overcommit_kbytes __read_mostly;
459 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
460 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
461 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
463 int overcommit_ratio_handler(struct ctl_table *table, int write,
464 void __user *buffer, size_t *lenp,
465 loff_t *ppos)
467 int ret;
469 ret = proc_dointvec(table, write, buffer, lenp, ppos);
470 if (ret == 0 && write)
471 sysctl_overcommit_kbytes = 0;
472 return ret;
475 int overcommit_kbytes_handler(struct ctl_table *table, int write,
476 void __user *buffer, size_t *lenp,
477 loff_t *ppos)
479 int ret;
481 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
482 if (ret == 0 && write)
483 sysctl_overcommit_ratio = 0;
484 return ret;
488 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
490 unsigned long vm_commit_limit(void)
492 unsigned long allowed;
494 if (sysctl_overcommit_kbytes)
495 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
496 else
497 allowed = ((totalram_pages - hugetlb_total_pages())
498 * sysctl_overcommit_ratio / 100);
499 allowed += total_swap_pages;
501 return allowed;
505 * Make sure vm_committed_as in one cacheline and not cacheline shared with
506 * other variables. It can be updated by several CPUs frequently.
508 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
511 * The global memory commitment made in the system can be a metric
512 * that can be used to drive ballooning decisions when Linux is hosted
513 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
514 * balancing memory across competing virtual machines that are hosted.
515 * Several metrics drive this policy engine including the guest reported
516 * memory commitment.
518 unsigned long vm_memory_committed(void)
520 return percpu_counter_read_positive(&vm_committed_as);
522 EXPORT_SYMBOL_GPL(vm_memory_committed);
525 * Check that a process has enough memory to allocate a new virtual
526 * mapping. 0 means there is enough memory for the allocation to
527 * succeed and -ENOMEM implies there is not.
529 * We currently support three overcommit policies, which are set via the
530 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
532 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
533 * Additional code 2002 Jul 20 by Robert Love.
535 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
537 * Note this is a helper function intended to be used by LSMs which
538 * wish to use this logic.
540 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
542 long free, allowed, reserve;
544 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
545 -(s64)vm_committed_as_batch * num_online_cpus(),
546 "memory commitment underflow");
548 vm_acct_memory(pages);
551 * Sometimes we want to use more memory than we have
553 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
554 return 0;
556 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
557 free = global_page_state(NR_FREE_PAGES);
558 free += global_node_page_state(NR_FILE_PAGES);
561 * shmem pages shouldn't be counted as free in this
562 * case, they can't be purged, only swapped out, and
563 * that won't affect the overall amount of available
564 * memory in the system.
566 free -= global_node_page_state(NR_SHMEM);
568 free += get_nr_swap_pages();
571 * Any slabs which are created with the
572 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
573 * which are reclaimable, under pressure. The dentry
574 * cache and most inode caches should fall into this
576 free += global_page_state(NR_SLAB_RECLAIMABLE);
579 * Leave reserved pages. The pages are not for anonymous pages.
581 if (free <= totalreserve_pages)
582 goto error;
583 else
584 free -= totalreserve_pages;
587 * Reserve some for root
589 if (!cap_sys_admin)
590 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
592 if (free > pages)
593 return 0;
595 goto error;
598 allowed = vm_commit_limit();
600 * Reserve some for root
602 if (!cap_sys_admin)
603 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
606 * Don't let a single process grow so big a user can't recover
608 if (mm) {
609 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
610 allowed -= min_t(long, mm->total_vm / 32, reserve);
613 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
614 return 0;
615 error:
616 vm_unacct_memory(pages);
618 return -ENOMEM;
622 * get_cmdline() - copy the cmdline value to a buffer.
623 * @task: the task whose cmdline value to copy.
624 * @buffer: the buffer to copy to.
625 * @buflen: the length of the buffer. Larger cmdline values are truncated
626 * to this length.
627 * Returns the size of the cmdline field copied. Note that the copy does
628 * not guarantee an ending NULL byte.
630 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
632 int res = 0;
633 unsigned int len;
634 struct mm_struct *mm = get_task_mm(task);
635 unsigned long arg_start, arg_end, env_start, env_end;
636 if (!mm)
637 goto out;
638 if (!mm->arg_end)
639 goto out_mm; /* Shh! No looking before we're done */
641 down_read(&mm->mmap_sem);
642 arg_start = mm->arg_start;
643 arg_end = mm->arg_end;
644 env_start = mm->env_start;
645 env_end = mm->env_end;
646 up_read(&mm->mmap_sem);
648 len = arg_end - arg_start;
650 if (len > buflen)
651 len = buflen;
653 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
656 * If the nul at the end of args has been overwritten, then
657 * assume application is using setproctitle(3).
659 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
660 len = strnlen(buffer, res);
661 if (len < res) {
662 res = len;
663 } else {
664 len = env_end - env_start;
665 if (len > buflen - res)
666 len = buflen - res;
667 res += access_process_vm(task, env_start,
668 buffer+res, len,
669 FOLL_FORCE);
670 res = strnlen(buffer, res);
673 out_mm:
674 mmput(mm);
675 out:
676 return res;