4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
23 #include <asm/local.h>
26 static void update_pages_handler(struct work_struct
*work
);
29 * The ring buffer header is special. We must manually up keep it.
31 int ring_buffer_print_entry_header(struct trace_seq
*s
)
35 ret
= trace_seq_printf(s
, "# compressed entry header\n");
36 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
37 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
38 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
39 ret
= trace_seq_printf(s
, "\n");
40 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING
);
42 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND
);
44 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
67 * |reader| RING BUFFER
69 * +------+ +---+ +---+ +---+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
96 * +------------------------------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
104 * | New +---+ +---+ +---+
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
148 RB_BUFFERS_ON_BIT
= 0,
149 RB_BUFFERS_DISABLED_BIT
= 1,
153 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
154 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
157 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165 * tracing_off_permanent - permanently disable ring buffers
167 * This function, once called, will disable all ring buffers
170 void tracing_off_permanent(void)
172 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192 RB_LEN_TIME_EXTEND
= 8,
193 RB_LEN_TIME_STAMP
= 16,
196 #define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
199 static inline int rb_null_event(struct ring_buffer_event
*event
)
201 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
204 static void rb_event_set_padding(struct ring_buffer_event
*event
)
206 /* padding has a NULL time_delta */
207 event
->type_len
= RINGBUF_TYPE_PADDING
;
208 event
->time_delta
= 0;
212 rb_event_data_length(struct ring_buffer_event
*event
)
217 length
= event
->type_len
* RB_ALIGNMENT
;
219 length
= event
->array
[0];
220 return length
+ RB_EVNT_HDR_SIZE
;
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event
*event
)
231 switch (event
->type_len
) {
232 case RINGBUF_TYPE_PADDING
:
233 if (rb_null_event(event
))
236 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
238 case RINGBUF_TYPE_TIME_EXTEND
:
239 return RB_LEN_TIME_EXTEND
;
241 case RINGBUF_TYPE_TIME_STAMP
:
242 return RB_LEN_TIME_STAMP
;
244 case RINGBUF_TYPE_DATA
:
245 return rb_event_data_length(event
);
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event
*event
)
262 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
263 /* time extends include the data event after it */
264 len
= RB_LEN_TIME_EXTEND
;
265 event
= skip_time_extend(event
);
267 return len
+ rb_event_length(event
);
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
280 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
284 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
285 event
= skip_time_extend(event
);
287 length
= rb_event_length(event
);
288 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
290 length
-= RB_EVNT_HDR_SIZE
;
291 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
292 length
-= sizeof(event
->array
[0]);
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
297 /* inline for ring buffer fast paths */
299 rb_event_data(struct ring_buffer_event
*event
)
301 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
302 event
= skip_time_extend(event
);
303 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
304 /* If length is in len field, then array[0] has the data */
306 return (void *)&event
->array
[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event
->array
[1];
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
315 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
317 return rb_event_data(event
);
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
321 #define for_each_buffer_cpu(buffer, cpu) \
322 for_each_cpu(cpu, buffer->cpumask)
325 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST (~TS_MASK)
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED (1 << 30)
333 struct buffer_data_page
{
334 u64 time_stamp
; /* page time stamp */
335 local_t commit
; /* write committed index */
336 unsigned char data
[]; /* data of buffer page */
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
348 struct list_head list
; /* list of buffer pages */
349 local_t write
; /* index for next write */
350 unsigned read
; /* index for next read */
351 local_t entries
; /* entries on this page */
352 unsigned long real_end
; /* real end of data */
353 struct buffer_data_page
*page
; /* Actual data page */
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
366 * The counter is 20 bits, and the state data is 12.
368 #define RB_WRITE_MASK 0xfffff
369 #define RB_WRITE_INTCNT (1 << 20)
371 static void rb_init_page(struct buffer_data_page
*bpage
)
373 local_set(&bpage
->commit
, 0);
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
380 * Returns the amount of data on the page, including buffer page header.
382 size_t ring_buffer_page_len(void *page
)
384 return local_read(&((struct buffer_data_page
*)page
)->commit
)
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 static void free_buffer_page(struct buffer_page
*bpage
)
394 free_page((unsigned long)bpage
->page
);
399 * We need to fit the time_stamp delta into 27 bits.
401 static inline int test_time_stamp(u64 delta
)
403 if (delta
& TS_DELTA_TEST
)
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
413 int ring_buffer_print_page_header(struct trace_seq
*s
)
415 struct buffer_data_page field
;
418 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field
.time_stamp
),
421 (unsigned int)is_signed_type(u64
));
423 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 (unsigned int)offsetof(typeof(field
), commit
),
426 (unsigned int)sizeof(field
.commit
),
427 (unsigned int)is_signed_type(long));
429 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field
), commit
),
433 (unsigned int)is_signed_type(long));
435 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field
), data
),
438 (unsigned int)BUF_PAGE_SIZE
,
439 (unsigned int)is_signed_type(char));
445 * head_page == tail_page && head == tail then buffer is empty.
447 struct ring_buffer_per_cpu
{
449 atomic_t record_disabled
;
450 struct ring_buffer
*buffer
;
451 raw_spinlock_t reader_lock
; /* serialize readers */
452 arch_spinlock_t lock
;
453 struct lock_class_key lock_key
;
454 unsigned int nr_pages
;
455 struct list_head
*pages
;
456 struct buffer_page
*head_page
; /* read from head */
457 struct buffer_page
*tail_page
; /* write to tail */
458 struct buffer_page
*commit_page
; /* committed pages */
459 struct buffer_page
*reader_page
;
460 unsigned long lost_events
;
461 unsigned long last_overrun
;
462 local_t entries_bytes
;
465 local_t commit_overrun
;
466 local_t dropped_events
;
470 unsigned long read_bytes
;
473 /* ring buffer pages to update, > 0 to add, < 0 to remove */
474 int nr_pages_to_update
;
475 struct list_head new_pages
; /* new pages to add */
476 struct work_struct update_pages_work
;
477 struct completion update_done
;
483 atomic_t record_disabled
;
484 atomic_t resize_disabled
;
485 cpumask_var_t cpumask
;
487 struct lock_class_key
*reader_lock_key
;
491 struct ring_buffer_per_cpu
**buffers
;
493 #ifdef CONFIG_HOTPLUG_CPU
494 struct notifier_block cpu_notify
;
499 struct ring_buffer_iter
{
500 struct ring_buffer_per_cpu
*cpu_buffer
;
502 struct buffer_page
*head_page
;
503 struct buffer_page
*cache_reader_page
;
504 unsigned long cache_read
;
508 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
509 #define RB_WARN_ON(b, cond) \
511 int _____ret = unlikely(cond); \
513 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
514 struct ring_buffer_per_cpu *__b = \
516 atomic_inc(&__b->buffer->record_disabled); \
518 atomic_inc(&b->record_disabled); \
524 /* Up this if you want to test the TIME_EXTENTS and normalization */
525 #define DEBUG_SHIFT 0
527 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
529 /* shift to debug/test normalization and TIME_EXTENTS */
530 return buffer
->clock() << DEBUG_SHIFT
;
533 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
537 preempt_disable_notrace();
538 time
= rb_time_stamp(buffer
);
539 preempt_enable_no_resched_notrace();
543 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
545 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
548 /* Just stupid testing the normalize function and deltas */
551 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
554 * Making the ring buffer lockless makes things tricky.
555 * Although writes only happen on the CPU that they are on,
556 * and they only need to worry about interrupts. Reads can
559 * The reader page is always off the ring buffer, but when the
560 * reader finishes with a page, it needs to swap its page with
561 * a new one from the buffer. The reader needs to take from
562 * the head (writes go to the tail). But if a writer is in overwrite
563 * mode and wraps, it must push the head page forward.
565 * Here lies the problem.
567 * The reader must be careful to replace only the head page, and
568 * not another one. As described at the top of the file in the
569 * ASCII art, the reader sets its old page to point to the next
570 * page after head. It then sets the page after head to point to
571 * the old reader page. But if the writer moves the head page
572 * during this operation, the reader could end up with the tail.
574 * We use cmpxchg to help prevent this race. We also do something
575 * special with the page before head. We set the LSB to 1.
577 * When the writer must push the page forward, it will clear the
578 * bit that points to the head page, move the head, and then set
579 * the bit that points to the new head page.
581 * We also don't want an interrupt coming in and moving the head
582 * page on another writer. Thus we use the second LSB to catch
585 * head->list->prev->next bit 1 bit 0
588 * Points to head page 0 1
591 * Note we can not trust the prev pointer of the head page, because:
593 * +----+ +-----+ +-----+
594 * | |------>| T |---X--->| N |
596 * +----+ +-----+ +-----+
599 * +----------| R |----------+ |
603 * Key: ---X--> HEAD flag set in pointer
608 * (see __rb_reserve_next() to see where this happens)
610 * What the above shows is that the reader just swapped out
611 * the reader page with a page in the buffer, but before it
612 * could make the new header point back to the new page added
613 * it was preempted by a writer. The writer moved forward onto
614 * the new page added by the reader and is about to move forward
617 * You can see, it is legitimate for the previous pointer of
618 * the head (or any page) not to point back to itself. But only
622 #define RB_PAGE_NORMAL 0UL
623 #define RB_PAGE_HEAD 1UL
624 #define RB_PAGE_UPDATE 2UL
627 #define RB_FLAG_MASK 3UL
629 /* PAGE_MOVED is not part of the mask */
630 #define RB_PAGE_MOVED 4UL
633 * rb_list_head - remove any bit
635 static struct list_head
*rb_list_head(struct list_head
*list
)
637 unsigned long val
= (unsigned long)list
;
639 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
643 * rb_is_head_page - test if the given page is the head page
645 * Because the reader may move the head_page pointer, we can
646 * not trust what the head page is (it may be pointing to
647 * the reader page). But if the next page is a header page,
648 * its flags will be non zero.
651 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
652 struct buffer_page
*page
, struct list_head
*list
)
656 val
= (unsigned long)list
->next
;
658 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
659 return RB_PAGE_MOVED
;
661 return val
& RB_FLAG_MASK
;
667 * The unique thing about the reader page, is that, if the
668 * writer is ever on it, the previous pointer never points
669 * back to the reader page.
671 static int rb_is_reader_page(struct buffer_page
*page
)
673 struct list_head
*list
= page
->list
.prev
;
675 return rb_list_head(list
->next
) != &page
->list
;
679 * rb_set_list_to_head - set a list_head to be pointing to head.
681 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
682 struct list_head
*list
)
686 ptr
= (unsigned long *)&list
->next
;
687 *ptr
|= RB_PAGE_HEAD
;
688 *ptr
&= ~RB_PAGE_UPDATE
;
692 * rb_head_page_activate - sets up head page
694 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
696 struct buffer_page
*head
;
698 head
= cpu_buffer
->head_page
;
703 * Set the previous list pointer to have the HEAD flag.
705 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
708 static void rb_list_head_clear(struct list_head
*list
)
710 unsigned long *ptr
= (unsigned long *)&list
->next
;
712 *ptr
&= ~RB_FLAG_MASK
;
716 * rb_head_page_dactivate - clears head page ptr (for free list)
719 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
721 struct list_head
*hd
;
723 /* Go through the whole list and clear any pointers found. */
724 rb_list_head_clear(cpu_buffer
->pages
);
726 list_for_each(hd
, cpu_buffer
->pages
)
727 rb_list_head_clear(hd
);
730 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
731 struct buffer_page
*head
,
732 struct buffer_page
*prev
,
733 int old_flag
, int new_flag
)
735 struct list_head
*list
;
736 unsigned long val
= (unsigned long)&head
->list
;
741 val
&= ~RB_FLAG_MASK
;
743 ret
= cmpxchg((unsigned long *)&list
->next
,
744 val
| old_flag
, val
| new_flag
);
746 /* check if the reader took the page */
747 if ((ret
& ~RB_FLAG_MASK
) != val
)
748 return RB_PAGE_MOVED
;
750 return ret
& RB_FLAG_MASK
;
753 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
754 struct buffer_page
*head
,
755 struct buffer_page
*prev
,
758 return rb_head_page_set(cpu_buffer
, head
, prev
,
759 old_flag
, RB_PAGE_UPDATE
);
762 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
763 struct buffer_page
*head
,
764 struct buffer_page
*prev
,
767 return rb_head_page_set(cpu_buffer
, head
, prev
,
768 old_flag
, RB_PAGE_HEAD
);
771 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
772 struct buffer_page
*head
,
773 struct buffer_page
*prev
,
776 return rb_head_page_set(cpu_buffer
, head
, prev
,
777 old_flag
, RB_PAGE_NORMAL
);
780 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
781 struct buffer_page
**bpage
)
783 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
785 *bpage
= list_entry(p
, struct buffer_page
, list
);
788 static struct buffer_page
*
789 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
791 struct buffer_page
*head
;
792 struct buffer_page
*page
;
793 struct list_head
*list
;
796 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
800 list
= cpu_buffer
->pages
;
801 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
804 page
= head
= cpu_buffer
->head_page
;
806 * It is possible that the writer moves the header behind
807 * where we started, and we miss in one loop.
808 * A second loop should grab the header, but we'll do
809 * three loops just because I'm paranoid.
811 for (i
= 0; i
< 3; i
++) {
813 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
814 cpu_buffer
->head_page
= page
;
817 rb_inc_page(cpu_buffer
, &page
);
818 } while (page
!= head
);
821 RB_WARN_ON(cpu_buffer
, 1);
826 static int rb_head_page_replace(struct buffer_page
*old
,
827 struct buffer_page
*new)
829 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
833 val
= *ptr
& ~RB_FLAG_MASK
;
836 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
842 * rb_tail_page_update - move the tail page forward
844 * Returns 1 if moved tail page, 0 if someone else did.
846 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
847 struct buffer_page
*tail_page
,
848 struct buffer_page
*next_page
)
850 struct buffer_page
*old_tail
;
851 unsigned long old_entries
;
852 unsigned long old_write
;
856 * The tail page now needs to be moved forward.
858 * We need to reset the tail page, but without messing
859 * with possible erasing of data brought in by interrupts
860 * that have moved the tail page and are currently on it.
862 * We add a counter to the write field to denote this.
864 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
865 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
868 * Just make sure we have seen our old_write and synchronize
869 * with any interrupts that come in.
874 * If the tail page is still the same as what we think
875 * it is, then it is up to us to update the tail
878 if (tail_page
== cpu_buffer
->tail_page
) {
879 /* Zero the write counter */
880 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
881 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
884 * This will only succeed if an interrupt did
885 * not come in and change it. In which case, we
886 * do not want to modify it.
888 * We add (void) to let the compiler know that we do not care
889 * about the return value of these functions. We use the
890 * cmpxchg to only update if an interrupt did not already
891 * do it for us. If the cmpxchg fails, we don't care.
893 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
894 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
897 * No need to worry about races with clearing out the commit.
898 * it only can increment when a commit takes place. But that
899 * only happens in the outer most nested commit.
901 local_set(&next_page
->page
->commit
, 0);
903 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
904 tail_page
, next_page
);
906 if (old_tail
== tail_page
)
913 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
914 struct buffer_page
*bpage
)
916 unsigned long val
= (unsigned long)bpage
;
918 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
925 * rb_check_list - make sure a pointer to a list has the last bits zero
927 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
928 struct list_head
*list
)
930 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
932 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
938 * check_pages - integrity check of buffer pages
939 * @cpu_buffer: CPU buffer with pages to test
941 * As a safety measure we check to make sure the data pages have not
944 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
946 struct list_head
*head
= cpu_buffer
->pages
;
947 struct buffer_page
*bpage
, *tmp
;
949 /* Reset the head page if it exists */
950 if (cpu_buffer
->head_page
)
951 rb_set_head_page(cpu_buffer
);
953 rb_head_page_deactivate(cpu_buffer
);
955 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
957 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
960 if (rb_check_list(cpu_buffer
, head
))
963 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
964 if (RB_WARN_ON(cpu_buffer
,
965 bpage
->list
.next
->prev
!= &bpage
->list
))
967 if (RB_WARN_ON(cpu_buffer
,
968 bpage
->list
.prev
->next
!= &bpage
->list
))
970 if (rb_check_list(cpu_buffer
, &bpage
->list
))
974 rb_head_page_activate(cpu_buffer
);
979 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
982 struct buffer_page
*bpage
, *tmp
;
984 for (i
= 0; i
< nr_pages
; i
++) {
987 * __GFP_NORETRY flag makes sure that the allocation fails
988 * gracefully without invoking oom-killer and the system is
991 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
992 GFP_KERNEL
| __GFP_NORETRY
,
997 list_add(&bpage
->list
, pages
);
999 page
= alloc_pages_node(cpu_to_node(cpu
),
1000 GFP_KERNEL
| __GFP_NORETRY
, 0);
1003 bpage
->page
= page_address(page
);
1004 rb_init_page(bpage
->page
);
1010 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1011 list_del_init(&bpage
->list
);
1012 free_buffer_page(bpage
);
1018 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1025 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1029 * The ring buffer page list is a circular list that does not
1030 * start and end with a list head. All page list items point to
1033 cpu_buffer
->pages
= pages
.next
;
1036 cpu_buffer
->nr_pages
= nr_pages
;
1038 rb_check_pages(cpu_buffer
);
1043 static struct ring_buffer_per_cpu
*
1044 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1046 struct ring_buffer_per_cpu
*cpu_buffer
;
1047 struct buffer_page
*bpage
;
1051 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1052 GFP_KERNEL
, cpu_to_node(cpu
));
1056 cpu_buffer
->cpu
= cpu
;
1057 cpu_buffer
->buffer
= buffer
;
1058 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1059 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1060 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1061 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1062 init_completion(&cpu_buffer
->update_done
);
1064 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1065 GFP_KERNEL
, cpu_to_node(cpu
));
1067 goto fail_free_buffer
;
1069 rb_check_bpage(cpu_buffer
, bpage
);
1071 cpu_buffer
->reader_page
= bpage
;
1072 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1074 goto fail_free_reader
;
1075 bpage
->page
= page_address(page
);
1076 rb_init_page(bpage
->page
);
1078 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1079 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1081 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1083 goto fail_free_reader
;
1085 cpu_buffer
->head_page
1086 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1087 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1089 rb_head_page_activate(cpu_buffer
);
1094 free_buffer_page(cpu_buffer
->reader_page
);
1101 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1103 struct list_head
*head
= cpu_buffer
->pages
;
1104 struct buffer_page
*bpage
, *tmp
;
1106 free_buffer_page(cpu_buffer
->reader_page
);
1108 rb_head_page_deactivate(cpu_buffer
);
1111 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1112 list_del_init(&bpage
->list
);
1113 free_buffer_page(bpage
);
1115 bpage
= list_entry(head
, struct buffer_page
, list
);
1116 free_buffer_page(bpage
);
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 static int rb_cpu_notify(struct notifier_block
*self
,
1124 unsigned long action
, void *hcpu
);
1128 * ring_buffer_alloc - allocate a new ring_buffer
1129 * @size: the size in bytes per cpu that is needed.
1130 * @flags: attributes to set for the ring buffer.
1132 * Currently the only flag that is available is the RB_FL_OVERWRITE
1133 * flag. This flag means that the buffer will overwrite old data
1134 * when the buffer wraps. If this flag is not set, the buffer will
1135 * drop data when the tail hits the head.
1137 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1138 struct lock_class_key
*key
)
1140 struct ring_buffer
*buffer
;
1144 /* keep it in its own cache line */
1145 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1150 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1151 goto fail_free_buffer
;
1153 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1154 buffer
->flags
= flags
;
1155 buffer
->clock
= trace_clock_local
;
1156 buffer
->reader_lock_key
= key
;
1158 /* need at least two pages */
1163 * In case of non-hotplug cpu, if the ring-buffer is allocated
1164 * in early initcall, it will not be notified of secondary cpus.
1165 * In that off case, we need to allocate for all possible cpus.
1167 #ifdef CONFIG_HOTPLUG_CPU
1169 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1171 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1173 buffer
->cpus
= nr_cpu_ids
;
1175 bsize
= sizeof(void *) * nr_cpu_ids
;
1176 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1178 if (!buffer
->buffers
)
1179 goto fail_free_cpumask
;
1181 for_each_buffer_cpu(buffer
, cpu
) {
1182 buffer
->buffers
[cpu
] =
1183 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1184 if (!buffer
->buffers
[cpu
])
1185 goto fail_free_buffers
;
1188 #ifdef CONFIG_HOTPLUG_CPU
1189 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1190 buffer
->cpu_notify
.priority
= 0;
1191 register_cpu_notifier(&buffer
->cpu_notify
);
1195 mutex_init(&buffer
->mutex
);
1200 for_each_buffer_cpu(buffer
, cpu
) {
1201 if (buffer
->buffers
[cpu
])
1202 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1204 kfree(buffer
->buffers
);
1207 free_cpumask_var(buffer
->cpumask
);
1214 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1217 * ring_buffer_free - free a ring buffer.
1218 * @buffer: the buffer to free.
1221 ring_buffer_free(struct ring_buffer
*buffer
)
1227 #ifdef CONFIG_HOTPLUG_CPU
1228 unregister_cpu_notifier(&buffer
->cpu_notify
);
1231 for_each_buffer_cpu(buffer
, cpu
)
1232 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1236 kfree(buffer
->buffers
);
1237 free_cpumask_var(buffer
->cpumask
);
1241 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1243 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1246 buffer
->clock
= clock
;
1249 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1251 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1253 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1256 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1258 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1262 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1264 struct list_head
*tail_page
, *to_remove
, *next_page
;
1265 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1266 struct buffer_page
*last_page
, *first_page
;
1267 unsigned int nr_removed
;
1268 unsigned long head_bit
;
1273 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1274 atomic_inc(&cpu_buffer
->record_disabled
);
1276 * We don't race with the readers since we have acquired the reader
1277 * lock. We also don't race with writers after disabling recording.
1278 * This makes it easy to figure out the first and the last page to be
1279 * removed from the list. We unlink all the pages in between including
1280 * the first and last pages. This is done in a busy loop so that we
1281 * lose the least number of traces.
1282 * The pages are freed after we restart recording and unlock readers.
1284 tail_page
= &cpu_buffer
->tail_page
->list
;
1287 * tail page might be on reader page, we remove the next page
1288 * from the ring buffer
1290 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1291 tail_page
= rb_list_head(tail_page
->next
);
1292 to_remove
= tail_page
;
1294 /* start of pages to remove */
1295 first_page
= list_entry(rb_list_head(to_remove
->next
),
1296 struct buffer_page
, list
);
1298 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1299 to_remove
= rb_list_head(to_remove
)->next
;
1300 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1303 next_page
= rb_list_head(to_remove
)->next
;
1306 * Now we remove all pages between tail_page and next_page.
1307 * Make sure that we have head_bit value preserved for the
1310 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1312 next_page
= rb_list_head(next_page
);
1313 next_page
->prev
= tail_page
;
1315 /* make sure pages points to a valid page in the ring buffer */
1316 cpu_buffer
->pages
= next_page
;
1318 /* update head page */
1320 cpu_buffer
->head_page
= list_entry(next_page
,
1321 struct buffer_page
, list
);
1324 * change read pointer to make sure any read iterators reset
1327 cpu_buffer
->read
= 0;
1329 /* pages are removed, resume tracing and then free the pages */
1330 atomic_dec(&cpu_buffer
->record_disabled
);
1331 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1333 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1335 /* last buffer page to remove */
1336 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1338 tmp_iter_page
= first_page
;
1341 to_remove_page
= tmp_iter_page
;
1342 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1344 /* update the counters */
1345 page_entries
= rb_page_entries(to_remove_page
);
1348 * If something was added to this page, it was full
1349 * since it is not the tail page. So we deduct the
1350 * bytes consumed in ring buffer from here.
1351 * Increment overrun to account for the lost events.
1353 local_add(page_entries
, &cpu_buffer
->overrun
);
1354 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1358 * We have already removed references to this list item, just
1359 * free up the buffer_page and its page
1361 free_buffer_page(to_remove_page
);
1364 } while (to_remove_page
!= last_page
);
1366 RB_WARN_ON(cpu_buffer
, nr_removed
);
1368 return nr_removed
== 0;
1372 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1374 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1375 int retries
, success
;
1377 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1379 * We are holding the reader lock, so the reader page won't be swapped
1380 * in the ring buffer. Now we are racing with the writer trying to
1381 * move head page and the tail page.
1382 * We are going to adapt the reader page update process where:
1383 * 1. We first splice the start and end of list of new pages between
1384 * the head page and its previous page.
1385 * 2. We cmpxchg the prev_page->next to point from head page to the
1386 * start of new pages list.
1387 * 3. Finally, we update the head->prev to the end of new list.
1389 * We will try this process 10 times, to make sure that we don't keep
1395 struct list_head
*head_page
, *prev_page
, *r
;
1396 struct list_head
*last_page
, *first_page
;
1397 struct list_head
*head_page_with_bit
;
1399 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1402 prev_page
= head_page
->prev
;
1404 first_page
= pages
->next
;
1405 last_page
= pages
->prev
;
1407 head_page_with_bit
= (struct list_head
*)
1408 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1410 last_page
->next
= head_page_with_bit
;
1411 first_page
->prev
= prev_page
;
1413 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1415 if (r
== head_page_with_bit
) {
1417 * yay, we replaced the page pointer to our new list,
1418 * now, we just have to update to head page's prev
1419 * pointer to point to end of list
1421 head_page
->prev
= last_page
;
1428 INIT_LIST_HEAD(pages
);
1430 * If we weren't successful in adding in new pages, warn and stop
1433 RB_WARN_ON(cpu_buffer
, !success
);
1434 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1436 /* free pages if they weren't inserted */
1438 struct buffer_page
*bpage
, *tmp
;
1439 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1441 list_del_init(&bpage
->list
);
1442 free_buffer_page(bpage
);
1448 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1452 if (cpu_buffer
->nr_pages_to_update
> 0)
1453 success
= rb_insert_pages(cpu_buffer
);
1455 success
= rb_remove_pages(cpu_buffer
,
1456 -cpu_buffer
->nr_pages_to_update
);
1459 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1462 static void update_pages_handler(struct work_struct
*work
)
1464 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1465 struct ring_buffer_per_cpu
, update_pages_work
);
1466 rb_update_pages(cpu_buffer
);
1467 complete(&cpu_buffer
->update_done
);
1471 * ring_buffer_resize - resize the ring buffer
1472 * @buffer: the buffer to resize.
1473 * @size: the new size.
1475 * Minimum size is 2 * BUF_PAGE_SIZE.
1477 * Returns 0 on success and < 0 on failure.
1479 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1482 struct ring_buffer_per_cpu
*cpu_buffer
;
1487 * Always succeed at resizing a non-existent buffer:
1492 /* Make sure the requested buffer exists */
1493 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1494 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1497 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1498 size
*= BUF_PAGE_SIZE
;
1500 /* we need a minimum of two pages */
1501 if (size
< BUF_PAGE_SIZE
* 2)
1502 size
= BUF_PAGE_SIZE
* 2;
1504 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1507 * Don't succeed if resizing is disabled, as a reader might be
1508 * manipulating the ring buffer and is expecting a sane state while
1511 if (atomic_read(&buffer
->resize_disabled
))
1514 /* prevent another thread from changing buffer sizes */
1515 mutex_lock(&buffer
->mutex
);
1517 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1518 /* calculate the pages to update */
1519 for_each_buffer_cpu(buffer
, cpu
) {
1520 cpu_buffer
= buffer
->buffers
[cpu
];
1522 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1523 cpu_buffer
->nr_pages
;
1525 * nothing more to do for removing pages or no update
1527 if (cpu_buffer
->nr_pages_to_update
<= 0)
1530 * to add pages, make sure all new pages can be
1531 * allocated without receiving ENOMEM
1533 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1534 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1535 &cpu_buffer
->new_pages
, cpu
)) {
1536 /* not enough memory for new pages */
1544 * Fire off all the required work handlers
1545 * We can't schedule on offline CPUs, but it's not necessary
1546 * since we can change their buffer sizes without any race.
1548 for_each_buffer_cpu(buffer
, cpu
) {
1549 cpu_buffer
= buffer
->buffers
[cpu
];
1550 if (!cpu_buffer
->nr_pages_to_update
)
1553 if (cpu_online(cpu
))
1554 schedule_work_on(cpu
,
1555 &cpu_buffer
->update_pages_work
);
1557 rb_update_pages(cpu_buffer
);
1560 /* wait for all the updates to complete */
1561 for_each_buffer_cpu(buffer
, cpu
) {
1562 cpu_buffer
= buffer
->buffers
[cpu
];
1563 if (!cpu_buffer
->nr_pages_to_update
)
1566 if (cpu_online(cpu
))
1567 wait_for_completion(&cpu_buffer
->update_done
);
1568 cpu_buffer
->nr_pages_to_update
= 0;
1573 /* Make sure this CPU has been intitialized */
1574 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1577 cpu_buffer
= buffer
->buffers
[cpu_id
];
1579 if (nr_pages
== cpu_buffer
->nr_pages
)
1582 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1583 cpu_buffer
->nr_pages
;
1585 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1586 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1587 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1588 &cpu_buffer
->new_pages
, cpu_id
)) {
1595 if (cpu_online(cpu_id
)) {
1596 schedule_work_on(cpu_id
,
1597 &cpu_buffer
->update_pages_work
);
1598 wait_for_completion(&cpu_buffer
->update_done
);
1600 rb_update_pages(cpu_buffer
);
1602 cpu_buffer
->nr_pages_to_update
= 0;
1608 * The ring buffer resize can happen with the ring buffer
1609 * enabled, so that the update disturbs the tracing as little
1610 * as possible. But if the buffer is disabled, we do not need
1611 * to worry about that, and we can take the time to verify
1612 * that the buffer is not corrupt.
1614 if (atomic_read(&buffer
->record_disabled
)) {
1615 atomic_inc(&buffer
->record_disabled
);
1617 * Even though the buffer was disabled, we must make sure
1618 * that it is truly disabled before calling rb_check_pages.
1619 * There could have been a race between checking
1620 * record_disable and incrementing it.
1622 synchronize_sched();
1623 for_each_buffer_cpu(buffer
, cpu
) {
1624 cpu_buffer
= buffer
->buffers
[cpu
];
1625 rb_check_pages(cpu_buffer
);
1627 atomic_dec(&buffer
->record_disabled
);
1630 mutex_unlock(&buffer
->mutex
);
1634 for_each_buffer_cpu(buffer
, cpu
) {
1635 struct buffer_page
*bpage
, *tmp
;
1637 cpu_buffer
= buffer
->buffers
[cpu
];
1638 cpu_buffer
->nr_pages_to_update
= 0;
1640 if (list_empty(&cpu_buffer
->new_pages
))
1643 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1645 list_del_init(&bpage
->list
);
1646 free_buffer_page(bpage
);
1649 mutex_unlock(&buffer
->mutex
);
1652 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1654 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1656 mutex_lock(&buffer
->mutex
);
1658 buffer
->flags
|= RB_FL_OVERWRITE
;
1660 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1661 mutex_unlock(&buffer
->mutex
);
1663 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1665 static inline void *
1666 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1668 return bpage
->data
+ index
;
1671 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1673 return bpage
->page
->data
+ index
;
1676 static inline struct ring_buffer_event
*
1677 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1679 return __rb_page_index(cpu_buffer
->reader_page
,
1680 cpu_buffer
->reader_page
->read
);
1683 static inline struct ring_buffer_event
*
1684 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1686 return __rb_page_index(iter
->head_page
, iter
->head
);
1689 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1691 return local_read(&bpage
->page
->commit
);
1694 /* Size is determined by what has been committed */
1695 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1697 return rb_page_commit(bpage
);
1700 static inline unsigned
1701 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1703 return rb_page_commit(cpu_buffer
->commit_page
);
1706 static inline unsigned
1707 rb_event_index(struct ring_buffer_event
*event
)
1709 unsigned long addr
= (unsigned long)event
;
1711 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1715 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1716 struct ring_buffer_event
*event
)
1718 unsigned long addr
= (unsigned long)event
;
1719 unsigned long index
;
1721 index
= rb_event_index(event
);
1724 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1725 rb_commit_index(cpu_buffer
) == index
;
1729 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1731 unsigned long max_count
;
1734 * We only race with interrupts and NMIs on this CPU.
1735 * If we own the commit event, then we can commit
1736 * all others that interrupted us, since the interruptions
1737 * are in stack format (they finish before they come
1738 * back to us). This allows us to do a simple loop to
1739 * assign the commit to the tail.
1742 max_count
= cpu_buffer
->nr_pages
* 100;
1744 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1745 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1747 if (RB_WARN_ON(cpu_buffer
,
1748 rb_is_reader_page(cpu_buffer
->tail_page
)))
1750 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1751 rb_page_write(cpu_buffer
->commit_page
));
1752 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1753 cpu_buffer
->write_stamp
=
1754 cpu_buffer
->commit_page
->page
->time_stamp
;
1755 /* add barrier to keep gcc from optimizing too much */
1758 while (rb_commit_index(cpu_buffer
) !=
1759 rb_page_write(cpu_buffer
->commit_page
)) {
1761 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1762 rb_page_write(cpu_buffer
->commit_page
));
1763 RB_WARN_ON(cpu_buffer
,
1764 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1769 /* again, keep gcc from optimizing */
1773 * If an interrupt came in just after the first while loop
1774 * and pushed the tail page forward, we will be left with
1775 * a dangling commit that will never go forward.
1777 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1781 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1783 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1784 cpu_buffer
->reader_page
->read
= 0;
1787 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1789 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1792 * The iterator could be on the reader page (it starts there).
1793 * But the head could have moved, since the reader was
1794 * found. Check for this case and assign the iterator
1795 * to the head page instead of next.
1797 if (iter
->head_page
== cpu_buffer
->reader_page
)
1798 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1800 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1802 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1806 /* Slow path, do not inline */
1807 static noinline
struct ring_buffer_event
*
1808 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1810 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1812 /* Not the first event on the page? */
1813 if (rb_event_index(event
)) {
1814 event
->time_delta
= delta
& TS_MASK
;
1815 event
->array
[0] = delta
>> TS_SHIFT
;
1817 /* nope, just zero it */
1818 event
->time_delta
= 0;
1819 event
->array
[0] = 0;
1822 return skip_time_extend(event
);
1826 * rb_update_event - update event type and data
1827 * @event: the even to update
1828 * @type: the type of event
1829 * @length: the size of the event field in the ring buffer
1831 * Update the type and data fields of the event. The length
1832 * is the actual size that is written to the ring buffer,
1833 * and with this, we can determine what to place into the
1837 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1838 struct ring_buffer_event
*event
, unsigned length
,
1839 int add_timestamp
, u64 delta
)
1841 /* Only a commit updates the timestamp */
1842 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
1846 * If we need to add a timestamp, then we
1847 * add it to the start of the resevered space.
1849 if (unlikely(add_timestamp
)) {
1850 event
= rb_add_time_stamp(event
, delta
);
1851 length
-= RB_LEN_TIME_EXTEND
;
1855 event
->time_delta
= delta
;
1856 length
-= RB_EVNT_HDR_SIZE
;
1857 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
1858 event
->type_len
= 0;
1859 event
->array
[0] = length
;
1861 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1865 * rb_handle_head_page - writer hit the head page
1867 * Returns: +1 to retry page
1872 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1873 struct buffer_page
*tail_page
,
1874 struct buffer_page
*next_page
)
1876 struct buffer_page
*new_head
;
1881 entries
= rb_page_entries(next_page
);
1884 * The hard part is here. We need to move the head
1885 * forward, and protect against both readers on
1886 * other CPUs and writers coming in via interrupts.
1888 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1892 * type can be one of four:
1893 * NORMAL - an interrupt already moved it for us
1894 * HEAD - we are the first to get here.
1895 * UPDATE - we are the interrupt interrupting
1897 * MOVED - a reader on another CPU moved the next
1898 * pointer to its reader page. Give up
1905 * We changed the head to UPDATE, thus
1906 * it is our responsibility to update
1909 local_add(entries
, &cpu_buffer
->overrun
);
1910 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1913 * The entries will be zeroed out when we move the
1917 /* still more to do */
1920 case RB_PAGE_UPDATE
:
1922 * This is an interrupt that interrupt the
1923 * previous update. Still more to do.
1926 case RB_PAGE_NORMAL
:
1928 * An interrupt came in before the update
1929 * and processed this for us.
1930 * Nothing left to do.
1935 * The reader is on another CPU and just did
1936 * a swap with our next_page.
1941 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1946 * Now that we are here, the old head pointer is
1947 * set to UPDATE. This will keep the reader from
1948 * swapping the head page with the reader page.
1949 * The reader (on another CPU) will spin till
1952 * We just need to protect against interrupts
1953 * doing the job. We will set the next pointer
1954 * to HEAD. After that, we set the old pointer
1955 * to NORMAL, but only if it was HEAD before.
1956 * otherwise we are an interrupt, and only
1957 * want the outer most commit to reset it.
1959 new_head
= next_page
;
1960 rb_inc_page(cpu_buffer
, &new_head
);
1962 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1966 * Valid returns are:
1967 * HEAD - an interrupt came in and already set it.
1968 * NORMAL - One of two things:
1969 * 1) We really set it.
1970 * 2) A bunch of interrupts came in and moved
1971 * the page forward again.
1975 case RB_PAGE_NORMAL
:
1979 RB_WARN_ON(cpu_buffer
, 1);
1984 * It is possible that an interrupt came in,
1985 * set the head up, then more interrupts came in
1986 * and moved it again. When we get back here,
1987 * the page would have been set to NORMAL but we
1988 * just set it back to HEAD.
1990 * How do you detect this? Well, if that happened
1991 * the tail page would have moved.
1993 if (ret
== RB_PAGE_NORMAL
) {
1995 * If the tail had moved passed next, then we need
1996 * to reset the pointer.
1998 if (cpu_buffer
->tail_page
!= tail_page
&&
1999 cpu_buffer
->tail_page
!= next_page
)
2000 rb_head_page_set_normal(cpu_buffer
, new_head
,
2006 * If this was the outer most commit (the one that
2007 * changed the original pointer from HEAD to UPDATE),
2008 * then it is up to us to reset it to NORMAL.
2010 if (type
== RB_PAGE_HEAD
) {
2011 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2014 if (RB_WARN_ON(cpu_buffer
,
2015 ret
!= RB_PAGE_UPDATE
))
2022 static unsigned rb_calculate_event_length(unsigned length
)
2024 struct ring_buffer_event event
; /* Used only for sizeof array */
2026 /* zero length can cause confusions */
2030 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2031 length
+= sizeof(event
.array
[0]);
2033 length
+= RB_EVNT_HDR_SIZE
;
2034 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2040 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2041 struct buffer_page
*tail_page
,
2042 unsigned long tail
, unsigned long length
)
2044 struct ring_buffer_event
*event
;
2047 * Only the event that crossed the page boundary
2048 * must fill the old tail_page with padding.
2050 if (tail
>= BUF_PAGE_SIZE
) {
2052 * If the page was filled, then we still need
2053 * to update the real_end. Reset it to zero
2054 * and the reader will ignore it.
2056 if (tail
== BUF_PAGE_SIZE
)
2057 tail_page
->real_end
= 0;
2059 local_sub(length
, &tail_page
->write
);
2063 event
= __rb_page_index(tail_page
, tail
);
2064 kmemcheck_annotate_bitfield(event
, bitfield
);
2066 /* account for padding bytes */
2067 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2070 * Save the original length to the meta data.
2071 * This will be used by the reader to add lost event
2074 tail_page
->real_end
= tail
;
2077 * If this event is bigger than the minimum size, then
2078 * we need to be careful that we don't subtract the
2079 * write counter enough to allow another writer to slip
2081 * We put in a discarded commit instead, to make sure
2082 * that this space is not used again.
2084 * If we are less than the minimum size, we don't need to
2087 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2088 /* No room for any events */
2090 /* Mark the rest of the page with padding */
2091 rb_event_set_padding(event
);
2093 /* Set the write back to the previous setting */
2094 local_sub(length
, &tail_page
->write
);
2098 /* Put in a discarded event */
2099 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2100 event
->type_len
= RINGBUF_TYPE_PADDING
;
2101 /* time delta must be non zero */
2102 event
->time_delta
= 1;
2104 /* Set write to end of buffer */
2105 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2106 local_sub(length
, &tail_page
->write
);
2110 * This is the slow path, force gcc not to inline it.
2112 static noinline
struct ring_buffer_event
*
2113 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2114 unsigned long length
, unsigned long tail
,
2115 struct buffer_page
*tail_page
, u64 ts
)
2117 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2118 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2119 struct buffer_page
*next_page
;
2122 next_page
= tail_page
;
2124 rb_inc_page(cpu_buffer
, &next_page
);
2127 * If for some reason, we had an interrupt storm that made
2128 * it all the way around the buffer, bail, and warn
2131 if (unlikely(next_page
== commit_page
)) {
2132 local_inc(&cpu_buffer
->commit_overrun
);
2137 * This is where the fun begins!
2139 * We are fighting against races between a reader that
2140 * could be on another CPU trying to swap its reader
2141 * page with the buffer head.
2143 * We are also fighting against interrupts coming in and
2144 * moving the head or tail on us as well.
2146 * If the next page is the head page then we have filled
2147 * the buffer, unless the commit page is still on the
2150 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2153 * If the commit is not on the reader page, then
2154 * move the header page.
2156 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2158 * If we are not in overwrite mode,
2159 * this is easy, just stop here.
2161 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2162 local_inc(&cpu_buffer
->dropped_events
);
2166 ret
= rb_handle_head_page(cpu_buffer
,
2175 * We need to be careful here too. The
2176 * commit page could still be on the reader
2177 * page. We could have a small buffer, and
2178 * have filled up the buffer with events
2179 * from interrupts and such, and wrapped.
2181 * Note, if the tail page is also the on the
2182 * reader_page, we let it move out.
2184 if (unlikely((cpu_buffer
->commit_page
!=
2185 cpu_buffer
->tail_page
) &&
2186 (cpu_buffer
->commit_page
==
2187 cpu_buffer
->reader_page
))) {
2188 local_inc(&cpu_buffer
->commit_overrun
);
2194 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2197 * Nested commits always have zero deltas, so
2198 * just reread the time stamp
2200 ts
= rb_time_stamp(buffer
);
2201 next_page
->page
->time_stamp
= ts
;
2206 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2208 /* fail and let the caller try again */
2209 return ERR_PTR(-EAGAIN
);
2213 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2218 static struct ring_buffer_event
*
2219 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2220 unsigned long length
, u64 ts
,
2221 u64 delta
, int add_timestamp
)
2223 struct buffer_page
*tail_page
;
2224 struct ring_buffer_event
*event
;
2225 unsigned long tail
, write
;
2228 * If the time delta since the last event is too big to
2229 * hold in the time field of the event, then we append a
2230 * TIME EXTEND event ahead of the data event.
2232 if (unlikely(add_timestamp
))
2233 length
+= RB_LEN_TIME_EXTEND
;
2235 tail_page
= cpu_buffer
->tail_page
;
2236 write
= local_add_return(length
, &tail_page
->write
);
2238 /* set write to only the index of the write */
2239 write
&= RB_WRITE_MASK
;
2240 tail
= write
- length
;
2242 /* See if we shot pass the end of this buffer page */
2243 if (unlikely(write
> BUF_PAGE_SIZE
))
2244 return rb_move_tail(cpu_buffer
, length
, tail
,
2247 /* We reserved something on the buffer */
2249 event
= __rb_page_index(tail_page
, tail
);
2250 kmemcheck_annotate_bitfield(event
, bitfield
);
2251 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2253 local_inc(&tail_page
->entries
);
2256 * If this is the first commit on the page, then update
2260 tail_page
->page
->time_stamp
= ts
;
2262 /* account for these added bytes */
2263 local_add(length
, &cpu_buffer
->entries_bytes
);
2269 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2270 struct ring_buffer_event
*event
)
2272 unsigned long new_index
, old_index
;
2273 struct buffer_page
*bpage
;
2274 unsigned long index
;
2277 new_index
= rb_event_index(event
);
2278 old_index
= new_index
+ rb_event_ts_length(event
);
2279 addr
= (unsigned long)event
;
2282 bpage
= cpu_buffer
->tail_page
;
2284 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2285 unsigned long write_mask
=
2286 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2287 unsigned long event_length
= rb_event_length(event
);
2289 * This is on the tail page. It is possible that
2290 * a write could come in and move the tail page
2291 * and write to the next page. That is fine
2292 * because we just shorten what is on this page.
2294 old_index
+= write_mask
;
2295 new_index
+= write_mask
;
2296 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2297 if (index
== old_index
) {
2298 /* update counters */
2299 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2304 /* could not discard */
2308 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2310 local_inc(&cpu_buffer
->committing
);
2311 local_inc(&cpu_buffer
->commits
);
2314 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2316 unsigned long commits
;
2318 if (RB_WARN_ON(cpu_buffer
,
2319 !local_read(&cpu_buffer
->committing
)))
2323 commits
= local_read(&cpu_buffer
->commits
);
2324 /* synchronize with interrupts */
2326 if (local_read(&cpu_buffer
->committing
) == 1)
2327 rb_set_commit_to_write(cpu_buffer
);
2329 local_dec(&cpu_buffer
->committing
);
2331 /* synchronize with interrupts */
2335 * Need to account for interrupts coming in between the
2336 * updating of the commit page and the clearing of the
2337 * committing counter.
2339 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2340 !local_read(&cpu_buffer
->committing
)) {
2341 local_inc(&cpu_buffer
->committing
);
2346 static struct ring_buffer_event
*
2347 rb_reserve_next_event(struct ring_buffer
*buffer
,
2348 struct ring_buffer_per_cpu
*cpu_buffer
,
2349 unsigned long length
)
2351 struct ring_buffer_event
*event
;
2357 rb_start_commit(cpu_buffer
);
2359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2361 * Due to the ability to swap a cpu buffer from a buffer
2362 * it is possible it was swapped before we committed.
2363 * (committing stops a swap). We check for it here and
2364 * if it happened, we have to fail the write.
2367 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2368 local_dec(&cpu_buffer
->committing
);
2369 local_dec(&cpu_buffer
->commits
);
2374 length
= rb_calculate_event_length(length
);
2380 * We allow for interrupts to reenter here and do a trace.
2381 * If one does, it will cause this original code to loop
2382 * back here. Even with heavy interrupts happening, this
2383 * should only happen a few times in a row. If this happens
2384 * 1000 times in a row, there must be either an interrupt
2385 * storm or we have something buggy.
2388 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2391 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2392 diff
= ts
- cpu_buffer
->write_stamp
;
2394 /* make sure this diff is calculated here */
2397 /* Did the write stamp get updated already? */
2398 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2400 if (unlikely(test_time_stamp(delta
))) {
2401 int local_clock_stable
= 1;
2402 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2403 local_clock_stable
= sched_clock_stable
;
2405 WARN_ONCE(delta
> (1ULL << 59),
2406 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2407 (unsigned long long)delta
,
2408 (unsigned long long)ts
,
2409 (unsigned long long)cpu_buffer
->write_stamp
,
2410 local_clock_stable
? "" :
2411 "If you just came from a suspend/resume,\n"
2412 "please switch to the trace global clock:\n"
2413 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2418 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2419 delta
, add_timestamp
);
2420 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2429 rb_end_commit(cpu_buffer
);
2433 #ifdef CONFIG_TRACING
2435 #define TRACE_RECURSIVE_DEPTH 16
2437 /* Keep this code out of the fast path cache */
2438 static noinline
void trace_recursive_fail(void)
2440 /* Disable all tracing before we do anything else */
2441 tracing_off_permanent();
2443 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2444 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2445 trace_recursion_buffer(),
2446 hardirq_count() >> HARDIRQ_SHIFT
,
2447 softirq_count() >> SOFTIRQ_SHIFT
,
2453 static inline int trace_recursive_lock(void)
2455 trace_recursion_inc();
2457 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH
))
2460 trace_recursive_fail();
2465 static inline void trace_recursive_unlock(void)
2467 WARN_ON_ONCE(!trace_recursion_buffer());
2469 trace_recursion_dec();
2474 #define trace_recursive_lock() (0)
2475 #define trace_recursive_unlock() do { } while (0)
2480 * ring_buffer_lock_reserve - reserve a part of the buffer
2481 * @buffer: the ring buffer to reserve from
2482 * @length: the length of the data to reserve (excluding event header)
2484 * Returns a reseverd event on the ring buffer to copy directly to.
2485 * The user of this interface will need to get the body to write into
2486 * and can use the ring_buffer_event_data() interface.
2488 * The length is the length of the data needed, not the event length
2489 * which also includes the event header.
2491 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2492 * If NULL is returned, then nothing has been allocated or locked.
2494 struct ring_buffer_event
*
2495 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2497 struct ring_buffer_per_cpu
*cpu_buffer
;
2498 struct ring_buffer_event
*event
;
2501 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2504 /* If we are tracing schedule, we don't want to recurse */
2505 preempt_disable_notrace();
2507 if (atomic_read(&buffer
->record_disabled
))
2510 if (trace_recursive_lock())
2513 cpu
= raw_smp_processor_id();
2515 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2518 cpu_buffer
= buffer
->buffers
[cpu
];
2520 if (atomic_read(&cpu_buffer
->record_disabled
))
2523 if (length
> BUF_MAX_DATA_SIZE
)
2526 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2533 trace_recursive_unlock();
2536 preempt_enable_notrace();
2539 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2542 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2543 struct ring_buffer_event
*event
)
2548 * The event first in the commit queue updates the
2551 if (rb_event_is_commit(cpu_buffer
, event
)) {
2553 * A commit event that is first on a page
2554 * updates the write timestamp with the page stamp
2556 if (!rb_event_index(event
))
2557 cpu_buffer
->write_stamp
=
2558 cpu_buffer
->commit_page
->page
->time_stamp
;
2559 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2560 delta
= event
->array
[0];
2562 delta
+= event
->time_delta
;
2563 cpu_buffer
->write_stamp
+= delta
;
2565 cpu_buffer
->write_stamp
+= event
->time_delta
;
2569 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2570 struct ring_buffer_event
*event
)
2572 local_inc(&cpu_buffer
->entries
);
2573 rb_update_write_stamp(cpu_buffer
, event
);
2574 rb_end_commit(cpu_buffer
);
2578 * ring_buffer_unlock_commit - commit a reserved
2579 * @buffer: The buffer to commit to
2580 * @event: The event pointer to commit.
2582 * This commits the data to the ring buffer, and releases any locks held.
2584 * Must be paired with ring_buffer_lock_reserve.
2586 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2587 struct ring_buffer_event
*event
)
2589 struct ring_buffer_per_cpu
*cpu_buffer
;
2590 int cpu
= raw_smp_processor_id();
2592 cpu_buffer
= buffer
->buffers
[cpu
];
2594 rb_commit(cpu_buffer
, event
);
2596 trace_recursive_unlock();
2598 preempt_enable_notrace();
2602 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2604 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2606 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2607 event
= skip_time_extend(event
);
2609 /* array[0] holds the actual length for the discarded event */
2610 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2611 event
->type_len
= RINGBUF_TYPE_PADDING
;
2612 /* time delta must be non zero */
2613 if (!event
->time_delta
)
2614 event
->time_delta
= 1;
2618 * Decrement the entries to the page that an event is on.
2619 * The event does not even need to exist, only the pointer
2620 * to the page it is on. This may only be called before the commit
2624 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2625 struct ring_buffer_event
*event
)
2627 unsigned long addr
= (unsigned long)event
;
2628 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2629 struct buffer_page
*start
;
2633 /* Do the likely case first */
2634 if (likely(bpage
->page
== (void *)addr
)) {
2635 local_dec(&bpage
->entries
);
2640 * Because the commit page may be on the reader page we
2641 * start with the next page and check the end loop there.
2643 rb_inc_page(cpu_buffer
, &bpage
);
2646 if (bpage
->page
== (void *)addr
) {
2647 local_dec(&bpage
->entries
);
2650 rb_inc_page(cpu_buffer
, &bpage
);
2651 } while (bpage
!= start
);
2653 /* commit not part of this buffer?? */
2654 RB_WARN_ON(cpu_buffer
, 1);
2658 * ring_buffer_commit_discard - discard an event that has not been committed
2659 * @buffer: the ring buffer
2660 * @event: non committed event to discard
2662 * Sometimes an event that is in the ring buffer needs to be ignored.
2663 * This function lets the user discard an event in the ring buffer
2664 * and then that event will not be read later.
2666 * This function only works if it is called before the the item has been
2667 * committed. It will try to free the event from the ring buffer
2668 * if another event has not been added behind it.
2670 * If another event has been added behind it, it will set the event
2671 * up as discarded, and perform the commit.
2673 * If this function is called, do not call ring_buffer_unlock_commit on
2676 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2677 struct ring_buffer_event
*event
)
2679 struct ring_buffer_per_cpu
*cpu_buffer
;
2682 /* The event is discarded regardless */
2683 rb_event_discard(event
);
2685 cpu
= smp_processor_id();
2686 cpu_buffer
= buffer
->buffers
[cpu
];
2689 * This must only be called if the event has not been
2690 * committed yet. Thus we can assume that preemption
2691 * is still disabled.
2693 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2695 rb_decrement_entry(cpu_buffer
, event
);
2696 if (rb_try_to_discard(cpu_buffer
, event
))
2700 * The commit is still visible by the reader, so we
2701 * must still update the timestamp.
2703 rb_update_write_stamp(cpu_buffer
, event
);
2705 rb_end_commit(cpu_buffer
);
2707 trace_recursive_unlock();
2709 preempt_enable_notrace();
2712 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2715 * ring_buffer_write - write data to the buffer without reserving
2716 * @buffer: The ring buffer to write to.
2717 * @length: The length of the data being written (excluding the event header)
2718 * @data: The data to write to the buffer.
2720 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2721 * one function. If you already have the data to write to the buffer, it
2722 * may be easier to simply call this function.
2724 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2725 * and not the length of the event which would hold the header.
2727 int ring_buffer_write(struct ring_buffer
*buffer
,
2728 unsigned long length
,
2731 struct ring_buffer_per_cpu
*cpu_buffer
;
2732 struct ring_buffer_event
*event
;
2737 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2740 preempt_disable_notrace();
2742 if (atomic_read(&buffer
->record_disabled
))
2745 cpu
= raw_smp_processor_id();
2747 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2750 cpu_buffer
= buffer
->buffers
[cpu
];
2752 if (atomic_read(&cpu_buffer
->record_disabled
))
2755 if (length
> BUF_MAX_DATA_SIZE
)
2758 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2762 body
= rb_event_data(event
);
2764 memcpy(body
, data
, length
);
2766 rb_commit(cpu_buffer
, event
);
2770 preempt_enable_notrace();
2774 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2776 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2778 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2779 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2780 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2782 /* In case of error, head will be NULL */
2783 if (unlikely(!head
))
2786 return reader
->read
== rb_page_commit(reader
) &&
2787 (commit
== reader
||
2789 head
->read
== rb_page_commit(commit
)));
2793 * ring_buffer_record_disable - stop all writes into the buffer
2794 * @buffer: The ring buffer to stop writes to.
2796 * This prevents all writes to the buffer. Any attempt to write
2797 * to the buffer after this will fail and return NULL.
2799 * The caller should call synchronize_sched() after this.
2801 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2803 atomic_inc(&buffer
->record_disabled
);
2805 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2808 * ring_buffer_record_enable - enable writes to the buffer
2809 * @buffer: The ring buffer to enable writes
2811 * Note, multiple disables will need the same number of enables
2812 * to truly enable the writing (much like preempt_disable).
2814 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2816 atomic_dec(&buffer
->record_disabled
);
2818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2821 * ring_buffer_record_off - stop all writes into the buffer
2822 * @buffer: The ring buffer to stop writes to.
2824 * This prevents all writes to the buffer. Any attempt to write
2825 * to the buffer after this will fail and return NULL.
2827 * This is different than ring_buffer_record_disable() as
2828 * it works like an on/off switch, where as the disable() version
2829 * must be paired with a enable().
2831 void ring_buffer_record_off(struct ring_buffer
*buffer
)
2834 unsigned int new_rd
;
2837 rd
= atomic_read(&buffer
->record_disabled
);
2838 new_rd
= rd
| RB_BUFFER_OFF
;
2839 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
2841 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
2844 * ring_buffer_record_on - restart writes into the buffer
2845 * @buffer: The ring buffer to start writes to.
2847 * This enables all writes to the buffer that was disabled by
2848 * ring_buffer_record_off().
2850 * This is different than ring_buffer_record_enable() as
2851 * it works like an on/off switch, where as the enable() version
2852 * must be paired with a disable().
2854 void ring_buffer_record_on(struct ring_buffer
*buffer
)
2857 unsigned int new_rd
;
2860 rd
= atomic_read(&buffer
->record_disabled
);
2861 new_rd
= rd
& ~RB_BUFFER_OFF
;
2862 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
2864 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
2867 * ring_buffer_record_is_on - return true if the ring buffer can write
2868 * @buffer: The ring buffer to see if write is enabled
2870 * Returns true if the ring buffer is in a state that it accepts writes.
2872 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
2874 return !atomic_read(&buffer
->record_disabled
);
2878 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2879 * @buffer: The ring buffer to stop writes to.
2880 * @cpu: The CPU buffer to stop
2882 * This prevents all writes to the buffer. Any attempt to write
2883 * to the buffer after this will fail and return NULL.
2885 * The caller should call synchronize_sched() after this.
2887 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2889 struct ring_buffer_per_cpu
*cpu_buffer
;
2891 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2894 cpu_buffer
= buffer
->buffers
[cpu
];
2895 atomic_inc(&cpu_buffer
->record_disabled
);
2897 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2900 * ring_buffer_record_enable_cpu - enable writes to the buffer
2901 * @buffer: The ring buffer to enable writes
2902 * @cpu: The CPU to enable.
2904 * Note, multiple disables will need the same number of enables
2905 * to truly enable the writing (much like preempt_disable).
2907 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2909 struct ring_buffer_per_cpu
*cpu_buffer
;
2911 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2914 cpu_buffer
= buffer
->buffers
[cpu
];
2915 atomic_dec(&cpu_buffer
->record_disabled
);
2917 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2920 * The total entries in the ring buffer is the running counter
2921 * of entries entered into the ring buffer, minus the sum of
2922 * the entries read from the ring buffer and the number of
2923 * entries that were overwritten.
2925 static inline unsigned long
2926 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
2928 return local_read(&cpu_buffer
->entries
) -
2929 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
2933 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2934 * @buffer: The ring buffer
2935 * @cpu: The per CPU buffer to read from.
2937 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
2939 unsigned long flags
;
2940 struct ring_buffer_per_cpu
*cpu_buffer
;
2941 struct buffer_page
*bpage
;
2944 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2947 cpu_buffer
= buffer
->buffers
[cpu
];
2948 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2950 * if the tail is on reader_page, oldest time stamp is on the reader
2953 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
2954 bpage
= cpu_buffer
->reader_page
;
2956 bpage
= rb_set_head_page(cpu_buffer
);
2958 ret
= bpage
->page
->time_stamp
;
2959 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2963 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
2966 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2967 * @buffer: The ring buffer
2968 * @cpu: The per CPU buffer to read from.
2970 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
2972 struct ring_buffer_per_cpu
*cpu_buffer
;
2975 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2978 cpu_buffer
= buffer
->buffers
[cpu
];
2979 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
2983 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
2986 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2987 * @buffer: The ring buffer
2988 * @cpu: The per CPU buffer to get the entries from.
2990 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2992 struct ring_buffer_per_cpu
*cpu_buffer
;
2994 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2997 cpu_buffer
= buffer
->buffers
[cpu
];
2999 return rb_num_of_entries(cpu_buffer
);
3001 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3004 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3005 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3006 * @buffer: The ring buffer
3007 * @cpu: The per CPU buffer to get the number of overruns from
3009 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3011 struct ring_buffer_per_cpu
*cpu_buffer
;
3014 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3017 cpu_buffer
= buffer
->buffers
[cpu
];
3018 ret
= local_read(&cpu_buffer
->overrun
);
3022 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3025 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3026 * commits failing due to the buffer wrapping around while there are uncommitted
3027 * events, such as during an interrupt storm.
3028 * @buffer: The ring buffer
3029 * @cpu: The per CPU buffer to get the number of overruns from
3032 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3034 struct ring_buffer_per_cpu
*cpu_buffer
;
3037 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3040 cpu_buffer
= buffer
->buffers
[cpu
];
3041 ret
= local_read(&cpu_buffer
->commit_overrun
);
3045 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3048 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3049 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3050 * @buffer: The ring buffer
3051 * @cpu: The per CPU buffer to get the number of overruns from
3054 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3056 struct ring_buffer_per_cpu
*cpu_buffer
;
3059 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3062 cpu_buffer
= buffer
->buffers
[cpu
];
3063 ret
= local_read(&cpu_buffer
->dropped_events
);
3067 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3070 * ring_buffer_entries - get the number of entries in a buffer
3071 * @buffer: The ring buffer
3073 * Returns the total number of entries in the ring buffer
3076 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3078 struct ring_buffer_per_cpu
*cpu_buffer
;
3079 unsigned long entries
= 0;
3082 /* if you care about this being correct, lock the buffer */
3083 for_each_buffer_cpu(buffer
, cpu
) {
3084 cpu_buffer
= buffer
->buffers
[cpu
];
3085 entries
+= rb_num_of_entries(cpu_buffer
);
3090 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3093 * ring_buffer_overruns - get the number of overruns in buffer
3094 * @buffer: The ring buffer
3096 * Returns the total number of overruns in the ring buffer
3099 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3101 struct ring_buffer_per_cpu
*cpu_buffer
;
3102 unsigned long overruns
= 0;
3105 /* if you care about this being correct, lock the buffer */
3106 for_each_buffer_cpu(buffer
, cpu
) {
3107 cpu_buffer
= buffer
->buffers
[cpu
];
3108 overruns
+= local_read(&cpu_buffer
->overrun
);
3113 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3115 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3117 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3119 /* Iterator usage is expected to have record disabled */
3120 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
3121 iter
->head_page
= rb_set_head_page(cpu_buffer
);
3122 if (unlikely(!iter
->head_page
))
3124 iter
->head
= iter
->head_page
->read
;
3126 iter
->head_page
= cpu_buffer
->reader_page
;
3127 iter
->head
= cpu_buffer
->reader_page
->read
;
3130 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3132 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3133 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
3134 iter
->cache_read
= cpu_buffer
->read
;
3138 * ring_buffer_iter_reset - reset an iterator
3139 * @iter: The iterator to reset
3141 * Resets the iterator, so that it will start from the beginning
3144 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3146 struct ring_buffer_per_cpu
*cpu_buffer
;
3147 unsigned long flags
;
3152 cpu_buffer
= iter
->cpu_buffer
;
3154 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3155 rb_iter_reset(iter
);
3156 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3158 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3161 * ring_buffer_iter_empty - check if an iterator has no more to read
3162 * @iter: The iterator to check
3164 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3166 struct ring_buffer_per_cpu
*cpu_buffer
;
3168 cpu_buffer
= iter
->cpu_buffer
;
3170 return iter
->head_page
== cpu_buffer
->commit_page
&&
3171 iter
->head
== rb_commit_index(cpu_buffer
);
3173 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3176 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3177 struct ring_buffer_event
*event
)
3181 switch (event
->type_len
) {
3182 case RINGBUF_TYPE_PADDING
:
3185 case RINGBUF_TYPE_TIME_EXTEND
:
3186 delta
= event
->array
[0];
3188 delta
+= event
->time_delta
;
3189 cpu_buffer
->read_stamp
+= delta
;
3192 case RINGBUF_TYPE_TIME_STAMP
:
3193 /* FIXME: not implemented */
3196 case RINGBUF_TYPE_DATA
:
3197 cpu_buffer
->read_stamp
+= event
->time_delta
;
3207 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3208 struct ring_buffer_event
*event
)
3212 switch (event
->type_len
) {
3213 case RINGBUF_TYPE_PADDING
:
3216 case RINGBUF_TYPE_TIME_EXTEND
:
3217 delta
= event
->array
[0];
3219 delta
+= event
->time_delta
;
3220 iter
->read_stamp
+= delta
;
3223 case RINGBUF_TYPE_TIME_STAMP
:
3224 /* FIXME: not implemented */
3227 case RINGBUF_TYPE_DATA
:
3228 iter
->read_stamp
+= event
->time_delta
;
3237 static struct buffer_page
*
3238 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3240 struct buffer_page
*reader
= NULL
;
3241 unsigned long overwrite
;
3242 unsigned long flags
;
3246 local_irq_save(flags
);
3247 arch_spin_lock(&cpu_buffer
->lock
);
3251 * This should normally only loop twice. But because the
3252 * start of the reader inserts an empty page, it causes
3253 * a case where we will loop three times. There should be no
3254 * reason to loop four times (that I know of).
3256 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3261 reader
= cpu_buffer
->reader_page
;
3263 /* If there's more to read, return this page */
3264 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3267 /* Never should we have an index greater than the size */
3268 if (RB_WARN_ON(cpu_buffer
,
3269 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3272 /* check if we caught up to the tail */
3274 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3277 /* Don't bother swapping if the ring buffer is empty */
3278 if (rb_num_of_entries(cpu_buffer
) == 0)
3282 * Reset the reader page to size zero.
3284 local_set(&cpu_buffer
->reader_page
->write
, 0);
3285 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3286 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3287 cpu_buffer
->reader_page
->real_end
= 0;
3291 * Splice the empty reader page into the list around the head.
3293 reader
= rb_set_head_page(cpu_buffer
);
3296 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3297 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3300 * cpu_buffer->pages just needs to point to the buffer, it
3301 * has no specific buffer page to point to. Lets move it out
3302 * of our way so we don't accidentally swap it.
3304 cpu_buffer
->pages
= reader
->list
.prev
;
3306 /* The reader page will be pointing to the new head */
3307 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3310 * We want to make sure we read the overruns after we set up our
3311 * pointers to the next object. The writer side does a
3312 * cmpxchg to cross pages which acts as the mb on the writer
3313 * side. Note, the reader will constantly fail the swap
3314 * while the writer is updating the pointers, so this
3315 * guarantees that the overwrite recorded here is the one we
3316 * want to compare with the last_overrun.
3319 overwrite
= local_read(&(cpu_buffer
->overrun
));
3322 * Here's the tricky part.
3324 * We need to move the pointer past the header page.
3325 * But we can only do that if a writer is not currently
3326 * moving it. The page before the header page has the
3327 * flag bit '1' set if it is pointing to the page we want.
3328 * but if the writer is in the process of moving it
3329 * than it will be '2' or already moved '0'.
3332 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3335 * If we did not convert it, then we must try again.
3341 * Yeah! We succeeded in replacing the page.
3343 * Now make the new head point back to the reader page.
3345 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3346 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3348 /* Finally update the reader page to the new head */
3349 cpu_buffer
->reader_page
= reader
;
3350 rb_reset_reader_page(cpu_buffer
);
3352 if (overwrite
!= cpu_buffer
->last_overrun
) {
3353 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3354 cpu_buffer
->last_overrun
= overwrite
;
3360 arch_spin_unlock(&cpu_buffer
->lock
);
3361 local_irq_restore(flags
);
3366 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3368 struct ring_buffer_event
*event
;
3369 struct buffer_page
*reader
;
3372 reader
= rb_get_reader_page(cpu_buffer
);
3374 /* This function should not be called when buffer is empty */
3375 if (RB_WARN_ON(cpu_buffer
, !reader
))
3378 event
= rb_reader_event(cpu_buffer
);
3380 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3383 rb_update_read_stamp(cpu_buffer
, event
);
3385 length
= rb_event_length(event
);
3386 cpu_buffer
->reader_page
->read
+= length
;
3389 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3391 struct ring_buffer_per_cpu
*cpu_buffer
;
3392 struct ring_buffer_event
*event
;
3395 cpu_buffer
= iter
->cpu_buffer
;
3398 * Check if we are at the end of the buffer.
3400 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3401 /* discarded commits can make the page empty */
3402 if (iter
->head_page
== cpu_buffer
->commit_page
)
3408 event
= rb_iter_head_event(iter
);
3410 length
= rb_event_length(event
);
3413 * This should not be called to advance the header if we are
3414 * at the tail of the buffer.
3416 if (RB_WARN_ON(cpu_buffer
,
3417 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3418 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3421 rb_update_iter_read_stamp(iter
, event
);
3423 iter
->head
+= length
;
3425 /* check for end of page padding */
3426 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3427 (iter
->head_page
!= cpu_buffer
->commit_page
))
3428 rb_advance_iter(iter
);
3431 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3433 return cpu_buffer
->lost_events
;
3436 static struct ring_buffer_event
*
3437 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3438 unsigned long *lost_events
)
3440 struct ring_buffer_event
*event
;
3441 struct buffer_page
*reader
;
3446 * We repeat when a time extend is encountered.
3447 * Since the time extend is always attached to a data event,
3448 * we should never loop more than once.
3449 * (We never hit the following condition more than twice).
3451 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3454 reader
= rb_get_reader_page(cpu_buffer
);
3458 event
= rb_reader_event(cpu_buffer
);
3460 switch (event
->type_len
) {
3461 case RINGBUF_TYPE_PADDING
:
3462 if (rb_null_event(event
))
3463 RB_WARN_ON(cpu_buffer
, 1);
3465 * Because the writer could be discarding every
3466 * event it creates (which would probably be bad)
3467 * if we were to go back to "again" then we may never
3468 * catch up, and will trigger the warn on, or lock
3469 * the box. Return the padding, and we will release
3470 * the current locks, and try again.
3474 case RINGBUF_TYPE_TIME_EXTEND
:
3475 /* Internal data, OK to advance */
3476 rb_advance_reader(cpu_buffer
);
3479 case RINGBUF_TYPE_TIME_STAMP
:
3480 /* FIXME: not implemented */
3481 rb_advance_reader(cpu_buffer
);
3484 case RINGBUF_TYPE_DATA
:
3486 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3487 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3488 cpu_buffer
->cpu
, ts
);
3491 *lost_events
= rb_lost_events(cpu_buffer
);
3500 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3502 static struct ring_buffer_event
*
3503 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3505 struct ring_buffer
*buffer
;
3506 struct ring_buffer_per_cpu
*cpu_buffer
;
3507 struct ring_buffer_event
*event
;
3510 cpu_buffer
= iter
->cpu_buffer
;
3511 buffer
= cpu_buffer
->buffer
;
3514 * Check if someone performed a consuming read to
3515 * the buffer. A consuming read invalidates the iterator
3516 * and we need to reset the iterator in this case.
3518 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3519 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3520 rb_iter_reset(iter
);
3523 if (ring_buffer_iter_empty(iter
))
3527 * We repeat when a time extend is encountered.
3528 * Since the time extend is always attached to a data event,
3529 * we should never loop more than once.
3530 * (We never hit the following condition more than twice).
3532 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3535 if (rb_per_cpu_empty(cpu_buffer
))
3538 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3543 event
= rb_iter_head_event(iter
);
3545 switch (event
->type_len
) {
3546 case RINGBUF_TYPE_PADDING
:
3547 if (rb_null_event(event
)) {
3551 rb_advance_iter(iter
);
3554 case RINGBUF_TYPE_TIME_EXTEND
:
3555 /* Internal data, OK to advance */
3556 rb_advance_iter(iter
);
3559 case RINGBUF_TYPE_TIME_STAMP
:
3560 /* FIXME: not implemented */
3561 rb_advance_iter(iter
);
3564 case RINGBUF_TYPE_DATA
:
3566 *ts
= iter
->read_stamp
+ event
->time_delta
;
3567 ring_buffer_normalize_time_stamp(buffer
,
3568 cpu_buffer
->cpu
, ts
);
3578 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3580 static inline int rb_ok_to_lock(void)
3583 * If an NMI die dumps out the content of the ring buffer
3584 * do not grab locks. We also permanently disable the ring
3585 * buffer too. A one time deal is all you get from reading
3586 * the ring buffer from an NMI.
3588 if (likely(!in_nmi()))
3591 tracing_off_permanent();
3596 * ring_buffer_peek - peek at the next event to be read
3597 * @buffer: The ring buffer to read
3598 * @cpu: The cpu to peak at
3599 * @ts: The timestamp counter of this event.
3600 * @lost_events: a variable to store if events were lost (may be NULL)
3602 * This will return the event that will be read next, but does
3603 * not consume the data.
3605 struct ring_buffer_event
*
3606 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3607 unsigned long *lost_events
)
3609 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3610 struct ring_buffer_event
*event
;
3611 unsigned long flags
;
3614 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3617 dolock
= rb_ok_to_lock();
3619 local_irq_save(flags
);
3621 raw_spin_lock(&cpu_buffer
->reader_lock
);
3622 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3623 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3624 rb_advance_reader(cpu_buffer
);
3626 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3627 local_irq_restore(flags
);
3629 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3636 * ring_buffer_iter_peek - peek at the next event to be read
3637 * @iter: The ring buffer iterator
3638 * @ts: The timestamp counter of this event.
3640 * This will return the event that will be read next, but does
3641 * not increment the iterator.
3643 struct ring_buffer_event
*
3644 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3646 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3647 struct ring_buffer_event
*event
;
3648 unsigned long flags
;
3651 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3652 event
= rb_iter_peek(iter
, ts
);
3653 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3655 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3662 * ring_buffer_consume - return an event and consume it
3663 * @buffer: The ring buffer to get the next event from
3664 * @cpu: the cpu to read the buffer from
3665 * @ts: a variable to store the timestamp (may be NULL)
3666 * @lost_events: a variable to store if events were lost (may be NULL)
3668 * Returns the next event in the ring buffer, and that event is consumed.
3669 * Meaning, that sequential reads will keep returning a different event,
3670 * and eventually empty the ring buffer if the producer is slower.
3672 struct ring_buffer_event
*
3673 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3674 unsigned long *lost_events
)
3676 struct ring_buffer_per_cpu
*cpu_buffer
;
3677 struct ring_buffer_event
*event
= NULL
;
3678 unsigned long flags
;
3681 dolock
= rb_ok_to_lock();
3684 /* might be called in atomic */
3687 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3690 cpu_buffer
= buffer
->buffers
[cpu
];
3691 local_irq_save(flags
);
3693 raw_spin_lock(&cpu_buffer
->reader_lock
);
3695 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3697 cpu_buffer
->lost_events
= 0;
3698 rb_advance_reader(cpu_buffer
);
3702 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3703 local_irq_restore(flags
);
3708 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3713 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3716 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3717 * @buffer: The ring buffer to read from
3718 * @cpu: The cpu buffer to iterate over
3720 * This performs the initial preparations necessary to iterate
3721 * through the buffer. Memory is allocated, buffer recording
3722 * is disabled, and the iterator pointer is returned to the caller.
3724 * Disabling buffer recordng prevents the reading from being
3725 * corrupted. This is not a consuming read, so a producer is not
3728 * After a sequence of ring_buffer_read_prepare calls, the user is
3729 * expected to make at least one call to ring_buffer_prepare_sync.
3730 * Afterwards, ring_buffer_read_start is invoked to get things going
3733 * This overall must be paired with ring_buffer_finish.
3735 struct ring_buffer_iter
*
3736 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3738 struct ring_buffer_per_cpu
*cpu_buffer
;
3739 struct ring_buffer_iter
*iter
;
3741 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3744 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3748 cpu_buffer
= buffer
->buffers
[cpu
];
3750 iter
->cpu_buffer
= cpu_buffer
;
3752 atomic_inc(&buffer
->resize_disabled
);
3753 atomic_inc(&cpu_buffer
->record_disabled
);
3757 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3760 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3762 * All previously invoked ring_buffer_read_prepare calls to prepare
3763 * iterators will be synchronized. Afterwards, read_buffer_read_start
3764 * calls on those iterators are allowed.
3767 ring_buffer_read_prepare_sync(void)
3769 synchronize_sched();
3771 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
3774 * ring_buffer_read_start - start a non consuming read of the buffer
3775 * @iter: The iterator returned by ring_buffer_read_prepare
3777 * This finalizes the startup of an iteration through the buffer.
3778 * The iterator comes from a call to ring_buffer_read_prepare and
3779 * an intervening ring_buffer_read_prepare_sync must have been
3782 * Must be paired with ring_buffer_finish.
3785 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
3787 struct ring_buffer_per_cpu
*cpu_buffer
;
3788 unsigned long flags
;
3793 cpu_buffer
= iter
->cpu_buffer
;
3795 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3796 arch_spin_lock(&cpu_buffer
->lock
);
3797 rb_iter_reset(iter
);
3798 arch_spin_unlock(&cpu_buffer
->lock
);
3799 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3801 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3804 * ring_buffer_finish - finish reading the iterator of the buffer
3805 * @iter: The iterator retrieved by ring_buffer_start
3807 * This re-enables the recording to the buffer, and frees the
3811 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3813 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3814 unsigned long flags
;
3817 * Ring buffer is disabled from recording, here's a good place
3818 * to check the integrity of the ring buffer.
3819 * Must prevent readers from trying to read, as the check
3820 * clears the HEAD page and readers require it.
3822 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3823 rb_check_pages(cpu_buffer
);
3824 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3826 atomic_dec(&cpu_buffer
->record_disabled
);
3827 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
3830 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3833 * ring_buffer_read - read the next item in the ring buffer by the iterator
3834 * @iter: The ring buffer iterator
3835 * @ts: The time stamp of the event read.
3837 * This reads the next event in the ring buffer and increments the iterator.
3839 struct ring_buffer_event
*
3840 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3842 struct ring_buffer_event
*event
;
3843 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3844 unsigned long flags
;
3846 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3848 event
= rb_iter_peek(iter
, ts
);
3852 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3855 rb_advance_iter(iter
);
3857 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3861 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3864 * ring_buffer_size - return the size of the ring buffer (in bytes)
3865 * @buffer: The ring buffer.
3867 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
3870 * Earlier, this method returned
3871 * BUF_PAGE_SIZE * buffer->nr_pages
3872 * Since the nr_pages field is now removed, we have converted this to
3873 * return the per cpu buffer value.
3875 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3878 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
3880 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3883 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3885 rb_head_page_deactivate(cpu_buffer
);
3887 cpu_buffer
->head_page
3888 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3889 local_set(&cpu_buffer
->head_page
->write
, 0);
3890 local_set(&cpu_buffer
->head_page
->entries
, 0);
3891 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3893 cpu_buffer
->head_page
->read
= 0;
3895 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3896 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3898 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3899 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
3900 local_set(&cpu_buffer
->reader_page
->write
, 0);
3901 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3902 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3903 cpu_buffer
->reader_page
->read
= 0;
3905 local_set(&cpu_buffer
->entries_bytes
, 0);
3906 local_set(&cpu_buffer
->overrun
, 0);
3907 local_set(&cpu_buffer
->commit_overrun
, 0);
3908 local_set(&cpu_buffer
->dropped_events
, 0);
3909 local_set(&cpu_buffer
->entries
, 0);
3910 local_set(&cpu_buffer
->committing
, 0);
3911 local_set(&cpu_buffer
->commits
, 0);
3912 cpu_buffer
->read
= 0;
3913 cpu_buffer
->read_bytes
= 0;
3915 cpu_buffer
->write_stamp
= 0;
3916 cpu_buffer
->read_stamp
= 0;
3918 cpu_buffer
->lost_events
= 0;
3919 cpu_buffer
->last_overrun
= 0;
3921 rb_head_page_activate(cpu_buffer
);
3925 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3926 * @buffer: The ring buffer to reset a per cpu buffer of
3927 * @cpu: The CPU buffer to be reset
3929 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3931 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3932 unsigned long flags
;
3934 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3937 atomic_inc(&buffer
->resize_disabled
);
3938 atomic_inc(&cpu_buffer
->record_disabled
);
3940 /* Make sure all commits have finished */
3941 synchronize_sched();
3943 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3945 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3948 arch_spin_lock(&cpu_buffer
->lock
);
3950 rb_reset_cpu(cpu_buffer
);
3952 arch_spin_unlock(&cpu_buffer
->lock
);
3955 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3957 atomic_dec(&cpu_buffer
->record_disabled
);
3958 atomic_dec(&buffer
->resize_disabled
);
3960 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3963 * ring_buffer_reset - reset a ring buffer
3964 * @buffer: The ring buffer to reset all cpu buffers
3966 void ring_buffer_reset(struct ring_buffer
*buffer
)
3970 for_each_buffer_cpu(buffer
, cpu
)
3971 ring_buffer_reset_cpu(buffer
, cpu
);
3973 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3976 * rind_buffer_empty - is the ring buffer empty?
3977 * @buffer: The ring buffer to test
3979 int ring_buffer_empty(struct ring_buffer
*buffer
)
3981 struct ring_buffer_per_cpu
*cpu_buffer
;
3982 unsigned long flags
;
3987 dolock
= rb_ok_to_lock();
3989 /* yes this is racy, but if you don't like the race, lock the buffer */
3990 for_each_buffer_cpu(buffer
, cpu
) {
3991 cpu_buffer
= buffer
->buffers
[cpu
];
3992 local_irq_save(flags
);
3994 raw_spin_lock(&cpu_buffer
->reader_lock
);
3995 ret
= rb_per_cpu_empty(cpu_buffer
);
3997 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3998 local_irq_restore(flags
);
4006 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4009 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4010 * @buffer: The ring buffer
4011 * @cpu: The CPU buffer to test
4013 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4015 struct ring_buffer_per_cpu
*cpu_buffer
;
4016 unsigned long flags
;
4020 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4023 dolock
= rb_ok_to_lock();
4025 cpu_buffer
= buffer
->buffers
[cpu
];
4026 local_irq_save(flags
);
4028 raw_spin_lock(&cpu_buffer
->reader_lock
);
4029 ret
= rb_per_cpu_empty(cpu_buffer
);
4031 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4032 local_irq_restore(flags
);
4036 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4038 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4040 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4041 * @buffer_a: One buffer to swap with
4042 * @buffer_b: The other buffer to swap with
4044 * This function is useful for tracers that want to take a "snapshot"
4045 * of a CPU buffer and has another back up buffer lying around.
4046 * it is expected that the tracer handles the cpu buffer not being
4047 * used at the moment.
4049 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4050 struct ring_buffer
*buffer_b
, int cpu
)
4052 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4053 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4056 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4057 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4060 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4061 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4063 /* At least make sure the two buffers are somewhat the same */
4064 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4069 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
4072 if (atomic_read(&buffer_a
->record_disabled
))
4075 if (atomic_read(&buffer_b
->record_disabled
))
4078 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4081 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4085 * We can't do a synchronize_sched here because this
4086 * function can be called in atomic context.
4087 * Normally this will be called from the same CPU as cpu.
4088 * If not it's up to the caller to protect this.
4090 atomic_inc(&cpu_buffer_a
->record_disabled
);
4091 atomic_inc(&cpu_buffer_b
->record_disabled
);
4094 if (local_read(&cpu_buffer_a
->committing
))
4096 if (local_read(&cpu_buffer_b
->committing
))
4099 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4100 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4102 cpu_buffer_b
->buffer
= buffer_a
;
4103 cpu_buffer_a
->buffer
= buffer_b
;
4108 atomic_dec(&cpu_buffer_a
->record_disabled
);
4109 atomic_dec(&cpu_buffer_b
->record_disabled
);
4113 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4114 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4117 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4118 * @buffer: the buffer to allocate for.
4120 * This function is used in conjunction with ring_buffer_read_page.
4121 * When reading a full page from the ring buffer, these functions
4122 * can be used to speed up the process. The calling function should
4123 * allocate a few pages first with this function. Then when it
4124 * needs to get pages from the ring buffer, it passes the result
4125 * of this function into ring_buffer_read_page, which will swap
4126 * the page that was allocated, with the read page of the buffer.
4129 * The page allocated, or NULL on error.
4131 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4133 struct buffer_data_page
*bpage
;
4136 page
= alloc_pages_node(cpu_to_node(cpu
),
4137 GFP_KERNEL
| __GFP_NORETRY
, 0);
4141 bpage
= page_address(page
);
4143 rb_init_page(bpage
);
4147 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4150 * ring_buffer_free_read_page - free an allocated read page
4151 * @buffer: the buffer the page was allocate for
4152 * @data: the page to free
4154 * Free a page allocated from ring_buffer_alloc_read_page.
4156 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4158 free_page((unsigned long)data
);
4160 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4163 * ring_buffer_read_page - extract a page from the ring buffer
4164 * @buffer: buffer to extract from
4165 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4166 * @len: amount to extract
4167 * @cpu: the cpu of the buffer to extract
4168 * @full: should the extraction only happen when the page is full.
4170 * This function will pull out a page from the ring buffer and consume it.
4171 * @data_page must be the address of the variable that was returned
4172 * from ring_buffer_alloc_read_page. This is because the page might be used
4173 * to swap with a page in the ring buffer.
4176 * rpage = ring_buffer_alloc_read_page(buffer);
4179 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4181 * process_page(rpage, ret);
4183 * When @full is set, the function will not return true unless
4184 * the writer is off the reader page.
4186 * Note: it is up to the calling functions to handle sleeps and wakeups.
4187 * The ring buffer can be used anywhere in the kernel and can not
4188 * blindly call wake_up. The layer that uses the ring buffer must be
4189 * responsible for that.
4192 * >=0 if data has been transferred, returns the offset of consumed data.
4193 * <0 if no data has been transferred.
4195 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4196 void **data_page
, size_t len
, int cpu
, int full
)
4198 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4199 struct ring_buffer_event
*event
;
4200 struct buffer_data_page
*bpage
;
4201 struct buffer_page
*reader
;
4202 unsigned long missed_events
;
4203 unsigned long flags
;
4204 unsigned int commit
;
4209 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4213 * If len is not big enough to hold the page header, then
4214 * we can not copy anything.
4216 if (len
<= BUF_PAGE_HDR_SIZE
)
4219 len
-= BUF_PAGE_HDR_SIZE
;
4228 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4230 reader
= rb_get_reader_page(cpu_buffer
);
4234 event
= rb_reader_event(cpu_buffer
);
4236 read
= reader
->read
;
4237 commit
= rb_page_commit(reader
);
4239 /* Check if any events were dropped */
4240 missed_events
= cpu_buffer
->lost_events
;
4243 * If this page has been partially read or
4244 * if len is not big enough to read the rest of the page or
4245 * a writer is still on the page, then
4246 * we must copy the data from the page to the buffer.
4247 * Otherwise, we can simply swap the page with the one passed in.
4249 if (read
|| (len
< (commit
- read
)) ||
4250 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4251 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4252 unsigned int rpos
= read
;
4253 unsigned int pos
= 0;
4259 if (len
> (commit
- read
))
4260 len
= (commit
- read
);
4262 /* Always keep the time extend and data together */
4263 size
= rb_event_ts_length(event
);
4268 /* save the current timestamp, since the user will need it */
4269 save_timestamp
= cpu_buffer
->read_stamp
;
4271 /* Need to copy one event at a time */
4273 /* We need the size of one event, because
4274 * rb_advance_reader only advances by one event,
4275 * whereas rb_event_ts_length may include the size of
4276 * one or two events.
4277 * We have already ensured there's enough space if this
4278 * is a time extend. */
4279 size
= rb_event_length(event
);
4280 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4284 rb_advance_reader(cpu_buffer
);
4285 rpos
= reader
->read
;
4291 event
= rb_reader_event(cpu_buffer
);
4292 /* Always keep the time extend and data together */
4293 size
= rb_event_ts_length(event
);
4294 } while (len
>= size
);
4297 local_set(&bpage
->commit
, pos
);
4298 bpage
->time_stamp
= save_timestamp
;
4300 /* we copied everything to the beginning */
4303 /* update the entry counter */
4304 cpu_buffer
->read
+= rb_page_entries(reader
);
4305 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4307 /* swap the pages */
4308 rb_init_page(bpage
);
4309 bpage
= reader
->page
;
4310 reader
->page
= *data_page
;
4311 local_set(&reader
->write
, 0);
4312 local_set(&reader
->entries
, 0);
4317 * Use the real_end for the data size,
4318 * This gives us a chance to store the lost events
4321 if (reader
->real_end
)
4322 local_set(&bpage
->commit
, reader
->real_end
);
4326 cpu_buffer
->lost_events
= 0;
4328 commit
= local_read(&bpage
->commit
);
4330 * Set a flag in the commit field if we lost events
4332 if (missed_events
) {
4333 /* If there is room at the end of the page to save the
4334 * missed events, then record it there.
4336 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4337 memcpy(&bpage
->data
[commit
], &missed_events
,
4338 sizeof(missed_events
));
4339 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4340 commit
+= sizeof(missed_events
);
4342 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4346 * This page may be off to user land. Zero it out here.
4348 if (commit
< BUF_PAGE_SIZE
)
4349 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4352 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4357 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4359 #ifdef CONFIG_HOTPLUG_CPU
4360 static int rb_cpu_notify(struct notifier_block
*self
,
4361 unsigned long action
, void *hcpu
)
4363 struct ring_buffer
*buffer
=
4364 container_of(self
, struct ring_buffer
, cpu_notify
);
4365 long cpu
= (long)hcpu
;
4366 int cpu_i
, nr_pages_same
;
4367 unsigned int nr_pages
;
4370 case CPU_UP_PREPARE
:
4371 case CPU_UP_PREPARE_FROZEN
:
4372 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4377 /* check if all cpu sizes are same */
4378 for_each_buffer_cpu(buffer
, cpu_i
) {
4379 /* fill in the size from first enabled cpu */
4381 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4382 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4387 /* allocate minimum pages, user can later expand it */
4390 buffer
->buffers
[cpu
] =
4391 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4392 if (!buffer
->buffers
[cpu
]) {
4393 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4398 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4400 case CPU_DOWN_PREPARE
:
4401 case CPU_DOWN_PREPARE_FROZEN
:
4404 * If we were to free the buffer, then the user would
4405 * lose any trace that was in the buffer.