[SCSI] Revert "[SCSI] qla2xxx: Optimize existing port name server query matching."
[linux/fpc-iii.git] / kernel / events / uprobes.c
blobdea7acfbb0710889bf19e5fcb6584da4c5302f5d
1 /*
2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */
36 #include <linux/percpu-rwsem.h>
38 #include <linux/uprobes.h>
40 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
43 static struct rb_root uprobes_tree = RB_ROOT;
45 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
47 #define UPROBES_HASH_SZ 13
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
66 /* serialize (un)register */
67 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
69 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
71 /* serialize uprobe->pending_list */
72 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
73 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
75 static struct percpu_rw_semaphore dup_mmap_sem;
78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
82 static atomic_t uprobe_events = ATOMIC_INIT(0);
84 /* Have a copy of original instruction */
85 #define UPROBE_COPY_INSN 0
86 /* Dont run handlers when first register/ last unregister in progress*/
87 #define UPROBE_RUN_HANDLER 1
88 /* Can skip singlestep */
89 #define UPROBE_SKIP_SSTEP 2
91 struct uprobe {
92 struct rb_node rb_node; /* node in the rb tree */
93 atomic_t ref;
94 struct rw_semaphore consumer_rwsem;
95 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
96 struct list_head pending_list;
97 struct uprobe_consumer *consumers;
98 struct inode *inode; /* Also hold a ref to inode */
99 loff_t offset;
100 unsigned long flags;
101 struct arch_uprobe arch;
105 * valid_vma: Verify if the specified vma is an executable vma
106 * Relax restrictions while unregistering: vm_flags might have
107 * changed after breakpoint was inserted.
108 * - is_register: indicates if we are in register context.
109 * - Return 1 if the specified virtual address is in an
110 * executable vma.
112 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
114 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
116 if (is_register)
117 flags |= VM_WRITE;
119 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
122 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
124 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
127 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
129 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
133 * __replace_page - replace page in vma by new page.
134 * based on replace_page in mm/ksm.c
136 * @vma: vma that holds the pte pointing to page
137 * @addr: address the old @page is mapped at
138 * @page: the cowed page we are replacing by kpage
139 * @kpage: the modified page we replace page by
141 * Returns 0 on success, -EFAULT on failure.
143 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
144 struct page *page, struct page *kpage)
146 struct mm_struct *mm = vma->vm_mm;
147 spinlock_t *ptl;
148 pte_t *ptep;
149 int err;
150 /* For mmu_notifiers */
151 const unsigned long mmun_start = addr;
152 const unsigned long mmun_end = addr + PAGE_SIZE;
154 /* For try_to_free_swap() and munlock_vma_page() below */
155 lock_page(page);
157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
158 err = -EAGAIN;
159 ptep = page_check_address(page, mm, addr, &ptl, 0);
160 if (!ptep)
161 goto unlock;
163 get_page(kpage);
164 page_add_new_anon_rmap(kpage, vma, addr);
166 if (!PageAnon(page)) {
167 dec_mm_counter(mm, MM_FILEPAGES);
168 inc_mm_counter(mm, MM_ANONPAGES);
171 flush_cache_page(vma, addr, pte_pfn(*ptep));
172 ptep_clear_flush(vma, addr, ptep);
173 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
175 page_remove_rmap(page);
176 if (!page_mapped(page))
177 try_to_free_swap(page);
178 pte_unmap_unlock(ptep, ptl);
180 if (vma->vm_flags & VM_LOCKED)
181 munlock_vma_page(page);
182 put_page(page);
184 err = 0;
185 unlock:
186 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
187 unlock_page(page);
188 return err;
192 * is_swbp_insn - check if instruction is breakpoint instruction.
193 * @insn: instruction to be checked.
194 * Default implementation of is_swbp_insn
195 * Returns true if @insn is a breakpoint instruction.
197 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
199 return *insn == UPROBE_SWBP_INSN;
202 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
204 void *kaddr = kmap_atomic(page);
205 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
206 kunmap_atomic(kaddr);
209 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
211 uprobe_opcode_t old_opcode;
212 bool is_swbp;
214 copy_opcode(page, vaddr, &old_opcode);
215 is_swbp = is_swbp_insn(&old_opcode);
217 if (is_swbp_insn(new_opcode)) {
218 if (is_swbp) /* register: already installed? */
219 return 0;
220 } else {
221 if (!is_swbp) /* unregister: was it changed by us? */
222 return 0;
225 return 1;
229 * NOTE:
230 * Expect the breakpoint instruction to be the smallest size instruction for
231 * the architecture. If an arch has variable length instruction and the
232 * breakpoint instruction is not of the smallest length instruction
233 * supported by that architecture then we need to modify is_swbp_at_addr and
234 * write_opcode accordingly. This would never be a problem for archs that
235 * have fixed length instructions.
239 * write_opcode - write the opcode at a given virtual address.
240 * @mm: the probed process address space.
241 * @vaddr: the virtual address to store the opcode.
242 * @opcode: opcode to be written at @vaddr.
244 * Called with mm->mmap_sem held (for read and with a reference to
245 * mm).
247 * For mm @mm, write the opcode at @vaddr.
248 * Return 0 (success) or a negative errno.
250 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
251 uprobe_opcode_t opcode)
253 struct page *old_page, *new_page;
254 void *vaddr_old, *vaddr_new;
255 struct vm_area_struct *vma;
256 int ret;
258 retry:
259 /* Read the page with vaddr into memory */
260 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
261 if (ret <= 0)
262 return ret;
264 ret = verify_opcode(old_page, vaddr, &opcode);
265 if (ret <= 0)
266 goto put_old;
268 ret = -ENOMEM;
269 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
270 if (!new_page)
271 goto put_old;
273 __SetPageUptodate(new_page);
275 /* copy the page now that we've got it stable */
276 vaddr_old = kmap_atomic(old_page);
277 vaddr_new = kmap_atomic(new_page);
279 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
280 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
282 kunmap_atomic(vaddr_new);
283 kunmap_atomic(vaddr_old);
285 ret = anon_vma_prepare(vma);
286 if (ret)
287 goto put_new;
289 ret = __replace_page(vma, vaddr, old_page, new_page);
291 put_new:
292 page_cache_release(new_page);
293 put_old:
294 put_page(old_page);
296 if (unlikely(ret == -EAGAIN))
297 goto retry;
298 return ret;
302 * set_swbp - store breakpoint at a given address.
303 * @auprobe: arch specific probepoint information.
304 * @mm: the probed process address space.
305 * @vaddr: the virtual address to insert the opcode.
307 * For mm @mm, store the breakpoint instruction at @vaddr.
308 * Return 0 (success) or a negative errno.
310 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
312 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
316 * set_orig_insn - Restore the original instruction.
317 * @mm: the probed process address space.
318 * @auprobe: arch specific probepoint information.
319 * @vaddr: the virtual address to insert the opcode.
321 * For mm @mm, restore the original opcode (opcode) at @vaddr.
322 * Return 0 (success) or a negative errno.
324 int __weak
325 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
327 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
330 static int match_uprobe(struct uprobe *l, struct uprobe *r)
332 if (l->inode < r->inode)
333 return -1;
335 if (l->inode > r->inode)
336 return 1;
338 if (l->offset < r->offset)
339 return -1;
341 if (l->offset > r->offset)
342 return 1;
344 return 0;
347 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
349 struct uprobe u = { .inode = inode, .offset = offset };
350 struct rb_node *n = uprobes_tree.rb_node;
351 struct uprobe *uprobe;
352 int match;
354 while (n) {
355 uprobe = rb_entry(n, struct uprobe, rb_node);
356 match = match_uprobe(&u, uprobe);
357 if (!match) {
358 atomic_inc(&uprobe->ref);
359 return uprobe;
362 if (match < 0)
363 n = n->rb_left;
364 else
365 n = n->rb_right;
367 return NULL;
371 * Find a uprobe corresponding to a given inode:offset
372 * Acquires uprobes_treelock
374 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
376 struct uprobe *uprobe;
378 spin_lock(&uprobes_treelock);
379 uprobe = __find_uprobe(inode, offset);
380 spin_unlock(&uprobes_treelock);
382 return uprobe;
385 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
387 struct rb_node **p = &uprobes_tree.rb_node;
388 struct rb_node *parent = NULL;
389 struct uprobe *u;
390 int match;
392 while (*p) {
393 parent = *p;
394 u = rb_entry(parent, struct uprobe, rb_node);
395 match = match_uprobe(uprobe, u);
396 if (!match) {
397 atomic_inc(&u->ref);
398 return u;
401 if (match < 0)
402 p = &parent->rb_left;
403 else
404 p = &parent->rb_right;
408 u = NULL;
409 rb_link_node(&uprobe->rb_node, parent, p);
410 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
411 /* get access + creation ref */
412 atomic_set(&uprobe->ref, 2);
414 return u;
418 * Acquire uprobes_treelock.
419 * Matching uprobe already exists in rbtree;
420 * increment (access refcount) and return the matching uprobe.
422 * No matching uprobe; insert the uprobe in rb_tree;
423 * get a double refcount (access + creation) and return NULL.
425 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
427 struct uprobe *u;
429 spin_lock(&uprobes_treelock);
430 u = __insert_uprobe(uprobe);
431 spin_unlock(&uprobes_treelock);
433 /* For now assume that the instruction need not be single-stepped */
434 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
436 return u;
439 static void put_uprobe(struct uprobe *uprobe)
441 if (atomic_dec_and_test(&uprobe->ref))
442 kfree(uprobe);
445 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
447 struct uprobe *uprobe, *cur_uprobe;
449 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
450 if (!uprobe)
451 return NULL;
453 uprobe->inode = igrab(inode);
454 uprobe->offset = offset;
455 init_rwsem(&uprobe->consumer_rwsem);
456 mutex_init(&uprobe->copy_mutex);
458 /* add to uprobes_tree, sorted on inode:offset */
459 cur_uprobe = insert_uprobe(uprobe);
461 /* a uprobe exists for this inode:offset combination */
462 if (cur_uprobe) {
463 kfree(uprobe);
464 uprobe = cur_uprobe;
465 iput(inode);
466 } else {
467 atomic_inc(&uprobe_events);
470 return uprobe;
473 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
475 struct uprobe_consumer *uc;
477 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
478 return;
480 down_read(&uprobe->consumer_rwsem);
481 for (uc = uprobe->consumers; uc; uc = uc->next) {
482 if (!uc->filter || uc->filter(uc, current))
483 uc->handler(uc, regs);
485 up_read(&uprobe->consumer_rwsem);
488 /* Returns the previous consumer */
489 static struct uprobe_consumer *
490 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
492 down_write(&uprobe->consumer_rwsem);
493 uc->next = uprobe->consumers;
494 uprobe->consumers = uc;
495 up_write(&uprobe->consumer_rwsem);
497 return uc->next;
501 * For uprobe @uprobe, delete the consumer @uc.
502 * Return true if the @uc is deleted successfully
503 * or return false.
505 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
507 struct uprobe_consumer **con;
508 bool ret = false;
510 down_write(&uprobe->consumer_rwsem);
511 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
512 if (*con == uc) {
513 *con = uc->next;
514 ret = true;
515 break;
518 up_write(&uprobe->consumer_rwsem);
520 return ret;
523 static int
524 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
525 unsigned long nbytes, loff_t offset)
527 struct page *page;
528 void *vaddr;
529 unsigned long off;
530 pgoff_t idx;
532 if (!filp)
533 return -EINVAL;
535 if (!mapping->a_ops->readpage)
536 return -EIO;
538 idx = offset >> PAGE_CACHE_SHIFT;
539 off = offset & ~PAGE_MASK;
542 * Ensure that the page that has the original instruction is
543 * populated and in page-cache.
545 page = read_mapping_page(mapping, idx, filp);
546 if (IS_ERR(page))
547 return PTR_ERR(page);
549 vaddr = kmap_atomic(page);
550 memcpy(insn, vaddr + off, nbytes);
551 kunmap_atomic(vaddr);
552 page_cache_release(page);
554 return 0;
557 static int copy_insn(struct uprobe *uprobe, struct file *filp)
559 struct address_space *mapping;
560 unsigned long nbytes;
561 int bytes;
563 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
564 mapping = uprobe->inode->i_mapping;
566 /* Instruction at end of binary; copy only available bytes */
567 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
568 bytes = uprobe->inode->i_size - uprobe->offset;
569 else
570 bytes = MAX_UINSN_BYTES;
572 /* Instruction at the page-boundary; copy bytes in second page */
573 if (nbytes < bytes) {
574 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
575 bytes - nbytes, uprobe->offset + nbytes);
576 if (err)
577 return err;
578 bytes = nbytes;
580 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
583 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
584 struct mm_struct *mm, unsigned long vaddr)
586 int ret = 0;
588 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
589 return ret;
591 mutex_lock(&uprobe->copy_mutex);
592 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593 goto out;
595 ret = copy_insn(uprobe, file);
596 if (ret)
597 goto out;
599 ret = -ENOTSUPP;
600 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
601 goto out;
603 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604 if (ret)
605 goto out;
607 /* write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe->offset & ~PAGE_MASK) +
609 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
611 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
612 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
614 out:
615 mutex_unlock(&uprobe->copy_mutex);
617 return ret;
620 static int
621 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
622 struct vm_area_struct *vma, unsigned long vaddr)
624 bool first_uprobe;
625 int ret;
628 * If probe is being deleted, unregister thread could be done with
629 * the vma-rmap-walk through. Adding a probe now can be fatal since
630 * nobody will be able to cleanup. Also we could be from fork or
631 * mremap path, where the probe might have already been inserted.
632 * Hence behave as if probe already existed.
634 if (!uprobe->consumers)
635 return 0;
637 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
638 if (ret)
639 return ret;
642 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
643 * the task can hit this breakpoint right after __replace_page().
645 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
646 if (first_uprobe)
647 set_bit(MMF_HAS_UPROBES, &mm->flags);
649 ret = set_swbp(&uprobe->arch, mm, vaddr);
650 if (!ret)
651 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
652 else if (first_uprobe)
653 clear_bit(MMF_HAS_UPROBES, &mm->flags);
655 return ret;
658 static int
659 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
661 /* can happen if uprobe_register() fails */
662 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
663 return 0;
665 set_bit(MMF_RECALC_UPROBES, &mm->flags);
666 return set_orig_insn(&uprobe->arch, mm, vaddr);
670 * There could be threads that have already hit the breakpoint. They
671 * will recheck the current insn and restart if find_uprobe() fails.
672 * See find_active_uprobe().
674 static void delete_uprobe(struct uprobe *uprobe)
676 spin_lock(&uprobes_treelock);
677 rb_erase(&uprobe->rb_node, &uprobes_tree);
678 spin_unlock(&uprobes_treelock);
679 iput(uprobe->inode);
680 put_uprobe(uprobe);
681 atomic_dec(&uprobe_events);
684 struct map_info {
685 struct map_info *next;
686 struct mm_struct *mm;
687 unsigned long vaddr;
690 static inline struct map_info *free_map_info(struct map_info *info)
692 struct map_info *next = info->next;
693 kfree(info);
694 return next;
697 static struct map_info *
698 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
700 unsigned long pgoff = offset >> PAGE_SHIFT;
701 struct vm_area_struct *vma;
702 struct map_info *curr = NULL;
703 struct map_info *prev = NULL;
704 struct map_info *info;
705 int more = 0;
707 again:
708 mutex_lock(&mapping->i_mmap_mutex);
709 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
710 if (!valid_vma(vma, is_register))
711 continue;
713 if (!prev && !more) {
715 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
716 * reclaim. This is optimistic, no harm done if it fails.
718 prev = kmalloc(sizeof(struct map_info),
719 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
720 if (prev)
721 prev->next = NULL;
723 if (!prev) {
724 more++;
725 continue;
728 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
729 continue;
731 info = prev;
732 prev = prev->next;
733 info->next = curr;
734 curr = info;
736 info->mm = vma->vm_mm;
737 info->vaddr = offset_to_vaddr(vma, offset);
739 mutex_unlock(&mapping->i_mmap_mutex);
741 if (!more)
742 goto out;
744 prev = curr;
745 while (curr) {
746 mmput(curr->mm);
747 curr = curr->next;
750 do {
751 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
752 if (!info) {
753 curr = ERR_PTR(-ENOMEM);
754 goto out;
756 info->next = prev;
757 prev = info;
758 } while (--more);
760 goto again;
761 out:
762 while (prev)
763 prev = free_map_info(prev);
764 return curr;
767 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
769 struct map_info *info;
770 int err = 0;
772 percpu_down_write(&dup_mmap_sem);
773 info = build_map_info(uprobe->inode->i_mapping,
774 uprobe->offset, is_register);
775 if (IS_ERR(info)) {
776 err = PTR_ERR(info);
777 goto out;
780 while (info) {
781 struct mm_struct *mm = info->mm;
782 struct vm_area_struct *vma;
784 if (err && is_register)
785 goto free;
787 down_write(&mm->mmap_sem);
788 vma = find_vma(mm, info->vaddr);
789 if (!vma || !valid_vma(vma, is_register) ||
790 vma->vm_file->f_mapping->host != uprobe->inode)
791 goto unlock;
793 if (vma->vm_start > info->vaddr ||
794 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
795 goto unlock;
797 if (is_register)
798 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
799 else
800 err |= remove_breakpoint(uprobe, mm, info->vaddr);
802 unlock:
803 up_write(&mm->mmap_sem);
804 free:
805 mmput(mm);
806 info = free_map_info(info);
808 out:
809 percpu_up_write(&dup_mmap_sem);
810 return err;
813 static int __uprobe_register(struct uprobe *uprobe)
815 return register_for_each_vma(uprobe, true);
818 static void __uprobe_unregister(struct uprobe *uprobe)
820 if (!register_for_each_vma(uprobe, false))
821 delete_uprobe(uprobe);
823 /* TODO : cant unregister? schedule a worker thread */
827 * uprobe_register - register a probe
828 * @inode: the file in which the probe has to be placed.
829 * @offset: offset from the start of the file.
830 * @uc: information on howto handle the probe..
832 * Apart from the access refcount, uprobe_register() takes a creation
833 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
834 * inserted into the rbtree (i.e first consumer for a @inode:@offset
835 * tuple). Creation refcount stops uprobe_unregister from freeing the
836 * @uprobe even before the register operation is complete. Creation
837 * refcount is released when the last @uc for the @uprobe
838 * unregisters.
840 * Return errno if it cannot successully install probes
841 * else return 0 (success)
843 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
845 struct uprobe *uprobe;
846 int ret;
848 if (!inode || !uc || uc->next)
849 return -EINVAL;
851 if (offset > i_size_read(inode))
852 return -EINVAL;
854 ret = 0;
855 mutex_lock(uprobes_hash(inode));
856 uprobe = alloc_uprobe(inode, offset);
858 if (!uprobe) {
859 ret = -ENOMEM;
860 } else if (!consumer_add(uprobe, uc)) {
861 ret = __uprobe_register(uprobe);
862 if (ret) {
863 uprobe->consumers = NULL;
864 __uprobe_unregister(uprobe);
865 } else {
866 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
870 mutex_unlock(uprobes_hash(inode));
871 if (uprobe)
872 put_uprobe(uprobe);
874 return ret;
878 * uprobe_unregister - unregister a already registered probe.
879 * @inode: the file in which the probe has to be removed.
880 * @offset: offset from the start of the file.
881 * @uc: identify which probe if multiple probes are colocated.
883 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
885 struct uprobe *uprobe;
887 if (!inode || !uc)
888 return;
890 uprobe = find_uprobe(inode, offset);
891 if (!uprobe)
892 return;
894 mutex_lock(uprobes_hash(inode));
896 if (consumer_del(uprobe, uc)) {
897 if (!uprobe->consumers) {
898 __uprobe_unregister(uprobe);
899 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
903 mutex_unlock(uprobes_hash(inode));
904 if (uprobe)
905 put_uprobe(uprobe);
908 static struct rb_node *
909 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
911 struct rb_node *n = uprobes_tree.rb_node;
913 while (n) {
914 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
916 if (inode < u->inode) {
917 n = n->rb_left;
918 } else if (inode > u->inode) {
919 n = n->rb_right;
920 } else {
921 if (max < u->offset)
922 n = n->rb_left;
923 else if (min > u->offset)
924 n = n->rb_right;
925 else
926 break;
930 return n;
934 * For a given range in vma, build a list of probes that need to be inserted.
936 static void build_probe_list(struct inode *inode,
937 struct vm_area_struct *vma,
938 unsigned long start, unsigned long end,
939 struct list_head *head)
941 loff_t min, max;
942 struct rb_node *n, *t;
943 struct uprobe *u;
945 INIT_LIST_HEAD(head);
946 min = vaddr_to_offset(vma, start);
947 max = min + (end - start) - 1;
949 spin_lock(&uprobes_treelock);
950 n = find_node_in_range(inode, min, max);
951 if (n) {
952 for (t = n; t; t = rb_prev(t)) {
953 u = rb_entry(t, struct uprobe, rb_node);
954 if (u->inode != inode || u->offset < min)
955 break;
956 list_add(&u->pending_list, head);
957 atomic_inc(&u->ref);
959 for (t = n; (t = rb_next(t)); ) {
960 u = rb_entry(t, struct uprobe, rb_node);
961 if (u->inode != inode || u->offset > max)
962 break;
963 list_add(&u->pending_list, head);
964 atomic_inc(&u->ref);
967 spin_unlock(&uprobes_treelock);
971 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
973 * Currently we ignore all errors and always return 0, the callers
974 * can't handle the failure anyway.
976 int uprobe_mmap(struct vm_area_struct *vma)
978 struct list_head tmp_list;
979 struct uprobe *uprobe, *u;
980 struct inode *inode;
982 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
983 return 0;
985 inode = vma->vm_file->f_mapping->host;
986 if (!inode)
987 return 0;
989 mutex_lock(uprobes_mmap_hash(inode));
990 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
992 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
993 if (!fatal_signal_pending(current)) {
994 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
995 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
997 put_uprobe(uprobe);
999 mutex_unlock(uprobes_mmap_hash(inode));
1001 return 0;
1004 static bool
1005 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1007 loff_t min, max;
1008 struct inode *inode;
1009 struct rb_node *n;
1011 inode = vma->vm_file->f_mapping->host;
1013 min = vaddr_to_offset(vma, start);
1014 max = min + (end - start) - 1;
1016 spin_lock(&uprobes_treelock);
1017 n = find_node_in_range(inode, min, max);
1018 spin_unlock(&uprobes_treelock);
1020 return !!n;
1024 * Called in context of a munmap of a vma.
1026 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1028 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1029 return;
1031 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1032 return;
1034 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1035 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1036 return;
1038 if (vma_has_uprobes(vma, start, end))
1039 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1042 /* Slot allocation for XOL */
1043 static int xol_add_vma(struct xol_area *area)
1045 struct mm_struct *mm;
1046 int ret;
1048 area->page = alloc_page(GFP_HIGHUSER);
1049 if (!area->page)
1050 return -ENOMEM;
1052 ret = -EALREADY;
1053 mm = current->mm;
1055 down_write(&mm->mmap_sem);
1056 if (mm->uprobes_state.xol_area)
1057 goto fail;
1059 ret = -ENOMEM;
1061 /* Try to map as high as possible, this is only a hint. */
1062 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1063 if (area->vaddr & ~PAGE_MASK) {
1064 ret = area->vaddr;
1065 goto fail;
1068 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1069 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1070 if (ret)
1071 goto fail;
1073 smp_wmb(); /* pairs with get_xol_area() */
1074 mm->uprobes_state.xol_area = area;
1075 ret = 0;
1077 fail:
1078 up_write(&mm->mmap_sem);
1079 if (ret)
1080 __free_page(area->page);
1082 return ret;
1085 static struct xol_area *get_xol_area(struct mm_struct *mm)
1087 struct xol_area *area;
1089 area = mm->uprobes_state.xol_area;
1090 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1092 return area;
1096 * xol_alloc_area - Allocate process's xol_area.
1097 * This area will be used for storing instructions for execution out of
1098 * line.
1100 * Returns the allocated area or NULL.
1102 static struct xol_area *xol_alloc_area(void)
1104 struct xol_area *area;
1106 area = kzalloc(sizeof(*area), GFP_KERNEL);
1107 if (unlikely(!area))
1108 return NULL;
1110 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1112 if (!area->bitmap)
1113 goto fail;
1115 init_waitqueue_head(&area->wq);
1116 if (!xol_add_vma(area))
1117 return area;
1119 fail:
1120 kfree(area->bitmap);
1121 kfree(area);
1123 return get_xol_area(current->mm);
1127 * uprobe_clear_state - Free the area allocated for slots.
1129 void uprobe_clear_state(struct mm_struct *mm)
1131 struct xol_area *area = mm->uprobes_state.xol_area;
1133 if (!area)
1134 return;
1136 put_page(area->page);
1137 kfree(area->bitmap);
1138 kfree(area);
1141 void uprobe_start_dup_mmap(void)
1143 percpu_down_read(&dup_mmap_sem);
1146 void uprobe_end_dup_mmap(void)
1148 percpu_up_read(&dup_mmap_sem);
1151 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1153 newmm->uprobes_state.xol_area = NULL;
1155 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1156 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1157 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1158 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1163 * - search for a free slot.
1165 static unsigned long xol_take_insn_slot(struct xol_area *area)
1167 unsigned long slot_addr;
1168 int slot_nr;
1170 do {
1171 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1172 if (slot_nr < UINSNS_PER_PAGE) {
1173 if (!test_and_set_bit(slot_nr, area->bitmap))
1174 break;
1176 slot_nr = UINSNS_PER_PAGE;
1177 continue;
1179 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1180 } while (slot_nr >= UINSNS_PER_PAGE);
1182 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1183 atomic_inc(&area->slot_count);
1185 return slot_addr;
1189 * xol_get_insn_slot - If was not allocated a slot, then
1190 * allocate a slot.
1191 * Returns the allocated slot address or 0.
1193 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1195 struct xol_area *area;
1196 unsigned long offset;
1197 void *vaddr;
1199 area = get_xol_area(current->mm);
1200 if (!area) {
1201 area = xol_alloc_area();
1202 if (!area)
1203 return 0;
1205 current->utask->xol_vaddr = xol_take_insn_slot(area);
1208 * Initialize the slot if xol_vaddr points to valid
1209 * instruction slot.
1211 if (unlikely(!current->utask->xol_vaddr))
1212 return 0;
1214 current->utask->vaddr = slot_addr;
1215 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1216 vaddr = kmap_atomic(area->page);
1217 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1218 kunmap_atomic(vaddr);
1220 * We probably need flush_icache_user_range() but it needs vma.
1221 * This should work on supported architectures too.
1223 flush_dcache_page(area->page);
1225 return current->utask->xol_vaddr;
1229 * xol_free_insn_slot - If slot was earlier allocated by
1230 * @xol_get_insn_slot(), make the slot available for
1231 * subsequent requests.
1233 static void xol_free_insn_slot(struct task_struct *tsk)
1235 struct xol_area *area;
1236 unsigned long vma_end;
1237 unsigned long slot_addr;
1239 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1240 return;
1242 slot_addr = tsk->utask->xol_vaddr;
1244 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1245 return;
1247 area = tsk->mm->uprobes_state.xol_area;
1248 vma_end = area->vaddr + PAGE_SIZE;
1249 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1250 unsigned long offset;
1251 int slot_nr;
1253 offset = slot_addr - area->vaddr;
1254 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1255 if (slot_nr >= UINSNS_PER_PAGE)
1256 return;
1258 clear_bit(slot_nr, area->bitmap);
1259 atomic_dec(&area->slot_count);
1260 if (waitqueue_active(&area->wq))
1261 wake_up(&area->wq);
1263 tsk->utask->xol_vaddr = 0;
1268 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1269 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1270 * instruction.
1271 * Return the address of the breakpoint instruction.
1273 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1275 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1279 * Called with no locks held.
1280 * Called in context of a exiting or a exec-ing thread.
1282 void uprobe_free_utask(struct task_struct *t)
1284 struct uprobe_task *utask = t->utask;
1286 if (!utask)
1287 return;
1289 if (utask->active_uprobe)
1290 put_uprobe(utask->active_uprobe);
1292 xol_free_insn_slot(t);
1293 kfree(utask);
1294 t->utask = NULL;
1298 * Called in context of a new clone/fork from copy_process.
1300 void uprobe_copy_process(struct task_struct *t)
1302 t->utask = NULL;
1306 * Allocate a uprobe_task object for the task.
1307 * Called when the thread hits a breakpoint for the first time.
1309 * Returns:
1310 * - pointer to new uprobe_task on success
1311 * - NULL otherwise
1313 static struct uprobe_task *add_utask(void)
1315 struct uprobe_task *utask;
1317 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1318 if (unlikely(!utask))
1319 return NULL;
1321 current->utask = utask;
1322 return utask;
1325 /* Prepare to single-step probed instruction out of line. */
1326 static int
1327 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1329 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1330 return 0;
1332 return -EFAULT;
1336 * If we are singlestepping, then ensure this thread is not connected to
1337 * non-fatal signals until completion of singlestep. When xol insn itself
1338 * triggers the signal, restart the original insn even if the task is
1339 * already SIGKILL'ed (since coredump should report the correct ip). This
1340 * is even more important if the task has a handler for SIGSEGV/etc, The
1341 * _same_ instruction should be repeated again after return from the signal
1342 * handler, and SSTEP can never finish in this case.
1344 bool uprobe_deny_signal(void)
1346 struct task_struct *t = current;
1347 struct uprobe_task *utask = t->utask;
1349 if (likely(!utask || !utask->active_uprobe))
1350 return false;
1352 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1354 if (signal_pending(t)) {
1355 spin_lock_irq(&t->sighand->siglock);
1356 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1357 spin_unlock_irq(&t->sighand->siglock);
1359 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1360 utask->state = UTASK_SSTEP_TRAPPED;
1361 set_tsk_thread_flag(t, TIF_UPROBE);
1362 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1366 return true;
1370 * Avoid singlestepping the original instruction if the original instruction
1371 * is a NOP or can be emulated.
1373 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1375 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1376 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1377 return true;
1378 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1380 return false;
1383 static void mmf_recalc_uprobes(struct mm_struct *mm)
1385 struct vm_area_struct *vma;
1387 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1388 if (!valid_vma(vma, false))
1389 continue;
1391 * This is not strictly accurate, we can race with
1392 * uprobe_unregister() and see the already removed
1393 * uprobe if delete_uprobe() was not yet called.
1395 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1396 return;
1399 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1402 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1404 struct page *page;
1405 uprobe_opcode_t opcode;
1406 int result;
1408 pagefault_disable();
1409 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1410 sizeof(opcode));
1411 pagefault_enable();
1413 if (likely(result == 0))
1414 goto out;
1416 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1417 if (result < 0)
1418 return result;
1420 copy_opcode(page, vaddr, &opcode);
1421 put_page(page);
1422 out:
1423 return is_swbp_insn(&opcode);
1426 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1428 struct mm_struct *mm = current->mm;
1429 struct uprobe *uprobe = NULL;
1430 struct vm_area_struct *vma;
1432 down_read(&mm->mmap_sem);
1433 vma = find_vma(mm, bp_vaddr);
1434 if (vma && vma->vm_start <= bp_vaddr) {
1435 if (valid_vma(vma, false)) {
1436 struct inode *inode = vma->vm_file->f_mapping->host;
1437 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1439 uprobe = find_uprobe(inode, offset);
1442 if (!uprobe)
1443 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1444 } else {
1445 *is_swbp = -EFAULT;
1448 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1449 mmf_recalc_uprobes(mm);
1450 up_read(&mm->mmap_sem);
1452 return uprobe;
1456 * Run handler and ask thread to singlestep.
1457 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1459 static void handle_swbp(struct pt_regs *regs)
1461 struct uprobe_task *utask;
1462 struct uprobe *uprobe;
1463 unsigned long bp_vaddr;
1464 int uninitialized_var(is_swbp);
1466 bp_vaddr = uprobe_get_swbp_addr(regs);
1467 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1469 if (!uprobe) {
1470 if (is_swbp > 0) {
1471 /* No matching uprobe; signal SIGTRAP. */
1472 send_sig(SIGTRAP, current, 0);
1473 } else {
1475 * Either we raced with uprobe_unregister() or we can't
1476 * access this memory. The latter is only possible if
1477 * another thread plays with our ->mm. In both cases
1478 * we can simply restart. If this vma was unmapped we
1479 * can pretend this insn was not executed yet and get
1480 * the (correct) SIGSEGV after restart.
1482 instruction_pointer_set(regs, bp_vaddr);
1484 return;
1487 * TODO: move copy_insn/etc into _register and remove this hack.
1488 * After we hit the bp, _unregister + _register can install the
1489 * new and not-yet-analyzed uprobe at the same address, restart.
1491 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1492 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1493 goto restart;
1495 utask = current->utask;
1496 if (!utask) {
1497 utask = add_utask();
1498 /* Cannot allocate; re-execute the instruction. */
1499 if (!utask)
1500 goto restart;
1503 handler_chain(uprobe, regs);
1504 if (can_skip_sstep(uprobe, regs))
1505 goto out;
1507 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1508 utask->active_uprobe = uprobe;
1509 utask->state = UTASK_SSTEP;
1510 return;
1513 restart:
1515 * cannot singlestep; cannot skip instruction;
1516 * re-execute the instruction.
1518 instruction_pointer_set(regs, bp_vaddr);
1519 out:
1520 put_uprobe(uprobe);
1524 * Perform required fix-ups and disable singlestep.
1525 * Allow pending signals to take effect.
1527 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1529 struct uprobe *uprobe;
1531 uprobe = utask->active_uprobe;
1532 if (utask->state == UTASK_SSTEP_ACK)
1533 arch_uprobe_post_xol(&uprobe->arch, regs);
1534 else if (utask->state == UTASK_SSTEP_TRAPPED)
1535 arch_uprobe_abort_xol(&uprobe->arch, regs);
1536 else
1537 WARN_ON_ONCE(1);
1539 put_uprobe(uprobe);
1540 utask->active_uprobe = NULL;
1541 utask->state = UTASK_RUNNING;
1542 xol_free_insn_slot(current);
1544 spin_lock_irq(&current->sighand->siglock);
1545 recalc_sigpending(); /* see uprobe_deny_signal() */
1546 spin_unlock_irq(&current->sighand->siglock);
1550 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1551 * allows the thread to return from interrupt. After that handle_swbp()
1552 * sets utask->active_uprobe.
1554 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1555 * and allows the thread to return from interrupt.
1557 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1558 * uprobe_notify_resume().
1560 void uprobe_notify_resume(struct pt_regs *regs)
1562 struct uprobe_task *utask;
1564 clear_thread_flag(TIF_UPROBE);
1566 utask = current->utask;
1567 if (utask && utask->active_uprobe)
1568 handle_singlestep(utask, regs);
1569 else
1570 handle_swbp(regs);
1574 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1575 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1577 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1579 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1580 return 0;
1582 set_thread_flag(TIF_UPROBE);
1583 return 1;
1587 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1588 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1590 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1592 struct uprobe_task *utask = current->utask;
1594 if (!current->mm || !utask || !utask->active_uprobe)
1595 /* task is currently not uprobed */
1596 return 0;
1598 utask->state = UTASK_SSTEP_ACK;
1599 set_thread_flag(TIF_UPROBE);
1600 return 1;
1603 static struct notifier_block uprobe_exception_nb = {
1604 .notifier_call = arch_uprobe_exception_notify,
1605 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1608 static int __init init_uprobes(void)
1610 int i;
1612 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1613 mutex_init(&uprobes_mutex[i]);
1614 mutex_init(&uprobes_mmap_mutex[i]);
1617 if (percpu_init_rwsem(&dup_mmap_sem))
1618 return -ENOMEM;
1620 return register_die_notifier(&uprobe_exception_nb);
1622 module_init(init_uprobes);
1624 static void __exit exit_uprobes(void)
1627 module_exit(exit_uprobes);