2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
57 #include <trace/events/rcu.h>
61 /* Data structures. */
63 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
65 #define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
74 .fqs_state = RCU_GP_IDLE, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
80 .n_force_qs_ngp = 0, \
81 .name = #structname, \
84 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched
);
85 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
87 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh
);
88 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
90 static struct rcu_state
*rcu_state
;
93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking.
101 int rcu_scheduler_active __read_mostly
;
102 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point.
112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at
116 static int rcu_scheduler_fully_active __read_mostly
;
118 #ifdef CONFIG_RCU_BOOST
121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU.
124 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
126 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
128 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
130 #endif /* #ifdef CONFIG_RCU_BOOST */
132 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
133 static void invoke_rcu_core(void);
134 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
145 unsigned long rcutorture_testseq
;
146 unsigned long rcutorture_vernum
;
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
153 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
155 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption.
164 void rcu_sched_qs(int cpu
)
166 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
168 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
170 if (rdp
->passed_quiesce
== 0)
171 trace_rcu_grace_period("rcu_sched", rdp
->gpnum
, "cpuqs");
172 rdp
->passed_quiesce
= 1;
175 void rcu_bh_qs(int cpu
)
177 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
179 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
181 if (rdp
->passed_quiesce
== 0)
182 trace_rcu_grace_period("rcu_bh", rdp
->gpnum
, "cpuqs");
183 rdp
->passed_quiesce
= 1;
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
189 * The caller must have disabled preemption.
191 void rcu_note_context_switch(int cpu
)
193 trace_rcu_utilization("Start context switch");
195 rcu_preempt_note_context_switch(cpu
);
196 trace_rcu_utilization("End context switch");
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
200 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
201 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
202 .dynticks
= ATOMIC_INIT(1),
205 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
206 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
207 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
209 module_param(blimit
, long, 0);
210 module_param(qhimark
, long, 0);
211 module_param(qlowmark
, long, 0);
213 int rcu_cpu_stall_suppress __read_mostly
; /* 1 = suppress stall warnings. */
214 int rcu_cpu_stall_timeout __read_mostly
= CONFIG_RCU_CPU_STALL_TIMEOUT
;
216 module_param(rcu_cpu_stall_suppress
, int, 0644);
217 module_param(rcu_cpu_stall_timeout
, int, 0644);
219 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
220 static int rcu_pending(int cpu
);
223 * Return the number of RCU-sched batches processed thus far for debug & stats.
225 long rcu_batches_completed_sched(void)
227 return rcu_sched_state
.completed
;
229 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
232 * Return the number of RCU BH batches processed thus far for debug & stats.
234 long rcu_batches_completed_bh(void)
236 return rcu_bh_state
.completed
;
238 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
241 * Force a quiescent state for RCU BH.
243 void rcu_bh_force_quiescent_state(void)
245 force_quiescent_state(&rcu_bh_state
, 0);
247 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
250 * Record the number of times rcutorture tests have been initiated and
251 * terminated. This information allows the debugfs tracing stats to be
252 * correlated to the rcutorture messages, even when the rcutorture module
253 * is being repeatedly loaded and unloaded. In other words, we cannot
254 * store this state in rcutorture itself.
256 void rcutorture_record_test_transition(void)
258 rcutorture_testseq
++;
259 rcutorture_vernum
= 0;
261 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
264 * Record the number of writer passes through the current rcutorture test.
265 * This is also used to correlate debugfs tracing stats with the rcutorture
268 void rcutorture_record_progress(unsigned long vernum
)
272 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
275 * Force a quiescent state for RCU-sched.
277 void rcu_sched_force_quiescent_state(void)
279 force_quiescent_state(&rcu_sched_state
, 0);
281 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
284 * Does the CPU have callbacks ready to be invoked?
287 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
289 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
293 * Does the current CPU require a yet-as-unscheduled grace period?
296 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
298 return *rdp
->nxttail
[RCU_DONE_TAIL
+
299 ACCESS_ONCE(rsp
->completed
) != rdp
->completed
] &&
300 !rcu_gp_in_progress(rsp
);
304 * Return the root node of the specified rcu_state structure.
306 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
308 return &rsp
->node
[0];
312 * If the specified CPU is offline, tell the caller that it is in
313 * a quiescent state. Otherwise, whack it with a reschedule IPI.
314 * Grace periods can end up waiting on an offline CPU when that
315 * CPU is in the process of coming online -- it will be added to the
316 * rcu_node bitmasks before it actually makes it online. The same thing
317 * can happen while a CPU is in the process of coming online. Because this
318 * race is quite rare, we check for it after detecting that the grace
319 * period has been delayed rather than checking each and every CPU
320 * each and every time we start a new grace period.
322 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
325 * If the CPU is offline for more than a jiffy, it is in a quiescent
326 * state. We can trust its state not to change because interrupts
327 * are disabled. The reason for the jiffy's worth of slack is to
328 * handle CPUs initializing on the way up and finding their way
329 * to the idle loop on the way down.
331 if (cpu_is_offline(rdp
->cpu
) &&
332 ULONG_CMP_LT(rdp
->rsp
->gp_start
+ 2, jiffies
)) {
333 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "ofl");
341 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
343 * If the new value of the ->dynticks_nesting counter now is zero,
344 * we really have entered idle, and must do the appropriate accounting.
345 * The caller must have disabled interrupts.
347 static void rcu_idle_enter_common(struct rcu_dynticks
*rdtp
, long long oldval
)
349 trace_rcu_dyntick("Start", oldval
, 0);
350 if (!is_idle_task(current
)) {
351 struct task_struct
*idle
= idle_task(smp_processor_id());
353 trace_rcu_dyntick("Error on entry: not idle task", oldval
, 0);
354 ftrace_dump(DUMP_ALL
);
355 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
356 current
->pid
, current
->comm
,
357 idle
->pid
, idle
->comm
); /* must be idle task! */
359 rcu_prepare_for_idle(smp_processor_id());
360 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
361 smp_mb__before_atomic_inc(); /* See above. */
362 atomic_inc(&rdtp
->dynticks
);
363 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
364 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
367 * The idle task is not permitted to enter the idle loop while
368 * in an RCU read-side critical section.
370 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map
),
371 "Illegal idle entry in RCU read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
),
373 "Illegal idle entry in RCU-bh read-side critical section.");
374 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map
),
375 "Illegal idle entry in RCU-sched read-side critical section.");
379 * rcu_idle_enter - inform RCU that current CPU is entering idle
381 * Enter idle mode, in other words, -leave- the mode in which RCU
382 * read-side critical sections can occur. (Though RCU read-side
383 * critical sections can occur in irq handlers in idle, a possibility
384 * handled by irq_enter() and irq_exit().)
386 * We crowbar the ->dynticks_nesting field to zero to allow for
387 * the possibility of usermode upcalls having messed up our count
388 * of interrupt nesting level during the prior busy period.
390 void rcu_idle_enter(void)
394 struct rcu_dynticks
*rdtp
;
396 local_irq_save(flags
);
397 rdtp
= &__get_cpu_var(rcu_dynticks
);
398 oldval
= rdtp
->dynticks_nesting
;
399 WARN_ON_ONCE((oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
400 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
)
401 rdtp
->dynticks_nesting
= 0;
403 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
404 rcu_idle_enter_common(rdtp
, oldval
);
405 local_irq_restore(flags
);
407 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
410 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
412 * Exit from an interrupt handler, which might possibly result in entering
413 * idle mode, in other words, leaving the mode in which read-side critical
414 * sections can occur.
416 * This code assumes that the idle loop never does anything that might
417 * result in unbalanced calls to irq_enter() and irq_exit(). If your
418 * architecture violates this assumption, RCU will give you what you
419 * deserve, good and hard. But very infrequently and irreproducibly.
421 * Use things like work queues to work around this limitation.
423 * You have been warned.
425 void rcu_irq_exit(void)
429 struct rcu_dynticks
*rdtp
;
431 local_irq_save(flags
);
432 rdtp
= &__get_cpu_var(rcu_dynticks
);
433 oldval
= rdtp
->dynticks_nesting
;
434 rdtp
->dynticks_nesting
--;
435 WARN_ON_ONCE(rdtp
->dynticks_nesting
< 0);
436 if (rdtp
->dynticks_nesting
)
437 trace_rcu_dyntick("--=", oldval
, rdtp
->dynticks_nesting
);
439 rcu_idle_enter_common(rdtp
, oldval
);
440 local_irq_restore(flags
);
444 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
446 * If the new value of the ->dynticks_nesting counter was previously zero,
447 * we really have exited idle, and must do the appropriate accounting.
448 * The caller must have disabled interrupts.
450 static void rcu_idle_exit_common(struct rcu_dynticks
*rdtp
, long long oldval
)
452 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
453 atomic_inc(&rdtp
->dynticks
);
454 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
455 smp_mb__after_atomic_inc(); /* See above. */
456 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
457 rcu_cleanup_after_idle(smp_processor_id());
458 trace_rcu_dyntick("End", oldval
, rdtp
->dynticks_nesting
);
459 if (!is_idle_task(current
)) {
460 struct task_struct
*idle
= idle_task(smp_processor_id());
462 trace_rcu_dyntick("Error on exit: not idle task",
463 oldval
, rdtp
->dynticks_nesting
);
464 ftrace_dump(DUMP_ALL
);
465 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
466 current
->pid
, current
->comm
,
467 idle
->pid
, idle
->comm
); /* must be idle task! */
472 * rcu_idle_exit - inform RCU that current CPU is leaving idle
474 * Exit idle mode, in other words, -enter- the mode in which RCU
475 * read-side critical sections can occur.
477 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
478 * allow for the possibility of usermode upcalls messing up our count
479 * of interrupt nesting level during the busy period that is just
482 void rcu_idle_exit(void)
485 struct rcu_dynticks
*rdtp
;
488 local_irq_save(flags
);
489 rdtp
= &__get_cpu_var(rcu_dynticks
);
490 oldval
= rdtp
->dynticks_nesting
;
491 WARN_ON_ONCE(oldval
< 0);
492 if (oldval
& DYNTICK_TASK_NEST_MASK
)
493 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
495 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
496 rcu_idle_exit_common(rdtp
, oldval
);
497 local_irq_restore(flags
);
499 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
502 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
504 * Enter an interrupt handler, which might possibly result in exiting
505 * idle mode, in other words, entering the mode in which read-side critical
506 * sections can occur.
508 * Note that the Linux kernel is fully capable of entering an interrupt
509 * handler that it never exits, for example when doing upcalls to
510 * user mode! This code assumes that the idle loop never does upcalls to
511 * user mode. If your architecture does do upcalls from the idle loop (or
512 * does anything else that results in unbalanced calls to the irq_enter()
513 * and irq_exit() functions), RCU will give you what you deserve, good
514 * and hard. But very infrequently and irreproducibly.
516 * Use things like work queues to work around this limitation.
518 * You have been warned.
520 void rcu_irq_enter(void)
523 struct rcu_dynticks
*rdtp
;
526 local_irq_save(flags
);
527 rdtp
= &__get_cpu_var(rcu_dynticks
);
528 oldval
= rdtp
->dynticks_nesting
;
529 rdtp
->dynticks_nesting
++;
530 WARN_ON_ONCE(rdtp
->dynticks_nesting
== 0);
532 trace_rcu_dyntick("++=", oldval
, rdtp
->dynticks_nesting
);
534 rcu_idle_exit_common(rdtp
, oldval
);
535 local_irq_restore(flags
);
539 * rcu_nmi_enter - inform RCU of entry to NMI context
541 * If the CPU was idle with dynamic ticks active, and there is no
542 * irq handler running, this updates rdtp->dynticks_nmi to let the
543 * RCU grace-period handling know that the CPU is active.
545 void rcu_nmi_enter(void)
547 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
549 if (rdtp
->dynticks_nmi_nesting
== 0 &&
550 (atomic_read(&rdtp
->dynticks
) & 0x1))
552 rdtp
->dynticks_nmi_nesting
++;
553 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
554 atomic_inc(&rdtp
->dynticks
);
555 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
556 smp_mb__after_atomic_inc(); /* See above. */
557 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
561 * rcu_nmi_exit - inform RCU of exit from NMI context
563 * If the CPU was idle with dynamic ticks active, and there is no
564 * irq handler running, this updates rdtp->dynticks_nmi to let the
565 * RCU grace-period handling know that the CPU is no longer active.
567 void rcu_nmi_exit(void)
569 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
571 if (rdtp
->dynticks_nmi_nesting
== 0 ||
572 --rdtp
->dynticks_nmi_nesting
!= 0)
574 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
575 smp_mb__before_atomic_inc(); /* See above. */
576 atomic_inc(&rdtp
->dynticks
);
577 smp_mb__after_atomic_inc(); /* Force delay to next write. */
578 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
581 #ifdef CONFIG_PROVE_RCU
584 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
586 * If the current CPU is in its idle loop and is neither in an interrupt
587 * or NMI handler, return true.
589 int rcu_is_cpu_idle(void)
594 ret
= (atomic_read(&__get_cpu_var(rcu_dynticks
).dynticks
) & 0x1) == 0;
598 EXPORT_SYMBOL(rcu_is_cpu_idle
);
600 #ifdef CONFIG_HOTPLUG_CPU
603 * Is the current CPU online? Disable preemption to avoid false positives
604 * that could otherwise happen due to the current CPU number being sampled,
605 * this task being preempted, its old CPU being taken offline, resuming
606 * on some other CPU, then determining that its old CPU is now offline.
607 * It is OK to use RCU on an offline processor during initial boot, hence
608 * the check for rcu_scheduler_fully_active. Note also that it is OK
609 * for a CPU coming online to use RCU for one jiffy prior to marking itself
610 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
611 * offline to continue to use RCU for one jiffy after marking itself
612 * offline in the cpu_online_mask. This leniency is necessary given the
613 * non-atomic nature of the online and offline processing, for example,
614 * the fact that a CPU enters the scheduler after completing the CPU_DYING
617 * This is also why RCU internally marks CPUs online during the
618 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
620 * Disable checking if in an NMI handler because we cannot safely report
621 * errors from NMI handlers anyway.
623 bool rcu_lockdep_current_cpu_online(void)
625 struct rcu_data
*rdp
;
626 struct rcu_node
*rnp
;
632 rdp
= &__get_cpu_var(rcu_sched_data
);
634 ret
= (rdp
->grpmask
& rnp
->qsmaskinit
) ||
635 !rcu_scheduler_fully_active
;
639 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
641 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643 #endif /* #ifdef CONFIG_PROVE_RCU */
646 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
648 * If the current CPU is idle or running at a first-level (not nested)
649 * interrupt from idle, return true. The caller must have at least
650 * disabled preemption.
652 int rcu_is_cpu_rrupt_from_idle(void)
654 return __get_cpu_var(rcu_dynticks
).dynticks_nesting
<= 1;
658 * Snapshot the specified CPU's dynticks counter so that we can later
659 * credit them with an implicit quiescent state. Return 1 if this CPU
660 * is in dynticks idle mode, which is an extended quiescent state.
662 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
664 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
665 return (rdp
->dynticks_snap
& 0x1) == 0;
669 * Return true if the specified CPU has passed through a quiescent
670 * state by virtue of being in or having passed through an dynticks
671 * idle state since the last call to dyntick_save_progress_counter()
674 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
679 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
680 snap
= (unsigned int)rdp
->dynticks_snap
;
683 * If the CPU passed through or entered a dynticks idle phase with
684 * no active irq/NMI handlers, then we can safely pretend that the CPU
685 * already acknowledged the request to pass through a quiescent
686 * state. Either way, that CPU cannot possibly be in an RCU
687 * read-side critical section that started before the beginning
688 * of the current RCU grace period.
690 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
691 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "dti");
696 /* Go check for the CPU being offline. */
697 return rcu_implicit_offline_qs(rdp
);
700 static int jiffies_till_stall_check(void)
702 int till_stall_check
= ACCESS_ONCE(rcu_cpu_stall_timeout
);
705 * Limit check must be consistent with the Kconfig limits
706 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
708 if (till_stall_check
< 3) {
709 ACCESS_ONCE(rcu_cpu_stall_timeout
) = 3;
710 till_stall_check
= 3;
711 } else if (till_stall_check
> 300) {
712 ACCESS_ONCE(rcu_cpu_stall_timeout
) = 300;
713 till_stall_check
= 300;
715 return till_stall_check
* HZ
+ RCU_STALL_DELAY_DELTA
;
718 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
720 rsp
->gp_start
= jiffies
;
721 rsp
->jiffies_stall
= jiffies
+ jiffies_till_stall_check();
724 static void print_other_cpu_stall(struct rcu_state
*rsp
)
730 struct rcu_node
*rnp
= rcu_get_root(rsp
);
732 /* Only let one CPU complain about others per time interval. */
734 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
735 delta
= jiffies
- rsp
->jiffies_stall
;
736 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
737 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
740 rsp
->jiffies_stall
= jiffies
+ 3 * jiffies_till_stall_check() + 3;
741 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
744 * OK, time to rat on our buddy...
745 * See Documentation/RCU/stallwarn.txt for info on how to debug
746 * RCU CPU stall warnings.
748 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks:",
750 print_cpu_stall_info_begin();
751 rcu_for_each_leaf_node(rsp
, rnp
) {
752 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
753 ndetected
+= rcu_print_task_stall(rnp
);
754 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
755 if (rnp
->qsmask
== 0)
757 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
758 if (rnp
->qsmask
& (1UL << cpu
)) {
759 print_cpu_stall_info(rsp
, rnp
->grplo
+ cpu
);
765 * Now rat on any tasks that got kicked up to the root rcu_node
766 * due to CPU offlining.
768 rnp
= rcu_get_root(rsp
);
769 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
770 ndetected
= rcu_print_task_stall(rnp
);
771 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
773 print_cpu_stall_info_end();
774 printk(KERN_CONT
"(detected by %d, t=%ld jiffies)\n",
775 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
777 printk(KERN_ERR
"INFO: Stall ended before state dump start\n");
778 else if (!trigger_all_cpu_backtrace())
781 /* If so configured, complain about tasks blocking the grace period. */
783 rcu_print_detail_task_stall(rsp
);
785 force_quiescent_state(rsp
, 0); /* Kick them all. */
788 static void print_cpu_stall(struct rcu_state
*rsp
)
791 struct rcu_node
*rnp
= rcu_get_root(rsp
);
794 * OK, time to rat on ourselves...
795 * See Documentation/RCU/stallwarn.txt for info on how to debug
796 * RCU CPU stall warnings.
798 printk(KERN_ERR
"INFO: %s self-detected stall on CPU", rsp
->name
);
799 print_cpu_stall_info_begin();
800 print_cpu_stall_info(rsp
, smp_processor_id());
801 print_cpu_stall_info_end();
802 printk(KERN_CONT
" (t=%lu jiffies)\n", jiffies
- rsp
->gp_start
);
803 if (!trigger_all_cpu_backtrace())
806 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
807 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
808 rsp
->jiffies_stall
= jiffies
+
809 3 * jiffies_till_stall_check() + 3;
810 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
812 set_need_resched(); /* kick ourselves to get things going. */
815 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
819 struct rcu_node
*rnp
;
821 if (rcu_cpu_stall_suppress
)
823 j
= ACCESS_ONCE(jiffies
);
824 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
826 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
828 /* We haven't checked in, so go dump stack. */
829 print_cpu_stall(rsp
);
831 } else if (rcu_gp_in_progress(rsp
) &&
832 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
834 /* They had a few time units to dump stack, so complain. */
835 print_other_cpu_stall(rsp
);
839 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
841 rcu_cpu_stall_suppress
= 1;
846 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
848 * Set the stall-warning timeout way off into the future, thus preventing
849 * any RCU CPU stall-warning messages from appearing in the current set of
852 * The caller must disable hard irqs.
854 void rcu_cpu_stall_reset(void)
856 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
857 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
858 rcu_preempt_stall_reset();
861 static struct notifier_block rcu_panic_block
= {
862 .notifier_call
= rcu_panic
,
865 static void __init
check_cpu_stall_init(void)
867 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
871 * Update CPU-local rcu_data state to record the newly noticed grace period.
872 * This is used both when we started the grace period and when we notice
873 * that someone else started the grace period. The caller must hold the
874 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
875 * and must have irqs disabled.
877 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
879 if (rdp
->gpnum
!= rnp
->gpnum
) {
881 * If the current grace period is waiting for this CPU,
882 * set up to detect a quiescent state, otherwise don't
883 * go looking for one.
885 rdp
->gpnum
= rnp
->gpnum
;
886 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpustart");
887 if (rnp
->qsmask
& rdp
->grpmask
) {
889 rdp
->passed_quiesce
= 0;
892 zero_cpu_stall_ticks(rdp
);
896 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
899 struct rcu_node
*rnp
;
901 local_irq_save(flags
);
903 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
904 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
905 local_irq_restore(flags
);
908 __note_new_gpnum(rsp
, rnp
, rdp
);
909 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
913 * Did someone else start a new RCU grace period start since we last
914 * checked? Update local state appropriately if so. Must be called
915 * on the CPU corresponding to rdp.
918 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
923 local_irq_save(flags
);
924 if (rdp
->gpnum
!= rsp
->gpnum
) {
925 note_new_gpnum(rsp
, rdp
);
928 local_irq_restore(flags
);
933 * Advance this CPU's callbacks, but only if the current grace period
934 * has ended. This may be called only from the CPU to whom the rdp
935 * belongs. In addition, the corresponding leaf rcu_node structure's
936 * ->lock must be held by the caller, with irqs disabled.
939 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
941 /* Did another grace period end? */
942 if (rdp
->completed
!= rnp
->completed
) {
944 /* Advance callbacks. No harm if list empty. */
945 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
946 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
947 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
949 /* Remember that we saw this grace-period completion. */
950 rdp
->completed
= rnp
->completed
;
951 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuend");
954 * If we were in an extended quiescent state, we may have
955 * missed some grace periods that others CPUs handled on
956 * our behalf. Catch up with this state to avoid noting
957 * spurious new grace periods. If another grace period
958 * has started, then rnp->gpnum will have advanced, so
959 * we will detect this later on.
961 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
962 rdp
->gpnum
= rdp
->completed
;
965 * If RCU does not need a quiescent state from this CPU,
966 * then make sure that this CPU doesn't go looking for one.
968 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
974 * Advance this CPU's callbacks, but only if the current grace period
975 * has ended. This may be called only from the CPU to whom the rdp
979 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
982 struct rcu_node
*rnp
;
984 local_irq_save(flags
);
986 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
987 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
988 local_irq_restore(flags
);
991 __rcu_process_gp_end(rsp
, rnp
, rdp
);
992 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
996 * Do per-CPU grace-period initialization for running CPU. The caller
997 * must hold the lock of the leaf rcu_node structure corresponding to
1001 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1003 /* Prior grace period ended, so advance callbacks for current CPU. */
1004 __rcu_process_gp_end(rsp
, rnp
, rdp
);
1007 * Because this CPU just now started the new grace period, we know
1008 * that all of its callbacks will be covered by this upcoming grace
1009 * period, even the ones that were registered arbitrarily recently.
1010 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1012 * Other CPUs cannot be sure exactly when the grace period started.
1013 * Therefore, their recently registered callbacks must pass through
1014 * an additional RCU_NEXT_READY stage, so that they will be handled
1015 * by the next RCU grace period.
1017 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1018 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1020 /* Set state so that this CPU will detect the next quiescent state. */
1021 __note_new_gpnum(rsp
, rnp
, rdp
);
1025 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1026 * in preparation for detecting the next grace period. The caller must hold
1027 * the root node's ->lock, which is released before return. Hard irqs must
1030 * Note that it is legal for a dying CPU (which is marked as offline) to
1031 * invoke this function. This can happen when the dying CPU reports its
1035 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
1036 __releases(rcu_get_root(rsp
)->lock
)
1038 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1039 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1041 if (!rcu_scheduler_fully_active
||
1042 !cpu_needs_another_gp(rsp
, rdp
)) {
1044 * Either the scheduler hasn't yet spawned the first
1045 * non-idle task or this CPU does not need another
1046 * grace period. Either way, don't start a new grace
1049 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1053 if (rsp
->fqs_active
) {
1055 * This CPU needs a grace period, but force_quiescent_state()
1056 * is running. Tell it to start one on this CPU's behalf.
1058 rsp
->fqs_need_gp
= 1;
1059 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1063 /* Advance to a new grace period and initialize state. */
1065 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, "start");
1066 WARN_ON_ONCE(rsp
->fqs_state
== RCU_GP_INIT
);
1067 rsp
->fqs_state
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
1068 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1069 record_gp_stall_check_time(rsp
);
1070 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
1072 /* Exclude any concurrent CPU-hotplug operations. */
1073 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1076 * Set the quiescent-state-needed bits in all the rcu_node
1077 * structures for all currently online CPUs in breadth-first
1078 * order, starting from the root rcu_node structure. This
1079 * operation relies on the layout of the hierarchy within the
1080 * rsp->node[] array. Note that other CPUs will access only
1081 * the leaves of the hierarchy, which still indicate that no
1082 * grace period is in progress, at least until the corresponding
1083 * leaf node has been initialized. In addition, we have excluded
1084 * CPU-hotplug operations.
1086 * Note that the grace period cannot complete until we finish
1087 * the initialization process, as there will be at least one
1088 * qsmask bit set in the root node until that time, namely the
1089 * one corresponding to this CPU, due to the fact that we have
1092 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1093 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1094 rcu_preempt_check_blocked_tasks(rnp
);
1095 rnp
->qsmask
= rnp
->qsmaskinit
;
1096 rnp
->gpnum
= rsp
->gpnum
;
1097 rnp
->completed
= rsp
->completed
;
1098 if (rnp
== rdp
->mynode
)
1099 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
1100 rcu_preempt_boost_start_gp(rnp
);
1101 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1102 rnp
->level
, rnp
->grplo
,
1103 rnp
->grphi
, rnp
->qsmask
);
1104 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1107 rnp
= rcu_get_root(rsp
);
1108 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1109 rsp
->fqs_state
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
1110 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1111 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1115 * Report a full set of quiescent states to the specified rcu_state
1116 * data structure. This involves cleaning up after the prior grace
1117 * period and letting rcu_start_gp() start up the next grace period
1118 * if one is needed. Note that the caller must hold rnp->lock, as
1119 * required by rcu_start_gp(), which will release it.
1121 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
1122 __releases(rcu_get_root(rsp
)->lock
)
1124 unsigned long gp_duration
;
1125 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1126 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1128 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
1131 * Ensure that all grace-period and pre-grace-period activity
1132 * is seen before the assignment to rsp->completed.
1134 smp_mb(); /* See above block comment. */
1135 gp_duration
= jiffies
- rsp
->gp_start
;
1136 if (gp_duration
> rsp
->gp_max
)
1137 rsp
->gp_max
= gp_duration
;
1140 * We know the grace period is complete, but to everyone else
1141 * it appears to still be ongoing. But it is also the case
1142 * that to everyone else it looks like there is nothing that
1143 * they can do to advance the grace period. It is therefore
1144 * safe for us to drop the lock in order to mark the grace
1145 * period as completed in all of the rcu_node structures.
1147 * But if this CPU needs another grace period, it will take
1148 * care of this while initializing the next grace period.
1149 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1150 * because the callbacks have not yet been advanced: Those
1151 * callbacks are waiting on the grace period that just now
1154 if (*rdp
->nxttail
[RCU_WAIT_TAIL
] == NULL
) {
1155 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1158 * Propagate new ->completed value to rcu_node structures
1159 * so that other CPUs don't have to wait until the start
1160 * of the next grace period to process their callbacks.
1162 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1163 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1164 rnp
->completed
= rsp
->gpnum
;
1165 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1167 rnp
= rcu_get_root(rsp
);
1168 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1171 rsp
->completed
= rsp
->gpnum
; /* Declare the grace period complete. */
1172 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, "end");
1173 rsp
->fqs_state
= RCU_GP_IDLE
;
1174 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
1178 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1179 * Allows quiescent states for a group of CPUs to be reported at one go
1180 * to the specified rcu_node structure, though all the CPUs in the group
1181 * must be represented by the same rcu_node structure (which need not be
1182 * a leaf rcu_node structure, though it often will be). That structure's
1183 * lock must be held upon entry, and it is released before return.
1186 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
1187 struct rcu_node
*rnp
, unsigned long flags
)
1188 __releases(rnp
->lock
)
1190 struct rcu_node
*rnp_c
;
1192 /* Walk up the rcu_node hierarchy. */
1194 if (!(rnp
->qsmask
& mask
)) {
1196 /* Our bit has already been cleared, so done. */
1197 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1200 rnp
->qsmask
&= ~mask
;
1201 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
1202 mask
, rnp
->qsmask
, rnp
->level
,
1203 rnp
->grplo
, rnp
->grphi
,
1205 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1207 /* Other bits still set at this level, so done. */
1208 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1211 mask
= rnp
->grpmask
;
1212 if (rnp
->parent
== NULL
) {
1214 /* No more levels. Exit loop holding root lock. */
1218 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1221 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1222 WARN_ON_ONCE(rnp_c
->qsmask
);
1226 * Get here if we are the last CPU to pass through a quiescent
1227 * state for this grace period. Invoke rcu_report_qs_rsp()
1228 * to clean up and start the next grace period if one is needed.
1230 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
1234 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1235 * structure. This must be either called from the specified CPU, or
1236 * called when the specified CPU is known to be offline (and when it is
1237 * also known that no other CPU is concurrently trying to help the offline
1238 * CPU). The lastcomp argument is used to make sure we are still in the
1239 * grace period of interest. We don't want to end the current grace period
1240 * based on quiescent states detected in an earlier grace period!
1243 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastgp
)
1245 unsigned long flags
;
1247 struct rcu_node
*rnp
;
1250 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1251 if (lastgp
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
) {
1254 * The grace period in which this quiescent state was
1255 * recorded has ended, so don't report it upwards.
1256 * We will instead need a new quiescent state that lies
1257 * within the current grace period.
1259 rdp
->passed_quiesce
= 0; /* need qs for new gp. */
1260 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1263 mask
= rdp
->grpmask
;
1264 if ((rnp
->qsmask
& mask
) == 0) {
1265 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1267 rdp
->qs_pending
= 0;
1270 * This GP can't end until cpu checks in, so all of our
1271 * callbacks can be processed during the next GP.
1273 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1275 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1280 * Check to see if there is a new grace period of which this CPU
1281 * is not yet aware, and if so, set up local rcu_data state for it.
1282 * Otherwise, see if this CPU has just passed through its first
1283 * quiescent state for this grace period, and record that fact if so.
1286 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1288 /* If there is now a new grace period, record and return. */
1289 if (check_for_new_grace_period(rsp
, rdp
))
1293 * Does this CPU still need to do its part for current grace period?
1294 * If no, return and let the other CPUs do their part as well.
1296 if (!rdp
->qs_pending
)
1300 * Was there a quiescent state since the beginning of the grace
1301 * period? If no, then exit and wait for the next call.
1303 if (!rdp
->passed_quiesce
)
1307 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1310 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesce_gpnum
);
1313 #ifdef CONFIG_HOTPLUG_CPU
1316 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1317 * Also record a quiescent state for this CPU for the current grace period.
1318 * Synchronization and interrupt disabling are not required because
1319 * this function executes in stop_machine() context. Therefore, cleanup
1320 * operations that might block must be done later from the CPU_DEAD
1323 * Note that the outgoing CPU's bit has already been cleared in the
1324 * cpu_online_mask. This allows us to randomly pick a callback
1325 * destination from the bits set in that mask.
1327 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1331 int receive_cpu
= cpumask_any(cpu_online_mask
);
1332 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1333 struct rcu_data
*receive_rdp
= per_cpu_ptr(rsp
->rda
, receive_cpu
);
1334 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
); /* For dying CPU. */
1336 /* First, adjust the counts. */
1337 if (rdp
->nxtlist
!= NULL
) {
1338 receive_rdp
->qlen_lazy
+= rdp
->qlen_lazy
;
1339 receive_rdp
->qlen
+= rdp
->qlen
;
1345 * Next, move ready-to-invoke callbacks to be invoked on some
1346 * other CPU. These will not be required to pass through another
1347 * grace period: They are done, regardless of CPU.
1349 if (rdp
->nxtlist
!= NULL
&&
1350 rdp
->nxttail
[RCU_DONE_TAIL
] != &rdp
->nxtlist
) {
1351 struct rcu_head
*oldhead
;
1352 struct rcu_head
**oldtail
;
1353 struct rcu_head
**newtail
;
1355 oldhead
= rdp
->nxtlist
;
1356 oldtail
= receive_rdp
->nxttail
[RCU_DONE_TAIL
];
1357 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1358 *rdp
->nxttail
[RCU_DONE_TAIL
] = *oldtail
;
1359 *receive_rdp
->nxttail
[RCU_DONE_TAIL
] = oldhead
;
1360 newtail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1361 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_SIZE
; i
++) {
1362 if (receive_rdp
->nxttail
[i
] == oldtail
)
1363 receive_rdp
->nxttail
[i
] = newtail
;
1364 if (rdp
->nxttail
[i
] == newtail
)
1365 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1370 * Finally, put the rest of the callbacks at the end of the list.
1371 * The ones that made it partway through get to start over: We
1372 * cannot assume that grace periods are synchronized across CPUs.
1373 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1374 * this does not seem compelling. Not yet, anyway.)
1376 if (rdp
->nxtlist
!= NULL
) {
1377 *receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
1378 receive_rdp
->nxttail
[RCU_NEXT_TAIL
] =
1379 rdp
->nxttail
[RCU_NEXT_TAIL
];
1380 receive_rdp
->n_cbs_adopted
+= rdp
->qlen
;
1381 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1383 rdp
->nxtlist
= NULL
;
1384 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1385 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1389 * Record a quiescent state for the dying CPU. This is safe
1390 * only because we have already cleared out the callbacks.
1391 * (Otherwise, the RCU core might try to schedule the invocation
1392 * of callbacks on this now-offline CPU, which would be bad.)
1394 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1395 trace_rcu_grace_period(rsp
->name
,
1396 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
1398 rcu_report_qs_rdp(smp_processor_id(), rsp
, rdp
, rsp
->gpnum
);
1399 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1403 * The CPU has been completely removed, and some other CPU is reporting
1404 * this fact from process context. Do the remainder of the cleanup.
1405 * There can only be one CPU hotplug operation at a time, so no other
1406 * CPU can be attempting to update rcu_cpu_kthread_task.
1408 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1410 unsigned long flags
;
1412 int need_report
= 0;
1413 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1414 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rnp. */
1416 /* Adjust any no-longer-needed kthreads. */
1417 rcu_stop_cpu_kthread(cpu
);
1418 rcu_node_kthread_setaffinity(rnp
, -1);
1420 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1422 /* Exclude any attempts to start a new grace period. */
1423 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1425 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1426 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1428 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1429 rnp
->qsmaskinit
&= ~mask
;
1430 if (rnp
->qsmaskinit
!= 0) {
1431 if (rnp
!= rdp
->mynode
)
1432 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1435 if (rnp
== rdp
->mynode
)
1436 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1438 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1439 mask
= rnp
->grpmask
;
1441 } while (rnp
!= NULL
);
1444 * We still hold the leaf rcu_node structure lock here, and
1445 * irqs are still disabled. The reason for this subterfuge is
1446 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1447 * held leads to deadlock.
1449 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1451 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1452 rcu_report_unblock_qs_rnp(rnp
, flags
);
1454 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1455 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1456 rcu_report_exp_rnp(rsp
, rnp
, true);
1459 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1461 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1465 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1469 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1472 * Invoke any RCU callbacks that have made it to the end of their grace
1473 * period. Thottle as specified by rdp->blimit.
1475 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1477 unsigned long flags
;
1478 struct rcu_head
*next
, *list
, **tail
;
1479 long bl
, count
, count_lazy
;
1481 /* If no callbacks are ready, just return.*/
1482 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
1483 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
1484 trace_rcu_batch_end(rsp
->name
, 0, !!ACCESS_ONCE(rdp
->nxtlist
),
1485 need_resched(), is_idle_task(current
),
1486 rcu_is_callbacks_kthread());
1491 * Extract the list of ready callbacks, disabling to prevent
1492 * races with call_rcu() from interrupt handlers.
1494 local_irq_save(flags
);
1495 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1497 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
1498 list
= rdp
->nxtlist
;
1499 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1500 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1501 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1502 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1503 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1504 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1505 local_irq_restore(flags
);
1507 /* Invoke callbacks. */
1508 count
= count_lazy
= 0;
1512 debug_rcu_head_unqueue(list
);
1513 if (__rcu_reclaim(rsp
->name
, list
))
1516 /* Stop only if limit reached and CPU has something to do. */
1517 if (++count
>= bl
&&
1519 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
1523 local_irq_save(flags
);
1524 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
1525 is_idle_task(current
),
1526 rcu_is_callbacks_kthread());
1528 /* Update count, and requeue any remaining callbacks. */
1529 rdp
->qlen_lazy
-= count_lazy
;
1531 rdp
->n_cbs_invoked
+= count
;
1533 *tail
= rdp
->nxtlist
;
1534 rdp
->nxtlist
= list
;
1535 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1536 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1537 rdp
->nxttail
[count
] = tail
;
1542 /* Reinstate batch limit if we have worked down the excess. */
1543 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1544 rdp
->blimit
= blimit
;
1546 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1547 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1548 rdp
->qlen_last_fqs_check
= 0;
1549 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1550 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1551 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1553 local_irq_restore(flags
);
1555 /* Re-invoke RCU core processing if there are callbacks remaining. */
1556 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1561 * Check to see if this CPU is in a non-context-switch quiescent state
1562 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1563 * Also schedule RCU core processing.
1565 * This function must be called from hardirq context. It is normally
1566 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1567 * false, there is no point in invoking rcu_check_callbacks().
1569 void rcu_check_callbacks(int cpu
, int user
)
1571 trace_rcu_utilization("Start scheduler-tick");
1572 increment_cpu_stall_ticks();
1573 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
1576 * Get here if this CPU took its interrupt from user
1577 * mode or from the idle loop, and if this is not a
1578 * nested interrupt. In this case, the CPU is in
1579 * a quiescent state, so note it.
1581 * No memory barrier is required here because both
1582 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1583 * variables that other CPUs neither access nor modify,
1584 * at least not while the corresponding CPU is online.
1590 } else if (!in_softirq()) {
1593 * Get here if this CPU did not take its interrupt from
1594 * softirq, in other words, if it is not interrupting
1595 * a rcu_bh read-side critical section. This is an _bh
1596 * critical section, so note it.
1601 rcu_preempt_check_callbacks(cpu
);
1602 if (rcu_pending(cpu
))
1604 trace_rcu_utilization("End scheduler-tick");
1608 * Scan the leaf rcu_node structures, processing dyntick state for any that
1609 * have not yet encountered a quiescent state, using the function specified.
1610 * Also initiate boosting for any threads blocked on the root rcu_node.
1612 * The caller must have suppressed start of new grace periods.
1614 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1618 unsigned long flags
;
1620 struct rcu_node
*rnp
;
1622 rcu_for_each_leaf_node(rsp
, rnp
) {
1624 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1625 if (!rcu_gp_in_progress(rsp
)) {
1626 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1629 if (rnp
->qsmask
== 0) {
1630 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1635 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1636 if ((rnp
->qsmask
& bit
) != 0 &&
1637 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1642 /* rcu_report_qs_rnp() releases rnp->lock. */
1643 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1646 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1648 rnp
= rcu_get_root(rsp
);
1649 if (rnp
->qsmask
== 0) {
1650 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1651 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1656 * Force quiescent states on reluctant CPUs, and also detect which
1657 * CPUs are in dyntick-idle mode.
1659 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1661 unsigned long flags
;
1662 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1664 trace_rcu_utilization("Start fqs");
1665 if (!rcu_gp_in_progress(rsp
)) {
1666 trace_rcu_utilization("End fqs");
1667 return; /* No grace period in progress, nothing to force. */
1669 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1670 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1671 trace_rcu_utilization("End fqs");
1672 return; /* Someone else is already on the job. */
1674 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1675 goto unlock_fqs_ret
; /* no emergency and done recently. */
1677 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1678 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1679 if(!rcu_gp_in_progress(rsp
)) {
1680 rsp
->n_force_qs_ngp
++;
1681 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1682 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1684 rsp
->fqs_active
= 1;
1685 switch (rsp
->fqs_state
) {
1689 break; /* grace period idle or initializing, ignore. */
1691 case RCU_SAVE_DYNTICK
:
1692 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1693 break; /* So gcc recognizes the dead code. */
1695 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1697 /* Record dyntick-idle state. */
1698 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1699 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1700 if (rcu_gp_in_progress(rsp
))
1701 rsp
->fqs_state
= RCU_FORCE_QS
;
1706 /* Check dyntick-idle state, send IPI to laggarts. */
1707 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1708 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1710 /* Leave state in case more forcing is required. */
1712 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1715 rsp
->fqs_active
= 0;
1716 if (rsp
->fqs_need_gp
) {
1717 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1718 rsp
->fqs_need_gp
= 0;
1719 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1720 trace_rcu_utilization("End fqs");
1723 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1725 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1726 trace_rcu_utilization("End fqs");
1730 * This does the RCU core processing work for the specified rcu_state
1731 * and rcu_data structures. This may be called only from the CPU to
1732 * whom the rdp belongs.
1735 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1737 unsigned long flags
;
1739 WARN_ON_ONCE(rdp
->beenonline
== 0);
1742 * If an RCU GP has gone long enough, go check for dyntick
1743 * idle CPUs and, if needed, send resched IPIs.
1745 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1746 force_quiescent_state(rsp
, 1);
1749 * Advance callbacks in response to end of earlier grace
1750 * period that some other CPU ended.
1752 rcu_process_gp_end(rsp
, rdp
);
1754 /* Update RCU state based on any recent quiescent states. */
1755 rcu_check_quiescent_state(rsp
, rdp
);
1757 /* Does this CPU require a not-yet-started grace period? */
1758 if (cpu_needs_another_gp(rsp
, rdp
)) {
1759 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1760 rcu_start_gp(rsp
, flags
); /* releases above lock */
1763 /* If there are callbacks ready, invoke them. */
1764 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1765 invoke_rcu_callbacks(rsp
, rdp
);
1769 * Do RCU core processing for the current CPU.
1771 static void rcu_process_callbacks(struct softirq_action
*unused
)
1773 trace_rcu_utilization("Start RCU core");
1774 __rcu_process_callbacks(&rcu_sched_state
,
1775 &__get_cpu_var(rcu_sched_data
));
1776 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1777 rcu_preempt_process_callbacks();
1778 trace_rcu_utilization("End RCU core");
1782 * Schedule RCU callback invocation. If the specified type of RCU
1783 * does not support RCU priority boosting, just do a direct call,
1784 * otherwise wake up the per-CPU kernel kthread. Note that because we
1785 * are running on the current CPU with interrupts disabled, the
1786 * rcu_cpu_kthread_task cannot disappear out from under us.
1788 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1790 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
1792 if (likely(!rsp
->boost
)) {
1793 rcu_do_batch(rsp
, rdp
);
1796 invoke_rcu_callbacks_kthread();
1799 static void invoke_rcu_core(void)
1801 raise_softirq(RCU_SOFTIRQ
);
1805 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1806 struct rcu_state
*rsp
, bool lazy
)
1808 unsigned long flags
;
1809 struct rcu_data
*rdp
;
1811 WARN_ON_ONCE((unsigned long)head
& 0x3); /* Misaligned rcu_head! */
1812 debug_rcu_head_queue(head
);
1816 smp_mb(); /* Ensure RCU update seen before callback registry. */
1819 * Opportunistically note grace-period endings and beginnings.
1820 * Note that we might see a beginning right after we see an
1821 * end, but never vice versa, since this CPU has to pass through
1822 * a quiescent state betweentimes.
1824 local_irq_save(flags
);
1825 rdp
= this_cpu_ptr(rsp
->rda
);
1827 /* Add the callback to our list. */
1828 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1829 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1834 if (__is_kfree_rcu_offset((unsigned long)func
))
1835 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
1836 rdp
->qlen_lazy
, rdp
->qlen
);
1838 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
1840 /* If interrupts were disabled, don't dive into RCU core. */
1841 if (irqs_disabled_flags(flags
)) {
1842 local_irq_restore(flags
);
1847 * Force the grace period if too many callbacks or too long waiting.
1848 * Enforce hysteresis, and don't invoke force_quiescent_state()
1849 * if some other CPU has recently done so. Also, don't bother
1850 * invoking force_quiescent_state() if the newly enqueued callback
1851 * is the only one waiting for a grace period to complete.
1853 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1855 /* Are we ignoring a completed grace period? */
1856 rcu_process_gp_end(rsp
, rdp
);
1857 check_for_new_grace_period(rsp
, rdp
);
1859 /* Start a new grace period if one not already started. */
1860 if (!rcu_gp_in_progress(rsp
)) {
1861 unsigned long nestflag
;
1862 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1864 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1865 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1867 /* Give the grace period a kick. */
1868 rdp
->blimit
= LONG_MAX
;
1869 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1870 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1871 force_quiescent_state(rsp
, 0);
1872 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1873 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1875 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1876 force_quiescent_state(rsp
, 1);
1877 local_irq_restore(flags
);
1881 * Queue an RCU-sched callback for invocation after a grace period.
1883 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1885 __call_rcu(head
, func
, &rcu_sched_state
, 0);
1887 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1890 * Queue an RCU callback for invocation after a quicker grace period.
1892 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1894 __call_rcu(head
, func
, &rcu_bh_state
, 0);
1896 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1899 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1901 * Control will return to the caller some time after a full rcu-sched
1902 * grace period has elapsed, in other words after all currently executing
1903 * rcu-sched read-side critical sections have completed. These read-side
1904 * critical sections are delimited by rcu_read_lock_sched() and
1905 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1906 * local_irq_disable(), and so on may be used in place of
1907 * rcu_read_lock_sched().
1909 * This means that all preempt_disable code sequences, including NMI and
1910 * hardware-interrupt handlers, in progress on entry will have completed
1911 * before this primitive returns. However, this does not guarantee that
1912 * softirq handlers will have completed, since in some kernels, these
1913 * handlers can run in process context, and can block.
1915 * This primitive provides the guarantees made by the (now removed)
1916 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1917 * guarantees that rcu_read_lock() sections will have completed.
1918 * In "classic RCU", these two guarantees happen to be one and
1919 * the same, but can differ in realtime RCU implementations.
1921 void synchronize_sched(void)
1923 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
1924 !lock_is_held(&rcu_lock_map
) &&
1925 !lock_is_held(&rcu_sched_lock_map
),
1926 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1927 if (rcu_blocking_is_gp())
1929 wait_rcu_gp(call_rcu_sched
);
1931 EXPORT_SYMBOL_GPL(synchronize_sched
);
1934 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1936 * Control will return to the caller some time after a full rcu_bh grace
1937 * period has elapsed, in other words after all currently executing rcu_bh
1938 * read-side critical sections have completed. RCU read-side critical
1939 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1940 * and may be nested.
1942 void synchronize_rcu_bh(void)
1944 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
1945 !lock_is_held(&rcu_lock_map
) &&
1946 !lock_is_held(&rcu_sched_lock_map
),
1947 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1948 if (rcu_blocking_is_gp())
1950 wait_rcu_gp(call_rcu_bh
);
1952 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1954 static atomic_t sync_sched_expedited_started
= ATOMIC_INIT(0);
1955 static atomic_t sync_sched_expedited_done
= ATOMIC_INIT(0);
1957 static int synchronize_sched_expedited_cpu_stop(void *data
)
1960 * There must be a full memory barrier on each affected CPU
1961 * between the time that try_stop_cpus() is called and the
1962 * time that it returns.
1964 * In the current initial implementation of cpu_stop, the
1965 * above condition is already met when the control reaches
1966 * this point and the following smp_mb() is not strictly
1967 * necessary. Do smp_mb() anyway for documentation and
1968 * robustness against future implementation changes.
1970 smp_mb(); /* See above comment block. */
1975 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1977 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1978 * approach to force the grace period to end quickly. This consumes
1979 * significant time on all CPUs and is unfriendly to real-time workloads,
1980 * so is thus not recommended for any sort of common-case code. In fact,
1981 * if you are using synchronize_sched_expedited() in a loop, please
1982 * restructure your code to batch your updates, and then use a single
1983 * synchronize_sched() instead.
1985 * Note that it is illegal to call this function while holding any lock
1986 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
1987 * to call this function from a CPU-hotplug notifier. Failing to observe
1988 * these restriction will result in deadlock.
1990 * This implementation can be thought of as an application of ticket
1991 * locking to RCU, with sync_sched_expedited_started and
1992 * sync_sched_expedited_done taking on the roles of the halves
1993 * of the ticket-lock word. Each task atomically increments
1994 * sync_sched_expedited_started upon entry, snapshotting the old value,
1995 * then attempts to stop all the CPUs. If this succeeds, then each
1996 * CPU will have executed a context switch, resulting in an RCU-sched
1997 * grace period. We are then done, so we use atomic_cmpxchg() to
1998 * update sync_sched_expedited_done to match our snapshot -- but
1999 * only if someone else has not already advanced past our snapshot.
2001 * On the other hand, if try_stop_cpus() fails, we check the value
2002 * of sync_sched_expedited_done. If it has advanced past our
2003 * initial snapshot, then someone else must have forced a grace period
2004 * some time after we took our snapshot. In this case, our work is
2005 * done for us, and we can simply return. Otherwise, we try again,
2006 * but keep our initial snapshot for purposes of checking for someone
2007 * doing our work for us.
2009 * If we fail too many times in a row, we fall back to synchronize_sched().
2011 void synchronize_sched_expedited(void)
2013 int firstsnap
, s
, snap
, trycount
= 0;
2015 /* Note that atomic_inc_return() implies full memory barrier. */
2016 firstsnap
= snap
= atomic_inc_return(&sync_sched_expedited_started
);
2018 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2021 * Each pass through the following loop attempts to force a
2022 * context switch on each CPU.
2024 while (try_stop_cpus(cpu_online_mask
,
2025 synchronize_sched_expedited_cpu_stop
,
2029 /* No joy, try again later. Or just synchronize_sched(). */
2030 if (trycount
++ < 10)
2031 udelay(trycount
* num_online_cpus());
2033 synchronize_sched();
2037 /* Check to see if someone else did our work for us. */
2038 s
= atomic_read(&sync_sched_expedited_done
);
2039 if (UINT_CMP_GE((unsigned)s
, (unsigned)firstsnap
)) {
2040 smp_mb(); /* ensure test happens before caller kfree */
2045 * Refetching sync_sched_expedited_started allows later
2046 * callers to piggyback on our grace period. We subtract
2047 * 1 to get the same token that the last incrementer got.
2048 * We retry after they started, so our grace period works
2049 * for them, and they started after our first try, so their
2050 * grace period works for us.
2053 snap
= atomic_read(&sync_sched_expedited_started
);
2054 smp_mb(); /* ensure read is before try_stop_cpus(). */
2058 * Everyone up to our most recent fetch is covered by our grace
2059 * period. Update the counter, but only if our work is still
2060 * relevant -- which it won't be if someone who started later
2061 * than we did beat us to the punch.
2064 s
= atomic_read(&sync_sched_expedited_done
);
2065 if (UINT_CMP_GE((unsigned)s
, (unsigned)snap
)) {
2066 smp_mb(); /* ensure test happens before caller kfree */
2069 } while (atomic_cmpxchg(&sync_sched_expedited_done
, s
, snap
) != s
);
2073 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
2076 * Check to see if there is any immediate RCU-related work to be done
2077 * by the current CPU, for the specified type of RCU, returning 1 if so.
2078 * The checks are in order of increasing expense: checks that can be
2079 * carried out against CPU-local state are performed first. However,
2080 * we must check for CPU stalls first, else we might not get a chance.
2082 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2084 struct rcu_node
*rnp
= rdp
->mynode
;
2086 rdp
->n_rcu_pending
++;
2088 /* Check for CPU stalls, if enabled. */
2089 check_cpu_stall(rsp
, rdp
);
2091 /* Is the RCU core waiting for a quiescent state from this CPU? */
2092 if (rcu_scheduler_fully_active
&&
2093 rdp
->qs_pending
&& !rdp
->passed_quiesce
) {
2096 * If force_quiescent_state() coming soon and this CPU
2097 * needs a quiescent state, and this is either RCU-sched
2098 * or RCU-bh, force a local reschedule.
2100 rdp
->n_rp_qs_pending
++;
2101 if (!rdp
->preemptible
&&
2102 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
2105 } else if (rdp
->qs_pending
&& rdp
->passed_quiesce
) {
2106 rdp
->n_rp_report_qs
++;
2110 /* Does this CPU have callbacks ready to invoke? */
2111 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
2112 rdp
->n_rp_cb_ready
++;
2116 /* Has RCU gone idle with this CPU needing another grace period? */
2117 if (cpu_needs_another_gp(rsp
, rdp
)) {
2118 rdp
->n_rp_cpu_needs_gp
++;
2122 /* Has another RCU grace period completed? */
2123 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
2124 rdp
->n_rp_gp_completed
++;
2128 /* Has a new RCU grace period started? */
2129 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
2130 rdp
->n_rp_gp_started
++;
2134 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2135 if (rcu_gp_in_progress(rsp
) &&
2136 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
2137 rdp
->n_rp_need_fqs
++;
2142 rdp
->n_rp_need_nothing
++;
2147 * Check to see if there is any immediate RCU-related work to be done
2148 * by the current CPU, returning 1 if so. This function is part of the
2149 * RCU implementation; it is -not- an exported member of the RCU API.
2151 static int rcu_pending(int cpu
)
2153 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
2154 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
2155 rcu_preempt_pending(cpu
);
2159 * Check to see if any future RCU-related work will need to be done
2160 * by the current CPU, even if none need be done immediately, returning
2163 static int rcu_cpu_has_callbacks(int cpu
)
2165 /* RCU callbacks either ready or pending? */
2166 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
2167 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
2168 rcu_preempt_cpu_has_callbacks(cpu
);
2171 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
2172 static atomic_t rcu_barrier_cpu_count
;
2173 static DEFINE_MUTEX(rcu_barrier_mutex
);
2174 static struct completion rcu_barrier_completion
;
2176 static void rcu_barrier_callback(struct rcu_head
*notused
)
2178 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2179 complete(&rcu_barrier_completion
);
2183 * Called with preemption disabled, and from cross-cpu IRQ context.
2185 static void rcu_barrier_func(void *type
)
2187 int cpu
= smp_processor_id();
2188 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
2189 void (*call_rcu_func
)(struct rcu_head
*head
,
2190 void (*func
)(struct rcu_head
*head
));
2192 atomic_inc(&rcu_barrier_cpu_count
);
2193 call_rcu_func
= type
;
2194 call_rcu_func(head
, rcu_barrier_callback
);
2198 * Orchestrate the specified type of RCU barrier, waiting for all
2199 * RCU callbacks of the specified type to complete.
2201 static void _rcu_barrier(struct rcu_state
*rsp
,
2202 void (*call_rcu_func
)(struct rcu_head
*head
,
2203 void (*func
)(struct rcu_head
*head
)))
2205 BUG_ON(in_interrupt());
2206 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2207 mutex_lock(&rcu_barrier_mutex
);
2208 init_completion(&rcu_barrier_completion
);
2210 * Initialize rcu_barrier_cpu_count to 1, then invoke
2211 * rcu_barrier_func() on each CPU, so that each CPU also has
2212 * incremented rcu_barrier_cpu_count. Only then is it safe to
2213 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2214 * might complete its grace period before all of the other CPUs
2215 * did their increment, causing this function to return too
2216 * early. Note that on_each_cpu() disables irqs, which prevents
2217 * any CPUs from coming online or going offline until each online
2218 * CPU has queued its RCU-barrier callback.
2220 atomic_set(&rcu_barrier_cpu_count
, 1);
2221 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
2222 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2223 complete(&rcu_barrier_completion
);
2224 wait_for_completion(&rcu_barrier_completion
);
2225 mutex_unlock(&rcu_barrier_mutex
);
2229 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2231 void rcu_barrier_bh(void)
2233 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
2235 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
2238 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2240 void rcu_barrier_sched(void)
2242 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
2244 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
2247 * Do boot-time initialization of a CPU's per-CPU RCU data.
2250 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
2252 unsigned long flags
;
2254 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2255 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2257 /* Set up local state, ensuring consistent view of global state. */
2258 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2259 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
2260 rdp
->nxtlist
= NULL
;
2261 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2262 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2265 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
2266 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
2267 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
2270 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2274 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2275 * offline event can be happening at a given time. Note also that we
2276 * can accept some slop in the rsp->completed access due to the fact
2277 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2279 static void __cpuinit
2280 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
2282 unsigned long flags
;
2284 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2285 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2287 /* Set up local state, ensuring consistent view of global state. */
2288 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2289 rdp
->beenonline
= 1; /* We have now been online. */
2290 rdp
->preemptible
= preemptible
;
2291 rdp
->qlen_last_fqs_check
= 0;
2292 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2293 rdp
->blimit
= blimit
;
2294 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2295 atomic_set(&rdp
->dynticks
->dynticks
,
2296 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
2297 rcu_prepare_for_idle_init(cpu
);
2298 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2301 * A new grace period might start here. If so, we won't be part
2302 * of it, but that is OK, as we are currently in a quiescent state.
2305 /* Exclude any attempts to start a new GP on large systems. */
2306 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
2308 /* Add CPU to rcu_node bitmasks. */
2310 mask
= rdp
->grpmask
;
2312 /* Exclude any attempts to start a new GP on small systems. */
2313 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
2314 rnp
->qsmaskinit
|= mask
;
2315 mask
= rnp
->grpmask
;
2316 if (rnp
== rdp
->mynode
) {
2318 * If there is a grace period in progress, we will
2319 * set up to wait for it next time we run the
2322 rdp
->gpnum
= rnp
->completed
;
2323 rdp
->completed
= rnp
->completed
;
2324 rdp
->passed_quiesce
= 0;
2325 rdp
->qs_pending
= 0;
2326 rdp
->passed_quiesce_gpnum
= rnp
->gpnum
- 1;
2327 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuonl");
2329 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
2331 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
2333 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
2336 static void __cpuinit
rcu_prepare_cpu(int cpu
)
2338 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
2339 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
2340 rcu_preempt_init_percpu_data(cpu
);
2344 * Handle CPU online/offline notification events.
2346 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
2347 unsigned long action
, void *hcpu
)
2349 long cpu
= (long)hcpu
;
2350 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2351 struct rcu_node
*rnp
= rdp
->mynode
;
2353 trace_rcu_utilization("Start CPU hotplug");
2355 case CPU_UP_PREPARE
:
2356 case CPU_UP_PREPARE_FROZEN
:
2357 rcu_prepare_cpu(cpu
);
2358 rcu_prepare_kthreads(cpu
);
2361 case CPU_DOWN_FAILED
:
2362 rcu_node_kthread_setaffinity(rnp
, -1);
2363 rcu_cpu_kthread_setrt(cpu
, 1);
2365 case CPU_DOWN_PREPARE
:
2366 rcu_node_kthread_setaffinity(rnp
, cpu
);
2367 rcu_cpu_kthread_setrt(cpu
, 0);
2370 case CPU_DYING_FROZEN
:
2372 * The whole machine is "stopped" except this CPU, so we can
2373 * touch any data without introducing corruption. We send the
2374 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2376 rcu_cleanup_dying_cpu(&rcu_bh_state
);
2377 rcu_cleanup_dying_cpu(&rcu_sched_state
);
2378 rcu_preempt_cleanup_dying_cpu();
2379 rcu_cleanup_after_idle(cpu
);
2382 case CPU_DEAD_FROZEN
:
2383 case CPU_UP_CANCELED
:
2384 case CPU_UP_CANCELED_FROZEN
:
2385 rcu_cleanup_dead_cpu(cpu
, &rcu_bh_state
);
2386 rcu_cleanup_dead_cpu(cpu
, &rcu_sched_state
);
2387 rcu_preempt_cleanup_dead_cpu(cpu
);
2392 trace_rcu_utilization("End CPU hotplug");
2397 * This function is invoked towards the end of the scheduler's initialization
2398 * process. Before this is called, the idle task might contain
2399 * RCU read-side critical sections (during which time, this idle
2400 * task is booting the system). After this function is called, the
2401 * idle tasks are prohibited from containing RCU read-side critical
2402 * sections. This function also enables RCU lockdep checking.
2404 void rcu_scheduler_starting(void)
2406 WARN_ON(num_online_cpus() != 1);
2407 WARN_ON(nr_context_switches() > 0);
2408 rcu_scheduler_active
= 1;
2412 * Compute the per-level fanout, either using the exact fanout specified
2413 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2415 #ifdef CONFIG_RCU_FANOUT_EXACT
2416 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2420 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
2421 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
2422 rsp
->levelspread
[0] = RCU_FANOUT_LEAF
;
2424 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2425 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2432 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2433 ccur
= rsp
->levelcnt
[i
];
2434 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2438 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2441 * Helper function for rcu_init() that initializes one rcu_state structure.
2443 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2444 struct rcu_data __percpu
*rda
)
2446 static char *buf
[] = { "rcu_node_level_0",
2449 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2453 struct rcu_node
*rnp
;
2455 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2457 /* Initialize the level-tracking arrays. */
2459 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2460 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2461 rcu_init_levelspread(rsp
);
2463 /* Initialize the elements themselves, starting from the leaves. */
2465 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2466 cpustride
*= rsp
->levelspread
[i
];
2467 rnp
= rsp
->level
[i
];
2468 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2469 raw_spin_lock_init(&rnp
->lock
);
2470 lockdep_set_class_and_name(&rnp
->lock
,
2471 &rcu_node_class
[i
], buf
[i
]);
2474 rnp
->qsmaskinit
= 0;
2475 rnp
->grplo
= j
* cpustride
;
2476 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2477 if (rnp
->grphi
>= NR_CPUS
)
2478 rnp
->grphi
= NR_CPUS
- 1;
2484 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2485 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2486 rnp
->parent
= rsp
->level
[i
- 1] +
2487 j
/ rsp
->levelspread
[i
- 1];
2490 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2495 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2496 for_each_possible_cpu(i
) {
2497 while (i
> rnp
->grphi
)
2499 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2500 rcu_boot_init_percpu_data(i
, rsp
);
2504 void __init
rcu_init(void)
2508 rcu_bootup_announce();
2509 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2510 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2511 __rcu_init_preempt();
2512 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
2515 * We don't need protection against CPU-hotplug here because
2516 * this is called early in boot, before either interrupts
2517 * or the scheduler are operational.
2519 cpu_notifier(rcu_cpu_notify
, 0);
2520 for_each_online_cpu(cpu
)
2521 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2522 check_cpu_stall_init();
2525 #include "rcutree_plugin.h"