4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 #include <linux/overflow.h>
36 #include <asm/uaccess.h>
37 #include <asm/tlbflush.h>
38 #include <asm/shmparam.h>
42 struct vfree_deferred
{
43 struct llist_head list
;
44 struct work_struct wq
;
46 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
48 static void __vunmap(const void *, int);
50 static void free_work(struct work_struct
*w
)
52 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
53 struct llist_node
*llnode
= llist_del_all(&p
->list
);
56 llnode
= llist_next(llnode
);
61 /*** Page table manipulation functions ***/
63 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
67 pte
= pte_offset_kernel(pmd
, addr
);
69 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
70 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
71 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
74 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
79 pmd
= pmd_offset(pud
, addr
);
81 next
= pmd_addr_end(addr
, end
);
82 if (pmd_clear_huge(pmd
))
84 if (pmd_none_or_clear_bad(pmd
))
86 vunmap_pte_range(pmd
, addr
, next
);
87 } while (pmd
++, addr
= next
, addr
!= end
);
90 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
95 pud
= pud_offset(pgd
, addr
);
97 next
= pud_addr_end(addr
, end
);
98 if (pud_clear_huge(pud
))
100 if (pud_none_or_clear_bad(pud
))
102 vunmap_pmd_range(pud
, addr
, next
);
103 } while (pud
++, addr
= next
, addr
!= end
);
106 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
112 pgd
= pgd_offset_k(addr
);
114 next
= pgd_addr_end(addr
, end
);
115 if (pgd_none_or_clear_bad(pgd
))
117 vunmap_pud_range(pgd
, addr
, next
);
118 } while (pgd
++, addr
= next
, addr
!= end
);
121 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
122 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
127 * nr is a running index into the array which helps higher level
128 * callers keep track of where we're up to.
131 pte
= pte_alloc_kernel(pmd
, addr
);
135 struct page
*page
= pages
[*nr
];
137 if (WARN_ON(!pte_none(*pte
)))
141 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
143 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
147 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
148 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
153 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
157 next
= pmd_addr_end(addr
, end
);
158 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
160 } while (pmd
++, addr
= next
, addr
!= end
);
164 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
165 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
170 pud
= pud_alloc(&init_mm
, pgd
, addr
);
174 next
= pud_addr_end(addr
, end
);
175 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
177 } while (pud
++, addr
= next
, addr
!= end
);
182 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
183 * will have pfns corresponding to the "pages" array.
185 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
187 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
188 pgprot_t prot
, struct page
**pages
)
192 unsigned long addr
= start
;
197 pgd
= pgd_offset_k(addr
);
199 next
= pgd_addr_end(addr
, end
);
200 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
203 } while (pgd
++, addr
= next
, addr
!= end
);
208 static int vmap_page_range(unsigned long start
, unsigned long end
,
209 pgprot_t prot
, struct page
**pages
)
213 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
214 flush_cache_vmap(start
, end
);
218 int is_vmalloc_or_module_addr(const void *x
)
221 * ARM, x86-64 and sparc64 put modules in a special place,
222 * and fall back on vmalloc() if that fails. Others
223 * just put it in the vmalloc space.
225 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
226 unsigned long addr
= (unsigned long)x
;
227 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
230 return is_vmalloc_addr(x
);
234 * Walk a vmap address to the struct page it maps.
236 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
238 unsigned long addr
= (unsigned long) vmalloc_addr
;
239 struct page
*page
= NULL
;
240 pgd_t
*pgd
= pgd_offset_k(addr
);
243 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
244 * architectures that do not vmalloc module space
246 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
249 * Don't dereference bad PUD or PMD (below) entries. This will also
250 * identify huge mappings, which we may encounter on architectures
251 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
252 * identified as vmalloc addresses by is_vmalloc_addr(), but are
253 * not [unambiguously] associated with a struct page, so there is
254 * no correct value to return for them.
256 if (!pgd_none(*pgd
)) {
257 pud_t
*pud
= pud_offset(pgd
, addr
);
258 WARN_ON_ONCE(pud_bad(*pud
));
259 if (!pud_none(*pud
) && !pud_bad(*pud
)) {
260 pmd_t
*pmd
= pmd_offset(pud
, addr
);
261 WARN_ON_ONCE(pmd_bad(*pmd
));
262 if (!pmd_none(*pmd
) && !pmd_bad(*pmd
)) {
265 ptep
= pte_offset_map(pmd
, addr
);
267 if (pte_present(pte
))
268 page
= pte_page(pte
);
275 EXPORT_SYMBOL(vmalloc_to_page
);
278 * Map a vmalloc()-space virtual address to the physical page frame number.
280 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
282 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
284 EXPORT_SYMBOL(vmalloc_to_pfn
);
287 /*** Global kva allocator ***/
289 #define VM_VM_AREA 0x04
291 static DEFINE_SPINLOCK(vmap_area_lock
);
292 /* Export for kexec only */
293 LIST_HEAD(vmap_area_list
);
294 static LLIST_HEAD(vmap_purge_list
);
295 static struct rb_root vmap_area_root
= RB_ROOT
;
297 /* The vmap cache globals are protected by vmap_area_lock */
298 static struct rb_node
*free_vmap_cache
;
299 static unsigned long cached_hole_size
;
300 static unsigned long cached_vstart
;
301 static unsigned long cached_align
;
303 static unsigned long vmap_area_pcpu_hole
;
305 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
307 struct rb_node
*n
= vmap_area_root
.rb_node
;
310 struct vmap_area
*va
;
312 va
= rb_entry(n
, struct vmap_area
, rb_node
);
313 if (addr
< va
->va_start
)
315 else if (addr
>= va
->va_end
)
324 static void __insert_vmap_area(struct vmap_area
*va
)
326 struct rb_node
**p
= &vmap_area_root
.rb_node
;
327 struct rb_node
*parent
= NULL
;
331 struct vmap_area
*tmp_va
;
334 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
335 if (va
->va_start
< tmp_va
->va_end
)
337 else if (va
->va_end
> tmp_va
->va_start
)
343 rb_link_node(&va
->rb_node
, parent
, p
);
344 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
346 /* address-sort this list */
347 tmp
= rb_prev(&va
->rb_node
);
349 struct vmap_area
*prev
;
350 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
351 list_add_rcu(&va
->list
, &prev
->list
);
353 list_add_rcu(&va
->list
, &vmap_area_list
);
356 static void purge_vmap_area_lazy(void);
358 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
361 * Allocate a region of KVA of the specified size and alignment, within the
364 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
366 unsigned long vstart
, unsigned long vend
,
367 int node
, gfp_t gfp_mask
)
369 struct vmap_area
*va
;
373 struct vmap_area
*first
;
376 BUG_ON(offset_in_page(size
));
377 BUG_ON(!is_power_of_2(align
));
379 might_sleep_if(gfpflags_allow_blocking(gfp_mask
));
381 va
= kmalloc_node(sizeof(struct vmap_area
),
382 gfp_mask
& GFP_RECLAIM_MASK
, node
);
384 return ERR_PTR(-ENOMEM
);
387 * Only scan the relevant parts containing pointers to other objects
388 * to avoid false negatives.
390 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
393 spin_lock(&vmap_area_lock
);
395 * Invalidate cache if we have more permissive parameters.
396 * cached_hole_size notes the largest hole noticed _below_
397 * the vmap_area cached in free_vmap_cache: if size fits
398 * into that hole, we want to scan from vstart to reuse
399 * the hole instead of allocating above free_vmap_cache.
400 * Note that __free_vmap_area may update free_vmap_cache
401 * without updating cached_hole_size or cached_align.
403 if (!free_vmap_cache
||
404 size
< cached_hole_size
||
405 vstart
< cached_vstart
||
406 align
< cached_align
) {
408 cached_hole_size
= 0;
409 free_vmap_cache
= NULL
;
411 /* record if we encounter less permissive parameters */
412 cached_vstart
= vstart
;
413 cached_align
= align
;
415 /* find starting point for our search */
416 if (free_vmap_cache
) {
417 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
418 addr
= ALIGN(first
->va_end
, align
);
421 if (addr
+ size
< addr
)
425 addr
= ALIGN(vstart
, align
);
426 if (addr
+ size
< addr
)
429 n
= vmap_area_root
.rb_node
;
433 struct vmap_area
*tmp
;
434 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
435 if (tmp
->va_end
>= addr
) {
437 if (tmp
->va_start
<= addr
)
448 /* from the starting point, walk areas until a suitable hole is found */
449 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
450 if (addr
+ cached_hole_size
< first
->va_start
)
451 cached_hole_size
= first
->va_start
- addr
;
452 addr
= ALIGN(first
->va_end
, align
);
453 if (addr
+ size
< addr
)
456 if (list_is_last(&first
->list
, &vmap_area_list
))
459 first
= list_next_entry(first
, list
);
464 * Check also calculated address against the vstart,
465 * because it can be 0 because of big align request.
467 if (addr
+ size
> vend
|| addr
< vstart
)
471 va
->va_end
= addr
+ size
;
473 __insert_vmap_area(va
);
474 free_vmap_cache
= &va
->rb_node
;
475 spin_unlock(&vmap_area_lock
);
477 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
478 BUG_ON(va
->va_start
< vstart
);
479 BUG_ON(va
->va_end
> vend
);
484 spin_unlock(&vmap_area_lock
);
486 purge_vmap_area_lazy();
491 if (gfpflags_allow_blocking(gfp_mask
)) {
492 unsigned long freed
= 0;
493 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
500 if (printk_ratelimit())
501 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
504 return ERR_PTR(-EBUSY
);
507 int register_vmap_purge_notifier(struct notifier_block
*nb
)
509 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
511 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
513 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
515 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
517 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
519 static void __free_vmap_area(struct vmap_area
*va
)
521 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
523 if (free_vmap_cache
) {
524 if (va
->va_end
< cached_vstart
) {
525 free_vmap_cache
= NULL
;
527 struct vmap_area
*cache
;
528 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
529 if (va
->va_start
<= cache
->va_start
) {
530 free_vmap_cache
= rb_prev(&va
->rb_node
);
532 * We don't try to update cached_hole_size or
533 * cached_align, but it won't go very wrong.
538 rb_erase(&va
->rb_node
, &vmap_area_root
);
539 RB_CLEAR_NODE(&va
->rb_node
);
540 list_del_rcu(&va
->list
);
543 * Track the highest possible candidate for pcpu area
544 * allocation. Areas outside of vmalloc area can be returned
545 * here too, consider only end addresses which fall inside
546 * vmalloc area proper.
548 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
549 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
551 kfree_rcu(va
, rcu_head
);
555 * Free a region of KVA allocated by alloc_vmap_area
557 static void free_vmap_area(struct vmap_area
*va
)
559 spin_lock(&vmap_area_lock
);
560 __free_vmap_area(va
);
561 spin_unlock(&vmap_area_lock
);
565 * Clear the pagetable entries of a given vmap_area
567 static void unmap_vmap_area(struct vmap_area
*va
)
569 vunmap_page_range(va
->va_start
, va
->va_end
);
572 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
575 * Unmap page tables and force a TLB flush immediately if pagealloc
576 * debugging is enabled. This catches use after free bugs similarly to
577 * those in linear kernel virtual address space after a page has been
580 * All the lazy freeing logic is still retained, in order to minimise
581 * intrusiveness of this debugging feature.
583 * This is going to be *slow* (linear kernel virtual address debugging
584 * doesn't do a broadcast TLB flush so it is a lot faster).
586 if (debug_pagealloc_enabled()) {
587 vunmap_page_range(start
, end
);
588 flush_tlb_kernel_range(start
, end
);
593 * lazy_max_pages is the maximum amount of virtual address space we gather up
594 * before attempting to purge with a TLB flush.
596 * There is a tradeoff here: a larger number will cover more kernel page tables
597 * and take slightly longer to purge, but it will linearly reduce the number of
598 * global TLB flushes that must be performed. It would seem natural to scale
599 * this number up linearly with the number of CPUs (because vmapping activity
600 * could also scale linearly with the number of CPUs), however it is likely
601 * that in practice, workloads might be constrained in other ways that mean
602 * vmap activity will not scale linearly with CPUs. Also, I want to be
603 * conservative and not introduce a big latency on huge systems, so go with
604 * a less aggressive log scale. It will still be an improvement over the old
605 * code, and it will be simple to change the scale factor if we find that it
606 * becomes a problem on bigger systems.
608 static unsigned long lazy_max_pages(void)
612 log
= fls(num_online_cpus());
614 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
617 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
619 /* for per-CPU blocks */
620 static void purge_fragmented_blocks_allcpus(void);
623 * called before a call to iounmap() if the caller wants vm_area_struct's
626 void set_iounmap_nonlazy(void)
628 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
632 * Purges all lazily-freed vmap areas.
634 * If sync is 0 then don't purge if there is already a purge in progress.
635 * If force_flush is 1, then flush kernel TLBs between *start and *end even
636 * if we found no lazy vmap areas to unmap (callers can use this to optimise
637 * their own TLB flushing).
638 * Returns with *start = min(*start, lowest purged address)
639 * *end = max(*end, highest purged address)
641 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
642 int sync
, int force_flush
)
644 static DEFINE_SPINLOCK(purge_lock
);
645 struct llist_node
*valist
;
646 struct vmap_area
*va
;
647 struct vmap_area
*n_va
;
651 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
652 * should not expect such behaviour. This just simplifies locking for
653 * the case that isn't actually used at the moment anyway.
655 if (!sync
&& !force_flush
) {
656 if (!spin_trylock(&purge_lock
))
659 spin_lock(&purge_lock
);
662 purge_fragmented_blocks_allcpus();
664 valist
= llist_del_all(&vmap_purge_list
);
665 llist_for_each_entry(va
, valist
, purge_list
) {
666 if (va
->va_start
< *start
)
667 *start
= va
->va_start
;
668 if (va
->va_end
> *end
)
670 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
674 atomic_sub(nr
, &vmap_lazy_nr
);
676 if (nr
|| force_flush
)
677 flush_tlb_kernel_range(*start
, *end
);
680 spin_lock(&vmap_area_lock
);
681 llist_for_each_entry_safe(va
, n_va
, valist
, purge_list
)
682 __free_vmap_area(va
);
683 spin_unlock(&vmap_area_lock
);
685 spin_unlock(&purge_lock
);
689 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
690 * is already purging.
692 static void try_purge_vmap_area_lazy(void)
694 unsigned long start
= ULONG_MAX
, end
= 0;
696 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
700 * Kick off a purge of the outstanding lazy areas.
702 static void purge_vmap_area_lazy(void)
704 unsigned long start
= ULONG_MAX
, end
= 0;
706 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
710 * Free a vmap area, caller ensuring that the area has been unmapped
711 * and flush_cache_vunmap had been called for the correct range
714 static void free_vmap_area_noflush(struct vmap_area
*va
)
718 nr_lazy
= atomic_add_return((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
,
721 /* After this point, we may free va at any time */
722 llist_add(&va
->purge_list
, &vmap_purge_list
);
724 if (unlikely(nr_lazy
> lazy_max_pages()))
725 try_purge_vmap_area_lazy();
729 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
730 * called for the correct range previously.
732 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
735 free_vmap_area_noflush(va
);
739 * Free and unmap a vmap area
741 static void free_unmap_vmap_area(struct vmap_area
*va
)
743 flush_cache_vunmap(va
->va_start
, va
->va_end
);
744 free_unmap_vmap_area_noflush(va
);
747 static struct vmap_area
*find_vmap_area(unsigned long addr
)
749 struct vmap_area
*va
;
751 spin_lock(&vmap_area_lock
);
752 va
= __find_vmap_area(addr
);
753 spin_unlock(&vmap_area_lock
);
758 static void free_unmap_vmap_area_addr(unsigned long addr
)
760 struct vmap_area
*va
;
762 va
= find_vmap_area(addr
);
764 free_unmap_vmap_area(va
);
768 /*** Per cpu kva allocator ***/
771 * vmap space is limited especially on 32 bit architectures. Ensure there is
772 * room for at least 16 percpu vmap blocks per CPU.
775 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
776 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
777 * instead (we just need a rough idea)
779 #if BITS_PER_LONG == 32
780 #define VMALLOC_SPACE (128UL*1024*1024)
782 #define VMALLOC_SPACE (128UL*1024*1024*1024)
785 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
786 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
787 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
788 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
789 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
790 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
791 #define VMAP_BBMAP_BITS \
792 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
793 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
794 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
796 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
798 static bool vmap_initialized __read_mostly
= false;
800 struct vmap_block_queue
{
802 struct list_head free
;
807 struct vmap_area
*va
;
808 unsigned long free
, dirty
;
809 unsigned long dirty_min
, dirty_max
; /*< dirty range */
810 struct list_head free_list
;
811 struct rcu_head rcu_head
;
812 struct list_head purge
;
815 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
816 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
819 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
820 * in the free path. Could get rid of this if we change the API to return a
821 * "cookie" from alloc, to be passed to free. But no big deal yet.
823 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
824 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
827 * We should probably have a fallback mechanism to allocate virtual memory
828 * out of partially filled vmap blocks. However vmap block sizing should be
829 * fairly reasonable according to the vmalloc size, so it shouldn't be a
833 static unsigned long addr_to_vb_idx(unsigned long addr
)
835 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
836 addr
/= VMAP_BLOCK_SIZE
;
840 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
844 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
845 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
850 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
851 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
852 * @order: how many 2^order pages should be occupied in newly allocated block
853 * @gfp_mask: flags for the page level allocator
855 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
857 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
859 struct vmap_block_queue
*vbq
;
860 struct vmap_block
*vb
;
861 struct vmap_area
*va
;
862 unsigned long vb_idx
;
866 node
= numa_node_id();
868 vb
= kmalloc_node(sizeof(struct vmap_block
),
869 gfp_mask
& GFP_RECLAIM_MASK
, node
);
871 return ERR_PTR(-ENOMEM
);
873 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
874 VMALLOC_START
, VMALLOC_END
,
881 err
= radix_tree_preload(gfp_mask
);
888 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
889 spin_lock_init(&vb
->lock
);
891 /* At least something should be left free */
892 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
893 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
895 vb
->dirty_min
= VMAP_BBMAP_BITS
;
897 INIT_LIST_HEAD(&vb
->free_list
);
899 vb_idx
= addr_to_vb_idx(va
->va_start
);
900 spin_lock(&vmap_block_tree_lock
);
901 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
902 spin_unlock(&vmap_block_tree_lock
);
904 radix_tree_preload_end();
906 vbq
= &get_cpu_var(vmap_block_queue
);
907 spin_lock(&vbq
->lock
);
908 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
909 spin_unlock(&vbq
->lock
);
910 put_cpu_var(vmap_block_queue
);
915 static void free_vmap_block(struct vmap_block
*vb
)
917 struct vmap_block
*tmp
;
918 unsigned long vb_idx
;
920 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
921 spin_lock(&vmap_block_tree_lock
);
922 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
923 spin_unlock(&vmap_block_tree_lock
);
926 free_vmap_area_noflush(vb
->va
);
927 kfree_rcu(vb
, rcu_head
);
930 static void purge_fragmented_blocks(int cpu
)
933 struct vmap_block
*vb
;
934 struct vmap_block
*n_vb
;
935 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
938 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
940 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
943 spin_lock(&vb
->lock
);
944 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
945 vb
->free
= 0; /* prevent further allocs after releasing lock */
946 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
948 vb
->dirty_max
= VMAP_BBMAP_BITS
;
949 spin_lock(&vbq
->lock
);
950 list_del_rcu(&vb
->free_list
);
951 spin_unlock(&vbq
->lock
);
952 spin_unlock(&vb
->lock
);
953 list_add_tail(&vb
->purge
, &purge
);
955 spin_unlock(&vb
->lock
);
959 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
960 list_del(&vb
->purge
);
965 static void purge_fragmented_blocks_allcpus(void)
969 for_each_possible_cpu(cpu
)
970 purge_fragmented_blocks(cpu
);
973 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
975 struct vmap_block_queue
*vbq
;
976 struct vmap_block
*vb
;
980 BUG_ON(offset_in_page(size
));
981 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
982 if (WARN_ON(size
== 0)) {
984 * Allocating 0 bytes isn't what caller wants since
985 * get_order(0) returns funny result. Just warn and terminate
990 order
= get_order(size
);
993 vbq
= &get_cpu_var(vmap_block_queue
);
994 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
995 unsigned long pages_off
;
997 spin_lock(&vb
->lock
);
998 if (vb
->free
< (1UL << order
)) {
999 spin_unlock(&vb
->lock
);
1003 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
1004 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
1005 vb
->free
-= 1UL << order
;
1006 if (vb
->free
== 0) {
1007 spin_lock(&vbq
->lock
);
1008 list_del_rcu(&vb
->free_list
);
1009 spin_unlock(&vbq
->lock
);
1012 spin_unlock(&vb
->lock
);
1016 put_cpu_var(vmap_block_queue
);
1019 /* Allocate new block if nothing was found */
1021 vaddr
= new_vmap_block(order
, gfp_mask
);
1026 static void vb_free(const void *addr
, unsigned long size
)
1028 unsigned long offset
;
1029 unsigned long vb_idx
;
1031 struct vmap_block
*vb
;
1033 BUG_ON(offset_in_page(size
));
1034 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1036 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
1038 order
= get_order(size
);
1040 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1041 offset
>>= PAGE_SHIFT
;
1043 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1045 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1049 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1051 spin_lock(&vb
->lock
);
1053 /* Expand dirty range */
1054 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1055 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1057 vb
->dirty
+= 1UL << order
;
1058 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1060 spin_unlock(&vb
->lock
);
1061 free_vmap_block(vb
);
1063 spin_unlock(&vb
->lock
);
1067 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1069 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1070 * to amortize TLB flushing overheads. What this means is that any page you
1071 * have now, may, in a former life, have been mapped into kernel virtual
1072 * address by the vmap layer and so there might be some CPUs with TLB entries
1073 * still referencing that page (additional to the regular 1:1 kernel mapping).
1075 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1076 * be sure that none of the pages we have control over will have any aliases
1077 * from the vmap layer.
1079 void vm_unmap_aliases(void)
1081 unsigned long start
= ULONG_MAX
, end
= 0;
1085 if (unlikely(!vmap_initialized
))
1088 for_each_possible_cpu(cpu
) {
1089 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1090 struct vmap_block
*vb
;
1093 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1094 spin_lock(&vb
->lock
);
1096 unsigned long va_start
= vb
->va
->va_start
;
1099 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1100 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1102 start
= min(s
, start
);
1107 spin_unlock(&vb
->lock
);
1112 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1114 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1117 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1118 * @mem: the pointer returned by vm_map_ram
1119 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1121 void vm_unmap_ram(const void *mem
, unsigned int count
)
1123 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1124 unsigned long addr
= (unsigned long)mem
;
1127 BUG_ON(addr
< VMALLOC_START
);
1128 BUG_ON(addr
> VMALLOC_END
);
1129 BUG_ON(!PAGE_ALIGNED(addr
));
1131 debug_check_no_locks_freed(mem
, size
);
1132 vmap_debug_free_range(addr
, addr
+size
);
1134 if (likely(count
<= VMAP_MAX_ALLOC
))
1137 free_unmap_vmap_area_addr(addr
);
1139 EXPORT_SYMBOL(vm_unmap_ram
);
1142 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1143 * @pages: an array of pointers to the pages to be mapped
1144 * @count: number of pages
1145 * @node: prefer to allocate data structures on this node
1146 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1148 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1149 * faster than vmap so it's good. But if you mix long-life and short-life
1150 * objects with vm_map_ram(), it could consume lots of address space through
1151 * fragmentation (especially on a 32bit machine). You could see failures in
1152 * the end. Please use this function for short-lived objects.
1154 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1156 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1158 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1162 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1163 mem
= vb_alloc(size
, GFP_KERNEL
);
1166 addr
= (unsigned long)mem
;
1168 struct vmap_area
*va
;
1169 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1170 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1174 addr
= va
->va_start
;
1177 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1178 vm_unmap_ram(mem
, count
);
1183 EXPORT_SYMBOL(vm_map_ram
);
1185 static struct vm_struct
*vmlist __initdata
;
1187 * vm_area_add_early - add vmap area early during boot
1188 * @vm: vm_struct to add
1190 * This function is used to add fixed kernel vm area to vmlist before
1191 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1192 * should contain proper values and the other fields should be zero.
1194 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1196 void __init
vm_area_add_early(struct vm_struct
*vm
)
1198 struct vm_struct
*tmp
, **p
;
1200 BUG_ON(vmap_initialized
);
1201 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1202 if (tmp
->addr
>= vm
->addr
) {
1203 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1206 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1213 * vm_area_register_early - register vmap area early during boot
1214 * @vm: vm_struct to register
1215 * @align: requested alignment
1217 * This function is used to register kernel vm area before
1218 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1219 * proper values on entry and other fields should be zero. On return,
1220 * vm->addr contains the allocated address.
1222 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1224 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1226 static size_t vm_init_off __initdata
;
1229 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1230 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1232 vm
->addr
= (void *)addr
;
1234 vm_area_add_early(vm
);
1237 void __init
vmalloc_init(void)
1239 struct vmap_area
*va
;
1240 struct vm_struct
*tmp
;
1243 for_each_possible_cpu(i
) {
1244 struct vmap_block_queue
*vbq
;
1245 struct vfree_deferred
*p
;
1247 vbq
= &per_cpu(vmap_block_queue
, i
);
1248 spin_lock_init(&vbq
->lock
);
1249 INIT_LIST_HEAD(&vbq
->free
);
1250 p
= &per_cpu(vfree_deferred
, i
);
1251 init_llist_head(&p
->list
);
1252 INIT_WORK(&p
->wq
, free_work
);
1255 /* Import existing vmlist entries. */
1256 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1257 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1258 va
->flags
= VM_VM_AREA
;
1259 va
->va_start
= (unsigned long)tmp
->addr
;
1260 va
->va_end
= va
->va_start
+ tmp
->size
;
1262 __insert_vmap_area(va
);
1265 vmap_area_pcpu_hole
= VMALLOC_END
;
1267 vmap_initialized
= true;
1271 * map_kernel_range_noflush - map kernel VM area with the specified pages
1272 * @addr: start of the VM area to map
1273 * @size: size of the VM area to map
1274 * @prot: page protection flags to use
1275 * @pages: pages to map
1277 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1278 * specify should have been allocated using get_vm_area() and its
1282 * This function does NOT do any cache flushing. The caller is
1283 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1284 * before calling this function.
1287 * The number of pages mapped on success, -errno on failure.
1289 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1290 pgprot_t prot
, struct page
**pages
)
1292 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1296 * unmap_kernel_range_noflush - unmap kernel VM area
1297 * @addr: start of the VM area to unmap
1298 * @size: size of the VM area to unmap
1300 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1301 * specify should have been allocated using get_vm_area() and its
1305 * This function does NOT do any cache flushing. The caller is
1306 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1307 * before calling this function and flush_tlb_kernel_range() after.
1309 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1311 vunmap_page_range(addr
, addr
+ size
);
1313 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1316 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1317 * @addr: start of the VM area to unmap
1318 * @size: size of the VM area to unmap
1320 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1321 * the unmapping and tlb after.
1323 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1325 unsigned long end
= addr
+ size
;
1327 flush_cache_vunmap(addr
, end
);
1328 vunmap_page_range(addr
, end
);
1329 flush_tlb_kernel_range(addr
, end
);
1331 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1333 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1335 unsigned long addr
= (unsigned long)area
->addr
;
1336 unsigned long end
= addr
+ get_vm_area_size(area
);
1339 err
= vmap_page_range(addr
, end
, prot
, pages
);
1341 return err
> 0 ? 0 : err
;
1343 EXPORT_SYMBOL_GPL(map_vm_area
);
1345 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1346 unsigned long flags
, const void *caller
)
1348 spin_lock(&vmap_area_lock
);
1350 vm
->addr
= (void *)va
->va_start
;
1351 vm
->size
= va
->va_end
- va
->va_start
;
1352 vm
->caller
= caller
;
1354 va
->flags
|= VM_VM_AREA
;
1355 spin_unlock(&vmap_area_lock
);
1358 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1361 * Before removing VM_UNINITIALIZED,
1362 * we should make sure that vm has proper values.
1363 * Pair with smp_rmb() in show_numa_info().
1366 vm
->flags
&= ~VM_UNINITIALIZED
;
1369 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1370 unsigned long align
, unsigned long flags
, unsigned long start
,
1371 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1373 struct vmap_area
*va
;
1374 struct vm_struct
*area
;
1376 BUG_ON(in_interrupt());
1377 size
= PAGE_ALIGN(size
);
1378 if (unlikely(!size
))
1381 if (flags
& VM_IOREMAP
)
1382 align
= 1ul << clamp_t(int, get_count_order_long(size
),
1383 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1385 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1386 if (unlikely(!area
))
1389 if (!(flags
& VM_NO_GUARD
))
1392 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1398 setup_vmalloc_vm(area
, va
, flags
, caller
);
1403 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1404 unsigned long start
, unsigned long end
)
1406 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1407 GFP_KERNEL
, __builtin_return_address(0));
1409 EXPORT_SYMBOL_GPL(__get_vm_area
);
1411 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1412 unsigned long start
, unsigned long end
,
1415 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1416 GFP_KERNEL
, caller
);
1420 * get_vm_area - reserve a contiguous kernel virtual area
1421 * @size: size of the area
1422 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1424 * Search an area of @size in the kernel virtual mapping area,
1425 * and reserved it for out purposes. Returns the area descriptor
1426 * on success or %NULL on failure.
1428 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1430 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1431 NUMA_NO_NODE
, GFP_KERNEL
,
1432 __builtin_return_address(0));
1435 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1438 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1439 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1443 * find_vm_area - find a continuous kernel virtual area
1444 * @addr: base address
1446 * Search for the kernel VM area starting at @addr, and return it.
1447 * It is up to the caller to do all required locking to keep the returned
1450 struct vm_struct
*find_vm_area(const void *addr
)
1452 struct vmap_area
*va
;
1454 va
= find_vmap_area((unsigned long)addr
);
1455 if (va
&& va
->flags
& VM_VM_AREA
)
1462 * remove_vm_area - find and remove a continuous kernel virtual area
1463 * @addr: base address
1465 * Search for the kernel VM area starting at @addr, and remove it.
1466 * This function returns the found VM area, but using it is NOT safe
1467 * on SMP machines, except for its size or flags.
1469 struct vm_struct
*remove_vm_area(const void *addr
)
1471 struct vmap_area
*va
;
1473 va
= find_vmap_area((unsigned long)addr
);
1474 if (va
&& va
->flags
& VM_VM_AREA
) {
1475 struct vm_struct
*vm
= va
->vm
;
1477 spin_lock(&vmap_area_lock
);
1479 va
->flags
&= ~VM_VM_AREA
;
1480 spin_unlock(&vmap_area_lock
);
1482 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1483 kasan_free_shadow(vm
);
1484 free_unmap_vmap_area(va
);
1491 static void __vunmap(const void *addr
, int deallocate_pages
)
1493 struct vm_struct
*area
;
1498 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1502 area
= find_vm_area(addr
);
1503 if (unlikely(!area
)) {
1504 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1509 debug_check_no_locks_freed(addr
, get_vm_area_size(area
));
1510 debug_check_no_obj_freed(addr
, get_vm_area_size(area
));
1512 remove_vm_area(addr
);
1513 if (deallocate_pages
) {
1516 for (i
= 0; i
< area
->nr_pages
; i
++) {
1517 struct page
*page
= area
->pages
[i
];
1520 __free_pages(page
, 0);
1523 kvfree(area
->pages
);
1531 * vfree - release memory allocated by vmalloc()
1532 * @addr: memory base address
1534 * Free the virtually continuous memory area starting at @addr, as
1535 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1536 * NULL, no operation is performed.
1538 * Must not be called in NMI context (strictly speaking, only if we don't
1539 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1540 * conventions for vfree() arch-depenedent would be a really bad idea)
1542 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1544 void vfree(const void *addr
)
1548 kmemleak_free(addr
);
1552 if (unlikely(in_interrupt())) {
1553 struct vfree_deferred
*p
= this_cpu_ptr(&vfree_deferred
);
1554 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1555 schedule_work(&p
->wq
);
1559 EXPORT_SYMBOL(vfree
);
1562 * vunmap - release virtual mapping obtained by vmap()
1563 * @addr: memory base address
1565 * Free the virtually contiguous memory area starting at @addr,
1566 * which was created from the page array passed to vmap().
1568 * Must not be called in interrupt context.
1570 void vunmap(const void *addr
)
1572 BUG_ON(in_interrupt());
1577 EXPORT_SYMBOL(vunmap
);
1580 * vmap - map an array of pages into virtually contiguous space
1581 * @pages: array of page pointers
1582 * @count: number of pages to map
1583 * @flags: vm_area->flags
1584 * @prot: page protection for the mapping
1586 * Maps @count pages from @pages into contiguous kernel virtual
1589 void *vmap(struct page
**pages
, unsigned int count
,
1590 unsigned long flags
, pgprot_t prot
)
1592 struct vm_struct
*area
;
1593 unsigned long size
; /* In bytes */
1597 if (count
> totalram_pages
)
1600 size
= (unsigned long)count
<< PAGE_SHIFT
;
1601 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
1605 if (map_vm_area(area
, prot
, pages
)) {
1612 EXPORT_SYMBOL(vmap
);
1614 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1615 gfp_t gfp_mask
, pgprot_t prot
,
1616 int node
, const void *caller
);
1617 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1618 pgprot_t prot
, int node
)
1620 struct page
**pages
;
1621 unsigned int nr_pages
, array_size
, i
;
1622 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1623 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1625 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1626 array_size
= (nr_pages
* sizeof(struct page
*));
1628 area
->nr_pages
= nr_pages
;
1629 /* Please note that the recursion is strictly bounded. */
1630 if (array_size
> PAGE_SIZE
) {
1631 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1632 PAGE_KERNEL
, node
, area
->caller
);
1634 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1636 area
->pages
= pages
;
1638 remove_vm_area(area
->addr
);
1643 for (i
= 0; i
< area
->nr_pages
; i
++) {
1646 if (node
== NUMA_NO_NODE
)
1647 page
= alloc_page(alloc_mask
);
1649 page
= alloc_pages_node(node
, alloc_mask
, 0);
1651 if (unlikely(!page
)) {
1652 /* Successfully allocated i pages, free them in __vunmap() */
1656 area
->pages
[i
] = page
;
1657 if (gfpflags_allow_blocking(gfp_mask
))
1661 if (map_vm_area(area
, prot
, pages
))
1666 warn_alloc(gfp_mask
,
1667 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1668 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1674 * __vmalloc_node_range - allocate virtually contiguous memory
1675 * @size: allocation size
1676 * @align: desired alignment
1677 * @start: vm area range start
1678 * @end: vm area range end
1679 * @gfp_mask: flags for the page level allocator
1680 * @prot: protection mask for the allocated pages
1681 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1682 * @node: node to use for allocation or NUMA_NO_NODE
1683 * @caller: caller's return address
1685 * Allocate enough pages to cover @size from the page level
1686 * allocator with @gfp_mask flags. Map them into contiguous
1687 * kernel virtual space, using a pagetable protection of @prot.
1689 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1690 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1691 pgprot_t prot
, unsigned long vm_flags
, int node
,
1694 struct vm_struct
*area
;
1696 unsigned long real_size
= size
;
1698 size
= PAGE_ALIGN(size
);
1699 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1702 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1703 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1707 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1712 * First make sure the mappings are removed from all page-tables
1713 * before they are freed.
1715 vmalloc_sync_unmappings();
1718 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1719 * flag. It means that vm_struct is not fully initialized.
1720 * Now, it is fully initialized, so remove this flag here.
1722 clear_vm_uninitialized_flag(area
);
1725 * A ref_count = 2 is needed because vm_struct allocated in
1726 * __get_vm_area_node() contains a reference to the virtual address of
1727 * the vmalloc'ed block.
1729 kmemleak_alloc(addr
, real_size
, 2, gfp_mask
);
1734 warn_alloc(gfp_mask
,
1735 "vmalloc: allocation failure: %lu bytes", real_size
);
1740 * __vmalloc_node - allocate virtually contiguous memory
1741 * @size: allocation size
1742 * @align: desired alignment
1743 * @gfp_mask: flags for the page level allocator
1744 * @prot: protection mask for the allocated pages
1745 * @node: node to use for allocation or NUMA_NO_NODE
1746 * @caller: caller's return address
1748 * Allocate enough pages to cover @size from the page level
1749 * allocator with @gfp_mask flags. Map them into contiguous
1750 * kernel virtual space, using a pagetable protection of @prot.
1752 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1753 gfp_t gfp_mask
, pgprot_t prot
,
1754 int node
, const void *caller
)
1756 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1757 gfp_mask
, prot
, 0, node
, caller
);
1760 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1762 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1763 __builtin_return_address(0));
1765 EXPORT_SYMBOL(__vmalloc
);
1767 static inline void *__vmalloc_node_flags(unsigned long size
,
1768 int node
, gfp_t flags
)
1770 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1771 node
, __builtin_return_address(0));
1775 * vmalloc - allocate virtually contiguous memory
1776 * @size: allocation size
1777 * Allocate enough pages to cover @size from the page level
1778 * allocator and map them into contiguous kernel virtual space.
1780 * For tight control over page level allocator and protection flags
1781 * use __vmalloc() instead.
1783 void *vmalloc(unsigned long size
)
1785 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1786 GFP_KERNEL
| __GFP_HIGHMEM
);
1788 EXPORT_SYMBOL(vmalloc
);
1791 * vzalloc - allocate virtually contiguous memory with zero fill
1792 * @size: allocation size
1793 * Allocate enough pages to cover @size from the page level
1794 * allocator and map them into contiguous kernel virtual space.
1795 * The memory allocated is set to zero.
1797 * For tight control over page level allocator and protection flags
1798 * use __vmalloc() instead.
1800 void *vzalloc(unsigned long size
)
1802 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1803 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1805 EXPORT_SYMBOL(vzalloc
);
1808 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1809 * @size: allocation size
1811 * The resulting memory area is zeroed so it can be mapped to userspace
1812 * without leaking data.
1814 void *vmalloc_user(unsigned long size
)
1816 struct vm_struct
*area
;
1819 ret
= __vmalloc_node(size
, SHMLBA
,
1820 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1821 PAGE_KERNEL
, NUMA_NO_NODE
,
1822 __builtin_return_address(0));
1824 area
= find_vm_area(ret
);
1825 area
->flags
|= VM_USERMAP
;
1829 EXPORT_SYMBOL(vmalloc_user
);
1832 * vmalloc_node - allocate memory on a specific node
1833 * @size: allocation size
1836 * Allocate enough pages to cover @size from the page level
1837 * allocator and map them into contiguous kernel virtual space.
1839 * For tight control over page level allocator and protection flags
1840 * use __vmalloc() instead.
1842 void *vmalloc_node(unsigned long size
, int node
)
1844 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1845 node
, __builtin_return_address(0));
1847 EXPORT_SYMBOL(vmalloc_node
);
1850 * vzalloc_node - allocate memory on a specific node with zero fill
1851 * @size: allocation size
1854 * Allocate enough pages to cover @size from the page level
1855 * allocator and map them into contiguous kernel virtual space.
1856 * The memory allocated is set to zero.
1858 * For tight control over page level allocator and protection flags
1859 * use __vmalloc_node() instead.
1861 void *vzalloc_node(unsigned long size
, int node
)
1863 return __vmalloc_node_flags(size
, node
,
1864 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1866 EXPORT_SYMBOL(vzalloc_node
);
1868 #ifndef PAGE_KERNEL_EXEC
1869 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1873 * vmalloc_exec - allocate virtually contiguous, executable memory
1874 * @size: allocation size
1876 * Kernel-internal function to allocate enough pages to cover @size
1877 * the page level allocator and map them into contiguous and
1878 * executable kernel virtual space.
1880 * For tight control over page level allocator and protection flags
1881 * use __vmalloc() instead.
1884 void *vmalloc_exec(unsigned long size
)
1886 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1887 NUMA_NO_NODE
, __builtin_return_address(0));
1890 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1891 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1892 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1893 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1895 #define GFP_VMALLOC32 GFP_KERNEL
1899 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1900 * @size: allocation size
1902 * Allocate enough 32bit PA addressable pages to cover @size from the
1903 * page level allocator and map them into contiguous kernel virtual space.
1905 void *vmalloc_32(unsigned long size
)
1907 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1908 NUMA_NO_NODE
, __builtin_return_address(0));
1910 EXPORT_SYMBOL(vmalloc_32
);
1913 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1914 * @size: allocation size
1916 * The resulting memory area is 32bit addressable and zeroed so it can be
1917 * mapped to userspace without leaking data.
1919 void *vmalloc_32_user(unsigned long size
)
1921 struct vm_struct
*area
;
1924 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1925 NUMA_NO_NODE
, __builtin_return_address(0));
1927 area
= find_vm_area(ret
);
1928 area
->flags
|= VM_USERMAP
;
1932 EXPORT_SYMBOL(vmalloc_32_user
);
1935 * small helper routine , copy contents to buf from addr.
1936 * If the page is not present, fill zero.
1939 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1945 unsigned long offset
, length
;
1947 offset
= offset_in_page(addr
);
1948 length
= PAGE_SIZE
- offset
;
1951 p
= vmalloc_to_page(addr
);
1953 * To do safe access to this _mapped_ area, we need
1954 * lock. But adding lock here means that we need to add
1955 * overhead of vmalloc()/vfree() calles for this _debug_
1956 * interface, rarely used. Instead of that, we'll use
1957 * kmap() and get small overhead in this access function.
1961 * we can expect USER0 is not used (see vread/vwrite's
1962 * function description)
1964 void *map
= kmap_atomic(p
);
1965 memcpy(buf
, map
+ offset
, length
);
1968 memset(buf
, 0, length
);
1978 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1984 unsigned long offset
, length
;
1986 offset
= offset_in_page(addr
);
1987 length
= PAGE_SIZE
- offset
;
1990 p
= vmalloc_to_page(addr
);
1992 * To do safe access to this _mapped_ area, we need
1993 * lock. But adding lock here means that we need to add
1994 * overhead of vmalloc()/vfree() calles for this _debug_
1995 * interface, rarely used. Instead of that, we'll use
1996 * kmap() and get small overhead in this access function.
2000 * we can expect USER0 is not used (see vread/vwrite's
2001 * function description)
2003 void *map
= kmap_atomic(p
);
2004 memcpy(map
+ offset
, buf
, length
);
2016 * vread() - read vmalloc area in a safe way.
2017 * @buf: buffer for reading data
2018 * @addr: vm address.
2019 * @count: number of bytes to be read.
2021 * Returns # of bytes which addr and buf should be increased.
2022 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2023 * includes any intersect with alive vmalloc area.
2025 * This function checks that addr is a valid vmalloc'ed area, and
2026 * copy data from that area to a given buffer. If the given memory range
2027 * of [addr...addr+count) includes some valid address, data is copied to
2028 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2029 * IOREMAP area is treated as memory hole and no copy is done.
2031 * If [addr...addr+count) doesn't includes any intersects with alive
2032 * vm_struct area, returns 0. @buf should be kernel's buffer.
2034 * Note: In usual ops, vread() is never necessary because the caller
2035 * should know vmalloc() area is valid and can use memcpy().
2036 * This is for routines which have to access vmalloc area without
2037 * any informaion, as /dev/kmem.
2041 long vread(char *buf
, char *addr
, unsigned long count
)
2043 struct vmap_area
*va
;
2044 struct vm_struct
*vm
;
2045 char *vaddr
, *buf_start
= buf
;
2046 unsigned long buflen
= count
;
2049 /* Don't allow overflow */
2050 if ((unsigned long) addr
+ count
< count
)
2051 count
= -(unsigned long) addr
;
2053 spin_lock(&vmap_area_lock
);
2054 list_for_each_entry(va
, &vmap_area_list
, list
) {
2058 if (!(va
->flags
& VM_VM_AREA
))
2062 vaddr
= (char *) vm
->addr
;
2063 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2065 while (addr
< vaddr
) {
2073 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2076 if (!(vm
->flags
& VM_IOREMAP
))
2077 aligned_vread(buf
, addr
, n
);
2078 else /* IOREMAP area is treated as memory hole */
2085 spin_unlock(&vmap_area_lock
);
2087 if (buf
== buf_start
)
2089 /* zero-fill memory holes */
2090 if (buf
!= buf_start
+ buflen
)
2091 memset(buf
, 0, buflen
- (buf
- buf_start
));
2097 * vwrite() - write vmalloc area in a safe way.
2098 * @buf: buffer for source data
2099 * @addr: vm address.
2100 * @count: number of bytes to be read.
2102 * Returns # of bytes which addr and buf should be incresed.
2103 * (same number to @count).
2104 * If [addr...addr+count) doesn't includes any intersect with valid
2105 * vmalloc area, returns 0.
2107 * This function checks that addr is a valid vmalloc'ed area, and
2108 * copy data from a buffer to the given addr. If specified range of
2109 * [addr...addr+count) includes some valid address, data is copied from
2110 * proper area of @buf. If there are memory holes, no copy to hole.
2111 * IOREMAP area is treated as memory hole and no copy is done.
2113 * If [addr...addr+count) doesn't includes any intersects with alive
2114 * vm_struct area, returns 0. @buf should be kernel's buffer.
2116 * Note: In usual ops, vwrite() is never necessary because the caller
2117 * should know vmalloc() area is valid and can use memcpy().
2118 * This is for routines which have to access vmalloc area without
2119 * any informaion, as /dev/kmem.
2122 long vwrite(char *buf
, char *addr
, unsigned long count
)
2124 struct vmap_area
*va
;
2125 struct vm_struct
*vm
;
2127 unsigned long n
, buflen
;
2130 /* Don't allow overflow */
2131 if ((unsigned long) addr
+ count
< count
)
2132 count
= -(unsigned long) addr
;
2135 spin_lock(&vmap_area_lock
);
2136 list_for_each_entry(va
, &vmap_area_list
, list
) {
2140 if (!(va
->flags
& VM_VM_AREA
))
2144 vaddr
= (char *) vm
->addr
;
2145 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2147 while (addr
< vaddr
) {
2154 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2157 if (!(vm
->flags
& VM_IOREMAP
)) {
2158 aligned_vwrite(buf
, addr
, n
);
2166 spin_unlock(&vmap_area_lock
);
2173 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2174 * @vma: vma to cover
2175 * @uaddr: target user address to start at
2176 * @kaddr: virtual address of vmalloc kernel memory
2177 * @pgoff: offset from @kaddr to start at
2178 * @size: size of map area
2180 * Returns: 0 for success, -Exxx on failure
2182 * This function checks that @kaddr is a valid vmalloc'ed area,
2183 * and that it is big enough to cover the range starting at
2184 * @uaddr in @vma. Will return failure if that criteria isn't
2187 * Similar to remap_pfn_range() (see mm/memory.c)
2189 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2190 void *kaddr
, unsigned long pgoff
,
2193 struct vm_struct
*area
;
2195 unsigned long end_index
;
2197 if (check_shl_overflow(pgoff
, PAGE_SHIFT
, &off
))
2200 size
= PAGE_ALIGN(size
);
2202 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2205 area
= find_vm_area(kaddr
);
2209 if (!(area
->flags
& VM_USERMAP
))
2212 if (check_add_overflow(size
, off
, &end_index
) ||
2213 end_index
> get_vm_area_size(area
))
2218 struct page
*page
= vmalloc_to_page(kaddr
);
2221 ret
= vm_insert_page(vma
, uaddr
, page
);
2230 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2234 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2237 * remap_vmalloc_range - map vmalloc pages to userspace
2238 * @vma: vma to cover (map full range of vma)
2239 * @addr: vmalloc memory
2240 * @pgoff: number of pages into addr before first page to map
2242 * Returns: 0 for success, -Exxx on failure
2244 * This function checks that addr is a valid vmalloc'ed area, and
2245 * that it is big enough to cover the vma. Will return failure if
2246 * that criteria isn't met.
2248 * Similar to remap_pfn_range() (see mm/memory.c)
2250 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2251 unsigned long pgoff
)
2253 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2255 vma
->vm_end
- vma
->vm_start
);
2257 EXPORT_SYMBOL(remap_vmalloc_range
);
2260 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2263 * The purpose of this function is to make sure the vmalloc area
2264 * mappings are identical in all page-tables in the system.
2266 void __weak
vmalloc_sync_mappings(void)
2270 void __weak
vmalloc_sync_unmappings(void)
2274 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2286 * alloc_vm_area - allocate a range of kernel address space
2287 * @size: size of the area
2288 * @ptes: returns the PTEs for the address space
2290 * Returns: NULL on failure, vm_struct on success
2292 * This function reserves a range of kernel address space, and
2293 * allocates pagetables to map that range. No actual mappings
2296 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2297 * allocated for the VM area are returned.
2299 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2301 struct vm_struct
*area
;
2303 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2304 __builtin_return_address(0));
2309 * This ensures that page tables are constructed for this region
2310 * of kernel virtual address space and mapped into init_mm.
2312 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2313 size
, f
, ptes
? &ptes
: NULL
)) {
2320 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2322 void free_vm_area(struct vm_struct
*area
)
2324 struct vm_struct
*ret
;
2325 ret
= remove_vm_area(area
->addr
);
2326 BUG_ON(ret
!= area
);
2329 EXPORT_SYMBOL_GPL(free_vm_area
);
2332 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2334 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2338 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2339 * @end: target address
2340 * @pnext: out arg for the next vmap_area
2341 * @pprev: out arg for the previous vmap_area
2343 * Returns: %true if either or both of next and prev are found,
2344 * %false if no vmap_area exists
2346 * Find vmap_areas end addresses of which enclose @end. ie. if not
2347 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2349 static bool pvm_find_next_prev(unsigned long end
,
2350 struct vmap_area
**pnext
,
2351 struct vmap_area
**pprev
)
2353 struct rb_node
*n
= vmap_area_root
.rb_node
;
2354 struct vmap_area
*va
= NULL
;
2357 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2358 if (end
< va
->va_end
)
2360 else if (end
> va
->va_end
)
2369 if (va
->va_end
> end
) {
2371 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2374 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2380 * pvm_determine_end - find the highest aligned address between two vmap_areas
2381 * @pnext: in/out arg for the next vmap_area
2382 * @pprev: in/out arg for the previous vmap_area
2385 * Returns: determined end address
2387 * Find the highest aligned address between *@pnext and *@pprev below
2388 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2389 * down address is between the end addresses of the two vmap_areas.
2391 * Please note that the address returned by this function may fall
2392 * inside *@pnext vmap_area. The caller is responsible for checking
2395 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2396 struct vmap_area
**pprev
,
2397 unsigned long align
)
2399 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2403 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2407 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2409 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2416 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2417 * @offsets: array containing offset of each area
2418 * @sizes: array containing size of each area
2419 * @nr_vms: the number of areas to allocate
2420 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2422 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2423 * vm_structs on success, %NULL on failure
2425 * Percpu allocator wants to use congruent vm areas so that it can
2426 * maintain the offsets among percpu areas. This function allocates
2427 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2428 * be scattered pretty far, distance between two areas easily going up
2429 * to gigabytes. To avoid interacting with regular vmallocs, these
2430 * areas are allocated from top.
2432 * Despite its complicated look, this allocator is rather simple. It
2433 * does everything top-down and scans areas from the end looking for
2434 * matching slot. While scanning, if any of the areas overlaps with
2435 * existing vmap_area, the base address is pulled down to fit the
2436 * area. Scanning is repeated till all the areas fit and then all
2437 * necessary data structres are inserted and the result is returned.
2439 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2440 const size_t *sizes
, int nr_vms
,
2443 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2444 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2445 struct vmap_area
**vas
, *prev
, *next
;
2446 struct vm_struct
**vms
;
2447 int area
, area2
, last_area
, term_area
;
2448 unsigned long base
, start
, end
, last_end
;
2449 bool purged
= false;
2451 /* verify parameters and allocate data structures */
2452 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2453 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2454 start
= offsets
[area
];
2455 end
= start
+ sizes
[area
];
2457 /* is everything aligned properly? */
2458 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2459 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2461 /* detect the area with the highest address */
2462 if (start
> offsets
[last_area
])
2465 for (area2
= 0; area2
< nr_vms
; area2
++) {
2466 unsigned long start2
= offsets
[area2
];
2467 unsigned long end2
= start2
+ sizes
[area2
];
2472 BUG_ON(start2
>= start
&& start2
< end
);
2473 BUG_ON(end2
<= end
&& end2
> start
);
2476 last_end
= offsets
[last_area
] + sizes
[last_area
];
2478 if (vmalloc_end
- vmalloc_start
< last_end
) {
2483 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2484 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2488 for (area
= 0; area
< nr_vms
; area
++) {
2489 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2490 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2491 if (!vas
[area
] || !vms
[area
])
2495 spin_lock(&vmap_area_lock
);
2497 /* start scanning - we scan from the top, begin with the last area */
2498 area
= term_area
= last_area
;
2499 start
= offsets
[area
];
2500 end
= start
+ sizes
[area
];
2502 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2503 base
= vmalloc_end
- last_end
;
2506 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2509 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2510 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2513 * base might have underflowed, add last_end before
2516 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2517 spin_unlock(&vmap_area_lock
);
2519 purge_vmap_area_lazy();
2527 * If next overlaps, move base downwards so that it's
2528 * right below next and then recheck.
2530 if (next
&& next
->va_start
< base
+ end
) {
2531 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2537 * If prev overlaps, shift down next and prev and move
2538 * base so that it's right below new next and then
2541 if (prev
&& prev
->va_end
> base
+ start
) {
2543 prev
= node_to_va(rb_prev(&next
->rb_node
));
2544 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2550 * This area fits, move on to the previous one. If
2551 * the previous one is the terminal one, we're done.
2553 area
= (area
+ nr_vms
- 1) % nr_vms
;
2554 if (area
== term_area
)
2556 start
= offsets
[area
];
2557 end
= start
+ sizes
[area
];
2558 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2561 /* we've found a fitting base, insert all va's */
2562 for (area
= 0; area
< nr_vms
; area
++) {
2563 struct vmap_area
*va
= vas
[area
];
2565 va
->va_start
= base
+ offsets
[area
];
2566 va
->va_end
= va
->va_start
+ sizes
[area
];
2567 __insert_vmap_area(va
);
2570 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2572 spin_unlock(&vmap_area_lock
);
2574 /* insert all vm's */
2575 for (area
= 0; area
< nr_vms
; area
++)
2576 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2583 for (area
= 0; area
< nr_vms
; area
++) {
2594 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2595 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2596 * @nr_vms: the number of allocated areas
2598 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2600 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2604 for (i
= 0; i
< nr_vms
; i
++)
2605 free_vm_area(vms
[i
]);
2608 #endif /* CONFIG_SMP */
2610 #ifdef CONFIG_PROC_FS
2611 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2612 __acquires(&vmap_area_lock
)
2615 struct vmap_area
*va
;
2617 spin_lock(&vmap_area_lock
);
2618 va
= list_first_entry(&vmap_area_list
, typeof(*va
), list
);
2619 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2621 va
= list_next_entry(va
, list
);
2623 if (!n
&& &va
->list
!= &vmap_area_list
)
2630 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2632 struct vmap_area
*va
= p
, *next
;
2635 next
= list_next_entry(va
, list
);
2636 if (&next
->list
!= &vmap_area_list
)
2642 static void s_stop(struct seq_file
*m
, void *p
)
2643 __releases(&vmap_area_lock
)
2645 spin_unlock(&vmap_area_lock
);
2648 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2650 if (IS_ENABLED(CONFIG_NUMA
)) {
2651 unsigned int nr
, *counters
= m
->private;
2656 if (v
->flags
& VM_UNINITIALIZED
)
2658 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2661 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2663 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2664 counters
[page_to_nid(v
->pages
[nr
])]++;
2666 for_each_node_state(nr
, N_HIGH_MEMORY
)
2668 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2672 static int s_show(struct seq_file
*m
, void *p
)
2674 struct vmap_area
*va
= p
;
2675 struct vm_struct
*v
;
2678 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2679 * behalf of vmap area is being tear down or vm_map_ram allocation.
2681 if (!(va
->flags
& VM_VM_AREA
))
2686 seq_printf(m
, "0x%pK-0x%pK %7ld",
2687 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2690 seq_printf(m
, " %pS", v
->caller
);
2693 seq_printf(m
, " pages=%d", v
->nr_pages
);
2696 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2698 if (v
->flags
& VM_IOREMAP
)
2699 seq_puts(m
, " ioremap");
2701 if (v
->flags
& VM_ALLOC
)
2702 seq_puts(m
, " vmalloc");
2704 if (v
->flags
& VM_MAP
)
2705 seq_puts(m
, " vmap");
2707 if (v
->flags
& VM_USERMAP
)
2708 seq_puts(m
, " user");
2710 if (is_vmalloc_addr(v
->pages
))
2711 seq_puts(m
, " vpages");
2713 show_numa_info(m
, v
);
2718 static const struct seq_operations vmalloc_op
= {
2725 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2727 if (IS_ENABLED(CONFIG_NUMA
))
2728 return seq_open_private(file
, &vmalloc_op
,
2729 nr_node_ids
* sizeof(unsigned int));
2731 return seq_open(file
, &vmalloc_op
);
2734 static const struct file_operations proc_vmalloc_operations
= {
2735 .open
= vmalloc_open
,
2737 .llseek
= seq_lseek
,
2738 .release
= seq_release_private
,
2741 static int __init
proc_vmalloc_init(void)
2743 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2746 module_init(proc_vmalloc_init
);