2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h" /* audit_signal_info() */
43 * SLAB caches for signal bits.
46 static struct kmem_cache
*sigqueue_cachep
;
48 int print_fatal_signals __read_mostly
;
50 static void __user
*sig_handler(struct task_struct
*t
, int sig
)
52 return t
->sighand
->action
[sig
- 1].sa
.sa_handler
;
55 static int sig_handler_ignored(void __user
*handler
, int sig
)
57 /* Is it explicitly or implicitly ignored? */
58 return handler
== SIG_IGN
||
59 (handler
== SIG_DFL
&& sig_kernel_ignore(sig
));
62 static int sig_task_ignored(struct task_struct
*t
, int sig
, bool force
)
66 handler
= sig_handler(t
, sig
);
68 if (unlikely(t
->signal
->flags
& SIGNAL_UNKILLABLE
) &&
69 handler
== SIG_DFL
&& !force
)
72 return sig_handler_ignored(handler
, sig
);
75 static int sig_ignored(struct task_struct
*t
, int sig
, bool force
)
78 * Blocked signals are never ignored, since the
79 * signal handler may change by the time it is
82 if (sigismember(&t
->blocked
, sig
) || sigismember(&t
->real_blocked
, sig
))
85 if (!sig_task_ignored(t
, sig
, force
))
89 * Tracers may want to know about even ignored signals.
95 * Re-calculate pending state from the set of locally pending
96 * signals, globally pending signals, and blocked signals.
98 static inline int has_pending_signals(sigset_t
*signal
, sigset_t
*blocked
)
103 switch (_NSIG_WORDS
) {
105 for (i
= _NSIG_WORDS
, ready
= 0; --i
>= 0 ;)
106 ready
|= signal
->sig
[i
] &~ blocked
->sig
[i
];
109 case 4: ready
= signal
->sig
[3] &~ blocked
->sig
[3];
110 ready
|= signal
->sig
[2] &~ blocked
->sig
[2];
111 ready
|= signal
->sig
[1] &~ blocked
->sig
[1];
112 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
115 case 2: ready
= signal
->sig
[1] &~ blocked
->sig
[1];
116 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
119 case 1: ready
= signal
->sig
[0] &~ blocked
->sig
[0];
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
126 static int recalc_sigpending_tsk(struct task_struct
*t
)
128 if ((t
->jobctl
& JOBCTL_PENDING_MASK
) ||
129 PENDING(&t
->pending
, &t
->blocked
) ||
130 PENDING(&t
->signal
->shared_pending
, &t
->blocked
)) {
131 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
135 * We must never clear the flag in another thread, or in current
136 * when it's possible the current syscall is returning -ERESTART*.
137 * So we don't clear it here, and only callers who know they should do.
143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144 * This is superfluous when called on current, the wakeup is a harmless no-op.
146 void recalc_sigpending_and_wake(struct task_struct
*t
)
148 if (recalc_sigpending_tsk(t
))
149 signal_wake_up(t
, 0);
152 void recalc_sigpending(void)
154 if (!recalc_sigpending_tsk(current
) && !freezing(current
))
155 clear_thread_flag(TIF_SIGPENDING
);
159 /* Given the mask, find the first available signal that should be serviced. */
161 #define SYNCHRONOUS_MASK \
162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 sigmask(SIGTRAP) | sigmask(SIGFPE))
165 int next_signal(struct sigpending
*pending
, sigset_t
*mask
)
167 unsigned long i
, *s
, *m
, x
;
170 s
= pending
->signal
.sig
;
174 * Handle the first word specially: it contains the
175 * synchronous signals that need to be dequeued first.
179 if (x
& SYNCHRONOUS_MASK
)
180 x
&= SYNCHRONOUS_MASK
;
185 switch (_NSIG_WORDS
) {
187 for (i
= 1; i
< _NSIG_WORDS
; ++i
) {
191 sig
= ffz(~x
) + i
*_NSIG_BPW
+ 1;
200 sig
= ffz(~x
) + _NSIG_BPW
+ 1;
211 static inline void print_dropped_signal(int sig
)
213 static DEFINE_RATELIMIT_STATE(ratelimit_state
, 5 * HZ
, 10);
215 if (!print_fatal_signals
)
218 if (!__ratelimit(&ratelimit_state
))
221 printk(KERN_INFO
"%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 current
->comm
, current
->pid
, sig
);
226 * task_set_jobctl_pending - set jobctl pending bits
228 * @mask: pending bits to set
230 * Clear @mask from @task->jobctl. @mask must be subset of
231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
233 * cleared. If @task is already being killed or exiting, this function
237 * Must be called with @task->sighand->siglock held.
240 * %true if @mask is set, %false if made noop because @task was dying.
242 bool task_set_jobctl_pending(struct task_struct
*task
, unsigned int mask
)
244 BUG_ON(mask
& ~(JOBCTL_PENDING_MASK
| JOBCTL_STOP_CONSUME
|
245 JOBCTL_STOP_SIGMASK
| JOBCTL_TRAPPING
));
246 BUG_ON((mask
& JOBCTL_TRAPPING
) && !(mask
& JOBCTL_PENDING_MASK
));
248 if (unlikely(fatal_signal_pending(task
) || (task
->flags
& PF_EXITING
)))
251 if (mask
& JOBCTL_STOP_SIGMASK
)
252 task
->jobctl
&= ~JOBCTL_STOP_SIGMASK
;
254 task
->jobctl
|= mask
;
259 * task_clear_jobctl_trapping - clear jobctl trapping bit
262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263 * Clear it and wake up the ptracer. Note that we don't need any further
264 * locking. @task->siglock guarantees that @task->parent points to the
268 * Must be called with @task->sighand->siglock held.
270 void task_clear_jobctl_trapping(struct task_struct
*task
)
272 if (unlikely(task
->jobctl
& JOBCTL_TRAPPING
)) {
273 task
->jobctl
&= ~JOBCTL_TRAPPING
;
274 wake_up_bit(&task
->jobctl
, JOBCTL_TRAPPING_BIT
);
279 * task_clear_jobctl_pending - clear jobctl pending bits
281 * @mask: pending bits to clear
283 * Clear @mask from @task->jobctl. @mask must be subset of
284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
285 * STOP bits are cleared together.
287 * If clearing of @mask leaves no stop or trap pending, this function calls
288 * task_clear_jobctl_trapping().
291 * Must be called with @task->sighand->siglock held.
293 void task_clear_jobctl_pending(struct task_struct
*task
, unsigned int mask
)
295 BUG_ON(mask
& ~JOBCTL_PENDING_MASK
);
297 if (mask
& JOBCTL_STOP_PENDING
)
298 mask
|= JOBCTL_STOP_CONSUME
| JOBCTL_STOP_DEQUEUED
;
300 task
->jobctl
&= ~mask
;
302 if (!(task
->jobctl
& JOBCTL_PENDING_MASK
))
303 task_clear_jobctl_trapping(task
);
307 * task_participate_group_stop - participate in a group stop
308 * @task: task participating in a group stop
310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311 * Group stop states are cleared and the group stop count is consumed if
312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
313 * stop, the appropriate %SIGNAL_* flags are set.
316 * Must be called with @task->sighand->siglock held.
319 * %true if group stop completion should be notified to the parent, %false
322 static bool task_participate_group_stop(struct task_struct
*task
)
324 struct signal_struct
*sig
= task
->signal
;
325 bool consume
= task
->jobctl
& JOBCTL_STOP_CONSUME
;
327 WARN_ON_ONCE(!(task
->jobctl
& JOBCTL_STOP_PENDING
));
329 task_clear_jobctl_pending(task
, JOBCTL_STOP_PENDING
);
334 if (!WARN_ON_ONCE(sig
->group_stop_count
== 0))
335 sig
->group_stop_count
--;
338 * Tell the caller to notify completion iff we are entering into a
339 * fresh group stop. Read comment in do_signal_stop() for details.
341 if (!sig
->group_stop_count
&& !(sig
->flags
& SIGNAL_STOP_STOPPED
)) {
342 sig
->flags
= SIGNAL_STOP_STOPPED
;
349 * allocate a new signal queue record
350 * - this may be called without locks if and only if t == current, otherwise an
351 * appropriate lock must be held to stop the target task from exiting
353 static struct sigqueue
*
354 __sigqueue_alloc(int sig
, struct task_struct
*t
, gfp_t flags
, int override_rlimit
)
356 struct sigqueue
*q
= NULL
;
357 struct user_struct
*user
;
360 * Protect access to @t credentials. This can go away when all
361 * callers hold rcu read lock.
364 user
= get_uid(__task_cred(t
)->user
);
365 atomic_inc(&user
->sigpending
);
368 if (override_rlimit
||
369 atomic_read(&user
->sigpending
) <=
370 task_rlimit(t
, RLIMIT_SIGPENDING
)) {
371 q
= kmem_cache_alloc(sigqueue_cachep
, flags
);
373 print_dropped_signal(sig
);
376 if (unlikely(q
== NULL
)) {
377 atomic_dec(&user
->sigpending
);
380 INIT_LIST_HEAD(&q
->list
);
388 static void __sigqueue_free(struct sigqueue
*q
)
390 if (q
->flags
& SIGQUEUE_PREALLOC
)
392 atomic_dec(&q
->user
->sigpending
);
394 kmem_cache_free(sigqueue_cachep
, q
);
397 void flush_sigqueue(struct sigpending
*queue
)
401 sigemptyset(&queue
->signal
);
402 while (!list_empty(&queue
->list
)) {
403 q
= list_entry(queue
->list
.next
, struct sigqueue
, list
);
404 list_del_init(&q
->list
);
410 * Flush all pending signals for a task.
412 void __flush_signals(struct task_struct
*t
)
414 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
415 flush_sigqueue(&t
->pending
);
416 flush_sigqueue(&t
->signal
->shared_pending
);
419 void flush_signals(struct task_struct
*t
)
423 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
425 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
428 static void __flush_itimer_signals(struct sigpending
*pending
)
430 sigset_t signal
, retain
;
431 struct sigqueue
*q
, *n
;
433 signal
= pending
->signal
;
434 sigemptyset(&retain
);
436 list_for_each_entry_safe(q
, n
, &pending
->list
, list
) {
437 int sig
= q
->info
.si_signo
;
439 if (likely(q
->info
.si_code
!= SI_TIMER
)) {
440 sigaddset(&retain
, sig
);
442 sigdelset(&signal
, sig
);
443 list_del_init(&q
->list
);
448 sigorsets(&pending
->signal
, &signal
, &retain
);
451 void flush_itimer_signals(void)
453 struct task_struct
*tsk
= current
;
456 spin_lock_irqsave(&tsk
->sighand
->siglock
, flags
);
457 __flush_itimer_signals(&tsk
->pending
);
458 __flush_itimer_signals(&tsk
->signal
->shared_pending
);
459 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, flags
);
462 void ignore_signals(struct task_struct
*t
)
466 for (i
= 0; i
< _NSIG
; ++i
)
467 t
->sighand
->action
[i
].sa
.sa_handler
= SIG_IGN
;
473 * Flush all handlers for a task.
477 flush_signal_handlers(struct task_struct
*t
, int force_default
)
480 struct k_sigaction
*ka
= &t
->sighand
->action
[0];
481 for (i
= _NSIG
; i
!= 0 ; i
--) {
482 if (force_default
|| ka
->sa
.sa_handler
!= SIG_IGN
)
483 ka
->sa
.sa_handler
= SIG_DFL
;
485 #ifdef __ARCH_HAS_SA_RESTORER
486 ka
->sa
.sa_restorer
= NULL
;
488 sigemptyset(&ka
->sa
.sa_mask
);
493 int unhandled_signal(struct task_struct
*tsk
, int sig
)
495 void __user
*handler
= tsk
->sighand
->action
[sig
-1].sa
.sa_handler
;
496 if (is_global_init(tsk
))
498 if (handler
!= SIG_IGN
&& handler
!= SIG_DFL
)
500 /* if ptraced, let the tracer determine */
505 * Notify the system that a driver wants to block all signals for this
506 * process, and wants to be notified if any signals at all were to be
507 * sent/acted upon. If the notifier routine returns non-zero, then the
508 * signal will be acted upon after all. If the notifier routine returns 0,
509 * then then signal will be blocked. Only one block per process is
510 * allowed. priv is a pointer to private data that the notifier routine
511 * can use to determine if the signal should be blocked or not.
514 block_all_signals(int (*notifier
)(void *priv
), void *priv
, sigset_t
*mask
)
518 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
519 current
->notifier_mask
= mask
;
520 current
->notifier_data
= priv
;
521 current
->notifier
= notifier
;
522 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
525 /* Notify the system that blocking has ended. */
528 unblock_all_signals(void)
532 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
533 current
->notifier
= NULL
;
534 current
->notifier_data
= NULL
;
536 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
539 static void collect_signal(int sig
, struct sigpending
*list
, siginfo_t
*info
)
541 struct sigqueue
*q
, *first
= NULL
;
544 * Collect the siginfo appropriate to this signal. Check if
545 * there is another siginfo for the same signal.
547 list_for_each_entry(q
, &list
->list
, list
) {
548 if (q
->info
.si_signo
== sig
) {
555 sigdelset(&list
->signal
, sig
);
559 list_del_init(&first
->list
);
560 copy_siginfo(info
, &first
->info
);
561 __sigqueue_free(first
);
564 * Ok, it wasn't in the queue. This must be
565 * a fast-pathed signal or we must have been
566 * out of queue space. So zero out the info.
568 info
->si_signo
= sig
;
570 info
->si_code
= SI_USER
;
576 static int __dequeue_signal(struct sigpending
*pending
, sigset_t
*mask
,
579 int sig
= next_signal(pending
, mask
);
582 if (current
->notifier
) {
583 if (sigismember(current
->notifier_mask
, sig
)) {
584 if (!(current
->notifier
)(current
->notifier_data
)) {
585 clear_thread_flag(TIF_SIGPENDING
);
591 collect_signal(sig
, pending
, info
);
598 * Dequeue a signal and return the element to the caller, which is
599 * expected to free it.
601 * All callers have to hold the siglock.
603 int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
607 /* We only dequeue private signals from ourselves, we don't let
608 * signalfd steal them
610 signr
= __dequeue_signal(&tsk
->pending
, mask
, info
);
612 signr
= __dequeue_signal(&tsk
->signal
->shared_pending
,
617 * itimers are process shared and we restart periodic
618 * itimers in the signal delivery path to prevent DoS
619 * attacks in the high resolution timer case. This is
620 * compliant with the old way of self-restarting
621 * itimers, as the SIGALRM is a legacy signal and only
622 * queued once. Changing the restart behaviour to
623 * restart the timer in the signal dequeue path is
624 * reducing the timer noise on heavy loaded !highres
627 if (unlikely(signr
== SIGALRM
)) {
628 struct hrtimer
*tmr
= &tsk
->signal
->real_timer
;
630 if (!hrtimer_is_queued(tmr
) &&
631 tsk
->signal
->it_real_incr
.tv64
!= 0) {
632 hrtimer_forward(tmr
, tmr
->base
->get_time(),
633 tsk
->signal
->it_real_incr
);
634 hrtimer_restart(tmr
);
643 if (unlikely(sig_kernel_stop(signr
))) {
645 * Set a marker that we have dequeued a stop signal. Our
646 * caller might release the siglock and then the pending
647 * stop signal it is about to process is no longer in the
648 * pending bitmasks, but must still be cleared by a SIGCONT
649 * (and overruled by a SIGKILL). So those cases clear this
650 * shared flag after we've set it. Note that this flag may
651 * remain set after the signal we return is ignored or
652 * handled. That doesn't matter because its only purpose
653 * is to alert stop-signal processing code when another
654 * processor has come along and cleared the flag.
656 current
->jobctl
|= JOBCTL_STOP_DEQUEUED
;
658 if ((info
->si_code
& __SI_MASK
) == __SI_TIMER
&& info
->si_sys_private
) {
660 * Release the siglock to ensure proper locking order
661 * of timer locks outside of siglocks. Note, we leave
662 * irqs disabled here, since the posix-timers code is
663 * about to disable them again anyway.
665 spin_unlock(&tsk
->sighand
->siglock
);
666 do_schedule_next_timer(info
);
667 spin_lock(&tsk
->sighand
->siglock
);
673 * Tell a process that it has a new active signal..
675 * NOTE! we rely on the previous spin_lock to
676 * lock interrupts for us! We can only be called with
677 * "siglock" held, and the local interrupt must
678 * have been disabled when that got acquired!
680 * No need to set need_resched since signal event passing
681 * goes through ->blocked
683 void signal_wake_up_state(struct task_struct
*t
, unsigned int state
)
685 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
687 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
693 if (!wake_up_state(t
, state
| TASK_INTERRUPTIBLE
))
698 * Remove signals in mask from the pending set and queue.
699 * Returns 1 if any signals were found.
701 * All callers must be holding the siglock.
703 * This version takes a sigset mask and looks at all signals,
704 * not just those in the first mask word.
706 static int rm_from_queue_full(sigset_t
*mask
, struct sigpending
*s
)
708 struct sigqueue
*q
, *n
;
711 sigandsets(&m
, mask
, &s
->signal
);
712 if (sigisemptyset(&m
))
715 sigandnsets(&s
->signal
, &s
->signal
, mask
);
716 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
717 if (sigismember(mask
, q
->info
.si_signo
)) {
718 list_del_init(&q
->list
);
725 * Remove signals in mask from the pending set and queue.
726 * Returns 1 if any signals were found.
728 * All callers must be holding the siglock.
730 static int rm_from_queue(unsigned long mask
, struct sigpending
*s
)
732 struct sigqueue
*q
, *n
;
734 if (!sigtestsetmask(&s
->signal
, mask
))
737 sigdelsetmask(&s
->signal
, mask
);
738 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
739 if (q
->info
.si_signo
< SIGRTMIN
&&
740 (mask
& sigmask(q
->info
.si_signo
))) {
741 list_del_init(&q
->list
);
748 static inline int is_si_special(const struct siginfo
*info
)
750 return info
<= SEND_SIG_FORCED
;
753 static inline bool si_fromuser(const struct siginfo
*info
)
755 return info
== SEND_SIG_NOINFO
||
756 (!is_si_special(info
) && SI_FROMUSER(info
));
760 * called with RCU read lock from check_kill_permission()
762 static int kill_ok_by_cred(struct task_struct
*t
)
764 const struct cred
*cred
= current_cred();
765 const struct cred
*tcred
= __task_cred(t
);
767 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
768 (cred
->euid
== tcred
->suid
||
769 cred
->euid
== tcred
->uid
||
770 cred
->uid
== tcred
->suid
||
771 cred
->uid
== tcred
->uid
))
774 if (ns_capable(tcred
->user
->user_ns
, CAP_KILL
))
781 * Bad permissions for sending the signal
782 * - the caller must hold the RCU read lock
784 static int check_kill_permission(int sig
, struct siginfo
*info
,
785 struct task_struct
*t
)
790 if (!valid_signal(sig
))
793 if (!si_fromuser(info
))
796 error
= audit_signal_info(sig
, t
); /* Let audit system see the signal */
800 if (!same_thread_group(current
, t
) &&
801 !kill_ok_by_cred(t
)) {
804 sid
= task_session(t
);
806 * We don't return the error if sid == NULL. The
807 * task was unhashed, the caller must notice this.
809 if (!sid
|| sid
== task_session(current
))
816 return security_task_kill(t
, info
, sig
, 0);
820 * ptrace_trap_notify - schedule trap to notify ptracer
821 * @t: tracee wanting to notify tracer
823 * This function schedules sticky ptrace trap which is cleared on the next
824 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * If @t is running, STOP trap will be taken. If trapped for STOP and
828 * ptracer is listening for events, tracee is woken up so that it can
829 * re-trap for the new event. If trapped otherwise, STOP trap will be
830 * eventually taken without returning to userland after the existing traps
831 * are finished by PTRACE_CONT.
834 * Must be called with @task->sighand->siglock held.
836 static void ptrace_trap_notify(struct task_struct
*t
)
838 WARN_ON_ONCE(!(t
->ptrace
& PT_SEIZED
));
839 assert_spin_locked(&t
->sighand
->siglock
);
841 task_set_jobctl_pending(t
, JOBCTL_TRAP_NOTIFY
);
842 ptrace_signal_wake_up(t
, t
->jobctl
& JOBCTL_LISTENING
);
846 * Handle magic process-wide effects of stop/continue signals. Unlike
847 * the signal actions, these happen immediately at signal-generation
848 * time regardless of blocking, ignoring, or handling. This does the
849 * actual continuing for SIGCONT, but not the actual stopping for stop
850 * signals. The process stop is done as a signal action for SIG_DFL.
852 * Returns true if the signal should be actually delivered, otherwise
853 * it should be dropped.
855 static int prepare_signal(int sig
, struct task_struct
*p
, bool force
)
857 struct signal_struct
*signal
= p
->signal
;
858 struct task_struct
*t
;
860 if (unlikely(signal
->flags
& SIGNAL_GROUP_EXIT
)) {
862 * The process is in the middle of dying, nothing to do.
864 } else if (sig_kernel_stop(sig
)) {
866 * This is a stop signal. Remove SIGCONT from all queues.
868 rm_from_queue(sigmask(SIGCONT
), &signal
->shared_pending
);
871 rm_from_queue(sigmask(SIGCONT
), &t
->pending
);
872 } while_each_thread(p
, t
);
873 } else if (sig
== SIGCONT
) {
876 * Remove all stop signals from all queues, wake all threads.
878 rm_from_queue(SIG_KERNEL_STOP_MASK
, &signal
->shared_pending
);
881 task_clear_jobctl_pending(t
, JOBCTL_STOP_PENDING
);
882 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
883 if (likely(!(t
->ptrace
& PT_SEIZED
)))
884 wake_up_state(t
, __TASK_STOPPED
);
886 ptrace_trap_notify(t
);
887 } while_each_thread(p
, t
);
890 * Notify the parent with CLD_CONTINUED if we were stopped.
892 * If we were in the middle of a group stop, we pretend it
893 * was already finished, and then continued. Since SIGCHLD
894 * doesn't queue we report only CLD_STOPPED, as if the next
895 * CLD_CONTINUED was dropped.
898 if (signal
->flags
& SIGNAL_STOP_STOPPED
)
899 why
|= SIGNAL_CLD_CONTINUED
;
900 else if (signal
->group_stop_count
)
901 why
|= SIGNAL_CLD_STOPPED
;
905 * The first thread which returns from do_signal_stop()
906 * will take ->siglock, notice SIGNAL_CLD_MASK, and
907 * notify its parent. See get_signal_to_deliver().
909 signal
->flags
= why
| SIGNAL_STOP_CONTINUED
;
910 signal
->group_stop_count
= 0;
911 signal
->group_exit_code
= 0;
915 return !sig_ignored(p
, sig
, force
);
919 * Test if P wants to take SIG. After we've checked all threads with this,
920 * it's equivalent to finding no threads not blocking SIG. Any threads not
921 * blocking SIG were ruled out because they are not running and already
922 * have pending signals. Such threads will dequeue from the shared queue
923 * as soon as they're available, so putting the signal on the shared queue
924 * will be equivalent to sending it to one such thread.
926 static inline int wants_signal(int sig
, struct task_struct
*p
)
928 if (sigismember(&p
->blocked
, sig
))
930 if (p
->flags
& PF_EXITING
)
934 if (task_is_stopped_or_traced(p
))
936 return task_curr(p
) || !signal_pending(p
);
939 static void complete_signal(int sig
, struct task_struct
*p
, int group
)
941 struct signal_struct
*signal
= p
->signal
;
942 struct task_struct
*t
;
945 * Now find a thread we can wake up to take the signal off the queue.
947 * If the main thread wants the signal, it gets first crack.
948 * Probably the least surprising to the average bear.
950 if (wants_signal(sig
, p
))
952 else if (!group
|| thread_group_empty(p
))
954 * There is just one thread and it does not need to be woken.
955 * It will dequeue unblocked signals before it runs again.
960 * Otherwise try to find a suitable thread.
962 t
= signal
->curr_target
;
963 while (!wants_signal(sig
, t
)) {
965 if (t
== signal
->curr_target
)
967 * No thread needs to be woken.
968 * Any eligible threads will see
969 * the signal in the queue soon.
973 signal
->curr_target
= t
;
977 * Found a killable thread. If the signal will be fatal,
978 * then start taking the whole group down immediately.
980 if (sig_fatal(p
, sig
) &&
981 !(signal
->flags
& (SIGNAL_UNKILLABLE
| SIGNAL_GROUP_EXIT
)) &&
982 !sigismember(&t
->real_blocked
, sig
) &&
983 (sig
== SIGKILL
|| !t
->ptrace
)) {
985 * This signal will be fatal to the whole group.
987 if (!sig_kernel_coredump(sig
)) {
989 * Start a group exit and wake everybody up.
990 * This way we don't have other threads
991 * running and doing things after a slower
992 * thread has the fatal signal pending.
994 signal
->flags
= SIGNAL_GROUP_EXIT
;
995 signal
->group_exit_code
= sig
;
996 signal
->group_stop_count
= 0;
999 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1000 sigaddset(&t
->pending
.signal
, SIGKILL
);
1001 signal_wake_up(t
, 1);
1002 } while_each_thread(p
, t
);
1008 * The signal is already in the shared-pending queue.
1009 * Tell the chosen thread to wake up and dequeue it.
1011 signal_wake_up(t
, sig
== SIGKILL
);
1015 static inline int legacy_queue(struct sigpending
*signals
, int sig
)
1017 return (sig
< SIGRTMIN
) && sigismember(&signals
->signal
, sig
);
1021 * map the uid in struct cred into user namespace *ns
1023 static inline uid_t
map_cred_ns(const struct cred
*cred
,
1024 struct user_namespace
*ns
)
1026 return user_ns_map_uid(ns
, cred
, cred
->uid
);
1029 #ifdef CONFIG_USER_NS
1030 static inline void userns_fixup_signal_uid(struct siginfo
*info
, struct task_struct
*t
)
1032 if (current_user_ns() == task_cred_xxx(t
, user_ns
))
1035 if (SI_FROMKERNEL(info
))
1038 info
->si_uid
= user_ns_map_uid(task_cred_xxx(t
, user_ns
),
1039 current_cred(), info
->si_uid
);
1042 static inline void userns_fixup_signal_uid(struct siginfo
*info
, struct task_struct
*t
)
1048 static int __send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
1049 int group
, int from_ancestor_ns
)
1051 struct sigpending
*pending
;
1053 int override_rlimit
;
1054 int ret
= 0, result
;
1056 assert_spin_locked(&t
->sighand
->siglock
);
1058 result
= TRACE_SIGNAL_IGNORED
;
1059 if (!prepare_signal(sig
, t
,
1060 from_ancestor_ns
|| (info
== SEND_SIG_FORCED
)))
1063 pending
= group
? &t
->signal
->shared_pending
: &t
->pending
;
1065 * Short-circuit ignored signals and support queuing
1066 * exactly one non-rt signal, so that we can get more
1067 * detailed information about the cause of the signal.
1069 result
= TRACE_SIGNAL_ALREADY_PENDING
;
1070 if (legacy_queue(pending
, sig
))
1073 result
= TRACE_SIGNAL_DELIVERED
;
1075 * fast-pathed signals for kernel-internal things like SIGSTOP
1078 if (info
== SEND_SIG_FORCED
)
1082 * Real-time signals must be queued if sent by sigqueue, or
1083 * some other real-time mechanism. It is implementation
1084 * defined whether kill() does so. We attempt to do so, on
1085 * the principle of least surprise, but since kill is not
1086 * allowed to fail with EAGAIN when low on memory we just
1087 * make sure at least one signal gets delivered and don't
1088 * pass on the info struct.
1091 override_rlimit
= (is_si_special(info
) || info
->si_code
>= 0);
1093 override_rlimit
= 0;
1095 q
= __sigqueue_alloc(sig
, t
, GFP_ATOMIC
| __GFP_NOTRACK_FALSE_POSITIVE
,
1098 list_add_tail(&q
->list
, &pending
->list
);
1099 switch ((unsigned long) info
) {
1100 case (unsigned long) SEND_SIG_NOINFO
:
1101 q
->info
.si_signo
= sig
;
1102 q
->info
.si_errno
= 0;
1103 q
->info
.si_code
= SI_USER
;
1104 q
->info
.si_pid
= task_tgid_nr_ns(current
,
1105 task_active_pid_ns(t
));
1106 q
->info
.si_uid
= current_uid();
1108 case (unsigned long) SEND_SIG_PRIV
:
1109 q
->info
.si_signo
= sig
;
1110 q
->info
.si_errno
= 0;
1111 q
->info
.si_code
= SI_KERNEL
;
1116 copy_siginfo(&q
->info
, info
);
1117 if (from_ancestor_ns
)
1122 userns_fixup_signal_uid(&q
->info
, t
);
1124 } else if (!is_si_special(info
)) {
1125 if (sig
>= SIGRTMIN
&& info
->si_code
!= SI_USER
) {
1127 * Queue overflow, abort. We may abort if the
1128 * signal was rt and sent by user using something
1129 * other than kill().
1131 result
= TRACE_SIGNAL_OVERFLOW_FAIL
;
1136 * This is a silent loss of information. We still
1137 * send the signal, but the *info bits are lost.
1139 result
= TRACE_SIGNAL_LOSE_INFO
;
1144 signalfd_notify(t
, sig
);
1145 sigaddset(&pending
->signal
, sig
);
1146 complete_signal(sig
, t
, group
);
1148 trace_signal_generate(sig
, info
, t
, group
, result
);
1152 static int send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
1155 int from_ancestor_ns
= 0;
1157 #ifdef CONFIG_PID_NS
1158 from_ancestor_ns
= si_fromuser(info
) &&
1159 !task_pid_nr_ns(current
, task_active_pid_ns(t
));
1162 return __send_signal(sig
, info
, t
, group
, from_ancestor_ns
);
1165 static void print_fatal_signal(struct pt_regs
*regs
, int signr
)
1167 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1168 current
->comm
, task_pid_nr(current
), signr
);
1170 #if defined(__i386__) && !defined(__arch_um__)
1171 printk("code at %08lx: ", regs
->ip
);
1174 for (i
= 0; i
< 16; i
++) {
1177 if (get_user(insn
, (unsigned char *)(regs
->ip
+ i
)))
1179 printk("%02x ", insn
);
1189 static int __init
setup_print_fatal_signals(char *str
)
1191 get_option (&str
, &print_fatal_signals
);
1196 __setup("print-fatal-signals=", setup_print_fatal_signals
);
1199 __group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1201 return send_signal(sig
, info
, p
, 1);
1205 specific_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
1207 return send_signal(sig
, info
, t
, 0);
1210 int do_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
,
1213 unsigned long flags
;
1216 if (lock_task_sighand(p
, &flags
)) {
1217 ret
= send_signal(sig
, info
, p
, group
);
1218 unlock_task_sighand(p
, &flags
);
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1236 force_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
1238 unsigned long int flags
;
1239 int ret
, blocked
, ignored
;
1240 struct k_sigaction
*action
;
1242 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
1243 action
= &t
->sighand
->action
[sig
-1];
1244 ignored
= action
->sa
.sa_handler
== SIG_IGN
;
1245 blocked
= sigismember(&t
->blocked
, sig
);
1246 if (blocked
|| ignored
) {
1247 action
->sa
.sa_handler
= SIG_DFL
;
1249 sigdelset(&t
->blocked
, sig
);
1250 recalc_sigpending_and_wake(t
);
1253 if (action
->sa
.sa_handler
== SIG_DFL
)
1254 t
->signal
->flags
&= ~SIGNAL_UNKILLABLE
;
1255 ret
= specific_send_sig_info(sig
, info
, t
);
1256 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
1262 * Nuke all other threads in the group.
1264 int zap_other_threads(struct task_struct
*p
)
1266 struct task_struct
*t
= p
;
1269 p
->signal
->group_stop_count
= 0;
1271 while_each_thread(p
, t
) {
1272 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1275 /* Don't bother with already dead threads */
1278 sigaddset(&t
->pending
.signal
, SIGKILL
);
1279 signal_wake_up(t
, 1);
1285 struct sighand_struct
*__lock_task_sighand(struct task_struct
*tsk
,
1286 unsigned long *flags
)
1288 struct sighand_struct
*sighand
;
1291 local_irq_save(*flags
);
1293 sighand
= rcu_dereference(tsk
->sighand
);
1294 if (unlikely(sighand
== NULL
)) {
1296 local_irq_restore(*flags
);
1300 spin_lock(&sighand
->siglock
);
1301 if (likely(sighand
== tsk
->sighand
)) {
1305 spin_unlock(&sighand
->siglock
);
1307 local_irq_restore(*flags
);
1314 * send signal info to all the members of a group
1316 int group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1321 ret
= check_kill_permission(sig
, info
, p
);
1325 ret
= do_send_sig_info(sig
, info
, p
, true);
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1335 int __kill_pgrp_info(int sig
, struct siginfo
*info
, struct pid
*pgrp
)
1337 struct task_struct
*p
= NULL
;
1338 int retval
, success
;
1342 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
1343 int err
= group_send_sig_info(sig
, info
, p
);
1346 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
1347 return success
? 0 : retval
;
1350 int kill_pid_info(int sig
, struct siginfo
*info
, struct pid
*pid
)
1353 struct task_struct
*p
;
1357 p
= pid_task(pid
, PIDTYPE_PID
);
1359 error
= group_send_sig_info(sig
, info
, p
);
1360 if (unlikely(error
== -ESRCH
))
1362 * The task was unhashed in between, try again.
1363 * If it is dead, pid_task() will return NULL,
1364 * if we race with de_thread() it will find the
1374 int kill_proc_info(int sig
, struct siginfo
*info
, pid_t pid
)
1378 error
= kill_pid_info(sig
, info
, find_vpid(pid
));
1383 static int kill_as_cred_perm(const struct cred
*cred
,
1384 struct task_struct
*target
)
1386 const struct cred
*pcred
= __task_cred(target
);
1387 if (cred
->user_ns
!= pcred
->user_ns
)
1389 if (cred
->euid
!= pcred
->suid
&& cred
->euid
!= pcred
->uid
&&
1390 cred
->uid
!= pcred
->suid
&& cred
->uid
!= pcred
->uid
)
1395 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1396 int kill_pid_info_as_cred(int sig
, struct siginfo
*info
, struct pid
*pid
,
1397 const struct cred
*cred
, u32 secid
)
1400 struct task_struct
*p
;
1401 unsigned long flags
;
1403 if (!valid_signal(sig
))
1407 p
= pid_task(pid
, PIDTYPE_PID
);
1412 if (si_fromuser(info
) && !kill_as_cred_perm(cred
, p
)) {
1416 ret
= security_task_kill(p
, info
, sig
, secid
);
1421 if (lock_task_sighand(p
, &flags
)) {
1422 ret
= __send_signal(sig
, info
, p
, 1, 0);
1423 unlock_task_sighand(p
, &flags
);
1431 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred
);
1434 * kill_something_info() interprets pid in interesting ways just like kill(2).
1436 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1437 * is probably wrong. Should make it like BSD or SYSV.
1440 static int kill_something_info(int sig
, struct siginfo
*info
, pid_t pid
)
1446 ret
= kill_pid_info(sig
, info
, find_vpid(pid
));
1451 read_lock(&tasklist_lock
);
1453 ret
= __kill_pgrp_info(sig
, info
,
1454 pid
? find_vpid(-pid
) : task_pgrp(current
));
1456 int retval
= 0, count
= 0;
1457 struct task_struct
* p
;
1459 for_each_process(p
) {
1460 if (task_pid_vnr(p
) > 1 &&
1461 !same_thread_group(p
, current
)) {
1462 int err
= group_send_sig_info(sig
, info
, p
);
1468 ret
= count
? retval
: -ESRCH
;
1470 read_unlock(&tasklist_lock
);
1476 * These are for backward compatibility with the rest of the kernel source.
1479 int send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1482 * Make sure legacy kernel users don't send in bad values
1483 * (normal paths check this in check_kill_permission).
1485 if (!valid_signal(sig
))
1488 return do_send_sig_info(sig
, info
, p
, false);
1491 #define __si_special(priv) \
1492 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1495 send_sig(int sig
, struct task_struct
*p
, int priv
)
1497 return send_sig_info(sig
, __si_special(priv
), p
);
1501 force_sig(int sig
, struct task_struct
*p
)
1503 force_sig_info(sig
, SEND_SIG_PRIV
, p
);
1507 * When things go south during signal handling, we
1508 * will force a SIGSEGV. And if the signal that caused
1509 * the problem was already a SIGSEGV, we'll want to
1510 * make sure we don't even try to deliver the signal..
1513 force_sigsegv(int sig
, struct task_struct
*p
)
1515 if (sig
== SIGSEGV
) {
1516 unsigned long flags
;
1517 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1518 p
->sighand
->action
[sig
- 1].sa
.sa_handler
= SIG_DFL
;
1519 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1521 force_sig(SIGSEGV
, p
);
1525 int kill_pgrp(struct pid
*pid
, int sig
, int priv
)
1529 read_lock(&tasklist_lock
);
1530 ret
= __kill_pgrp_info(sig
, __si_special(priv
), pid
);
1531 read_unlock(&tasklist_lock
);
1535 EXPORT_SYMBOL(kill_pgrp
);
1537 int kill_pid(struct pid
*pid
, int sig
, int priv
)
1539 return kill_pid_info(sig
, __si_special(priv
), pid
);
1541 EXPORT_SYMBOL(kill_pid
);
1544 * These functions support sending signals using preallocated sigqueue
1545 * structures. This is needed "because realtime applications cannot
1546 * afford to lose notifications of asynchronous events, like timer
1547 * expirations or I/O completions". In the case of POSIX Timers
1548 * we allocate the sigqueue structure from the timer_create. If this
1549 * allocation fails we are able to report the failure to the application
1550 * with an EAGAIN error.
1552 struct sigqueue
*sigqueue_alloc(void)
1554 struct sigqueue
*q
= __sigqueue_alloc(-1, current
, GFP_KERNEL
, 0);
1557 q
->flags
|= SIGQUEUE_PREALLOC
;
1562 void sigqueue_free(struct sigqueue
*q
)
1564 unsigned long flags
;
1565 spinlock_t
*lock
= ¤t
->sighand
->siglock
;
1567 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1569 * We must hold ->siglock while testing q->list
1570 * to serialize with collect_signal() or with
1571 * __exit_signal()->flush_sigqueue().
1573 spin_lock_irqsave(lock
, flags
);
1574 q
->flags
&= ~SIGQUEUE_PREALLOC
;
1576 * If it is queued it will be freed when dequeued,
1577 * like the "regular" sigqueue.
1579 if (!list_empty(&q
->list
))
1581 spin_unlock_irqrestore(lock
, flags
);
1587 int send_sigqueue(struct sigqueue
*q
, struct task_struct
*t
, int group
)
1589 int sig
= q
->info
.si_signo
;
1590 struct sigpending
*pending
;
1591 unsigned long flags
;
1594 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1597 if (!likely(lock_task_sighand(t
, &flags
)))
1600 ret
= 1; /* the signal is ignored */
1601 result
= TRACE_SIGNAL_IGNORED
;
1602 if (!prepare_signal(sig
, t
, false))
1606 if (unlikely(!list_empty(&q
->list
))) {
1608 * If an SI_TIMER entry is already queue just increment
1609 * the overrun count.
1611 BUG_ON(q
->info
.si_code
!= SI_TIMER
);
1612 q
->info
.si_overrun
++;
1613 result
= TRACE_SIGNAL_ALREADY_PENDING
;
1616 q
->info
.si_overrun
= 0;
1618 signalfd_notify(t
, sig
);
1619 pending
= group
? &t
->signal
->shared_pending
: &t
->pending
;
1620 list_add_tail(&q
->list
, &pending
->list
);
1621 sigaddset(&pending
->signal
, sig
);
1622 complete_signal(sig
, t
, group
);
1623 result
= TRACE_SIGNAL_DELIVERED
;
1625 trace_signal_generate(sig
, &q
->info
, t
, group
, result
);
1626 unlock_task_sighand(t
, &flags
);
1632 * Let a parent know about the death of a child.
1633 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1635 * Returns true if our parent ignored us and so we've switched to
1638 bool do_notify_parent(struct task_struct
*tsk
, int sig
)
1640 struct siginfo info
;
1641 unsigned long flags
;
1642 struct sighand_struct
*psig
;
1643 bool autoreap
= false;
1647 /* do_notify_parent_cldstop should have been called instead. */
1648 BUG_ON(task_is_stopped_or_traced(tsk
));
1650 BUG_ON(!tsk
->ptrace
&&
1651 (tsk
->group_leader
!= tsk
|| !thread_group_empty(tsk
)));
1653 if (sig
!= SIGCHLD
) {
1655 * This is only possible if parent == real_parent.
1656 * Check if it has changed security domain.
1658 if (tsk
->parent_exec_id
!= tsk
->parent
->self_exec_id
)
1662 info
.si_signo
= sig
;
1665 * we are under tasklist_lock here so our parent is tied to
1666 * us and cannot exit and release its namespace.
1668 * the only it can is to switch its nsproxy with sys_unshare,
1669 * bu uncharing pid namespaces is not allowed, so we'll always
1670 * see relevant namespace
1672 * write_lock() currently calls preempt_disable() which is the
1673 * same as rcu_read_lock(), but according to Oleg, this is not
1674 * correct to rely on this
1677 info
.si_pid
= task_pid_nr_ns(tsk
, tsk
->parent
->nsproxy
->pid_ns
);
1678 info
.si_uid
= map_cred_ns(__task_cred(tsk
),
1679 task_cred_xxx(tsk
->parent
, user_ns
));
1682 info
.si_utime
= cputime_to_clock_t(tsk
->utime
+ tsk
->signal
->utime
);
1683 info
.si_stime
= cputime_to_clock_t(tsk
->stime
+ tsk
->signal
->stime
);
1685 info
.si_status
= tsk
->exit_code
& 0x7f;
1686 if (tsk
->exit_code
& 0x80)
1687 info
.si_code
= CLD_DUMPED
;
1688 else if (tsk
->exit_code
& 0x7f)
1689 info
.si_code
= CLD_KILLED
;
1691 info
.si_code
= CLD_EXITED
;
1692 info
.si_status
= tsk
->exit_code
>> 8;
1695 psig
= tsk
->parent
->sighand
;
1696 spin_lock_irqsave(&psig
->siglock
, flags
);
1697 if (!tsk
->ptrace
&& sig
== SIGCHLD
&&
1698 (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
1699 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
))) {
1701 * We are exiting and our parent doesn't care. POSIX.1
1702 * defines special semantics for setting SIGCHLD to SIG_IGN
1703 * or setting the SA_NOCLDWAIT flag: we should be reaped
1704 * automatically and not left for our parent's wait4 call.
1705 * Rather than having the parent do it as a magic kind of
1706 * signal handler, we just set this to tell do_exit that we
1707 * can be cleaned up without becoming a zombie. Note that
1708 * we still call __wake_up_parent in this case, because a
1709 * blocked sys_wait4 might now return -ECHILD.
1711 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1712 * is implementation-defined: we do (if you don't want
1713 * it, just use SIG_IGN instead).
1716 if (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
)
1719 if (valid_signal(sig
) && sig
)
1720 __group_send_sig_info(sig
, &info
, tsk
->parent
);
1721 __wake_up_parent(tsk
, tsk
->parent
);
1722 spin_unlock_irqrestore(&psig
->siglock
, flags
);
1728 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1729 * @tsk: task reporting the state change
1730 * @for_ptracer: the notification is for ptracer
1731 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1733 * Notify @tsk's parent that the stopped/continued state has changed. If
1734 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1735 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1738 * Must be called with tasklist_lock at least read locked.
1740 static void do_notify_parent_cldstop(struct task_struct
*tsk
,
1741 bool for_ptracer
, int why
)
1743 struct siginfo info
;
1744 unsigned long flags
;
1745 struct task_struct
*parent
;
1746 struct sighand_struct
*sighand
;
1749 parent
= tsk
->parent
;
1751 tsk
= tsk
->group_leader
;
1752 parent
= tsk
->real_parent
;
1755 info
.si_signo
= SIGCHLD
;
1758 * see comment in do_notify_parent() about the following 4 lines
1761 info
.si_pid
= task_pid_nr_ns(tsk
, parent
->nsproxy
->pid_ns
);
1762 info
.si_uid
= map_cred_ns(__task_cred(tsk
),
1763 task_cred_xxx(parent
, user_ns
));
1766 info
.si_utime
= cputime_to_clock_t(tsk
->utime
);
1767 info
.si_stime
= cputime_to_clock_t(tsk
->stime
);
1772 info
.si_status
= SIGCONT
;
1775 info
.si_status
= tsk
->signal
->group_exit_code
& 0x7f;
1778 info
.si_status
= tsk
->exit_code
& 0x7f;
1784 sighand
= parent
->sighand
;
1785 spin_lock_irqsave(&sighand
->siglock
, flags
);
1786 if (sighand
->action
[SIGCHLD
-1].sa
.sa_handler
!= SIG_IGN
&&
1787 !(sighand
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDSTOP
))
1788 __group_send_sig_info(SIGCHLD
, &info
, parent
);
1790 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1792 __wake_up_parent(tsk
, parent
);
1793 spin_unlock_irqrestore(&sighand
->siglock
, flags
);
1796 static inline int may_ptrace_stop(void)
1798 if (!likely(current
->ptrace
))
1801 * Are we in the middle of do_coredump?
1802 * If so and our tracer is also part of the coredump stopping
1803 * is a deadlock situation, and pointless because our tracer
1804 * is dead so don't allow us to stop.
1805 * If SIGKILL was already sent before the caller unlocked
1806 * ->siglock we must see ->core_state != NULL. Otherwise it
1807 * is safe to enter schedule().
1809 * This is almost outdated, a task with the pending SIGKILL can't
1810 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811 * after SIGKILL was already dequeued.
1813 if (unlikely(current
->mm
->core_state
) &&
1814 unlikely(current
->mm
== current
->parent
->mm
))
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1824 static int sigkill_pending(struct task_struct
*tsk
)
1826 return sigismember(&tsk
->pending
.signal
, SIGKILL
) ||
1827 sigismember(&tsk
->signal
->shared_pending
.signal
, SIGKILL
);
1831 * This must be called with current->sighand->siglock held.
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1841 static void ptrace_stop(int exit_code
, int why
, int clear_code
, siginfo_t
*info
)
1842 __releases(¤t
->sighand
->siglock
)
1843 __acquires(¤t
->sighand
->siglock
)
1845 bool gstop_done
= false;
1847 if (arch_ptrace_stop_needed(exit_code
, info
)) {
1849 * The arch code has something special to do before a
1850 * ptrace stop. This is allowed to block, e.g. for faults
1851 * on user stack pages. We can't keep the siglock while
1852 * calling arch_ptrace_stop, so we must release it now.
1853 * To preserve proper semantics, we must do this before
1854 * any signal bookkeeping like checking group_stop_count.
1855 * Meanwhile, a SIGKILL could come in before we retake the
1856 * siglock. That must prevent us from sleeping in TASK_TRACED.
1857 * So after regaining the lock, we must check for SIGKILL.
1859 spin_unlock_irq(¤t
->sighand
->siglock
);
1860 arch_ptrace_stop(exit_code
, info
);
1861 spin_lock_irq(¤t
->sighand
->siglock
);
1862 if (sigkill_pending(current
))
1867 * We're committing to trapping. TRACED should be visible before
1868 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869 * Also, transition to TRACED and updates to ->jobctl should be
1870 * atomic with respect to siglock and should be done after the arch
1871 * hook as siglock is released and regrabbed across it.
1873 set_current_state(TASK_TRACED
);
1875 current
->last_siginfo
= info
;
1876 current
->exit_code
= exit_code
;
1879 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1881 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882 * could be clear now. We act as if SIGCONT is received after
1883 * TASK_TRACED is entered - ignore it.
1885 if (why
== CLD_STOPPED
&& (current
->jobctl
& JOBCTL_STOP_PENDING
))
1886 gstop_done
= task_participate_group_stop(current
);
1888 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889 task_clear_jobctl_pending(current
, JOBCTL_TRAP_STOP
);
1890 if (info
&& info
->si_code
>> 8 == PTRACE_EVENT_STOP
)
1891 task_clear_jobctl_pending(current
, JOBCTL_TRAP_NOTIFY
);
1893 /* entering a trap, clear TRAPPING */
1894 task_clear_jobctl_trapping(current
);
1896 spin_unlock_irq(¤t
->sighand
->siglock
);
1897 read_lock(&tasklist_lock
);
1898 if (may_ptrace_stop()) {
1900 * Notify parents of the stop.
1902 * While ptraced, there are two parents - the ptracer and
1903 * the real_parent of the group_leader. The ptracer should
1904 * know about every stop while the real parent is only
1905 * interested in the completion of group stop. The states
1906 * for the two don't interact with each other. Notify
1907 * separately unless they're gonna be duplicates.
1909 do_notify_parent_cldstop(current
, true, why
);
1910 if (gstop_done
&& ptrace_reparented(current
))
1911 do_notify_parent_cldstop(current
, false, why
);
1914 * Don't want to allow preemption here, because
1915 * sys_ptrace() needs this task to be inactive.
1917 * XXX: implement read_unlock_no_resched().
1920 read_unlock(&tasklist_lock
);
1921 preempt_enable_no_resched();
1925 * By the time we got the lock, our tracer went away.
1926 * Don't drop the lock yet, another tracer may come.
1928 * If @gstop_done, the ptracer went away between group stop
1929 * completion and here. During detach, it would have set
1930 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932 * the real parent of the group stop completion is enough.
1935 do_notify_parent_cldstop(current
, false, why
);
1937 /* tasklist protects us from ptrace_freeze_traced() */
1938 __set_current_state(TASK_RUNNING
);
1940 current
->exit_code
= 0;
1941 read_unlock(&tasklist_lock
);
1945 * While in TASK_TRACED, we were considered "frozen enough".
1946 * Now that we woke up, it's crucial if we're supposed to be
1947 * frozen that we freeze now before running anything substantial.
1952 * We are back. Now reacquire the siglock before touching
1953 * last_siginfo, so that we are sure to have synchronized with
1954 * any signal-sending on another CPU that wants to examine it.
1956 spin_lock_irq(¤t
->sighand
->siglock
);
1957 current
->last_siginfo
= NULL
;
1959 /* LISTENING can be set only during STOP traps, clear it */
1960 current
->jobctl
&= ~JOBCTL_LISTENING
;
1963 * Queued signals ignored us while we were stopped for tracing.
1964 * So check for any that we should take before resuming user mode.
1965 * This sets TIF_SIGPENDING, but never clears it.
1967 recalc_sigpending_tsk(current
);
1970 static void ptrace_do_notify(int signr
, int exit_code
, int why
)
1974 memset(&info
, 0, sizeof info
);
1975 info
.si_signo
= signr
;
1976 info
.si_code
= exit_code
;
1977 info
.si_pid
= task_pid_vnr(current
);
1978 info
.si_uid
= current_uid();
1980 /* Let the debugger run. */
1981 ptrace_stop(exit_code
, why
, 1, &info
);
1984 void ptrace_notify(int exit_code
)
1986 BUG_ON((exit_code
& (0x7f | ~0xffff)) != SIGTRAP
);
1988 spin_lock_irq(¤t
->sighand
->siglock
);
1989 ptrace_do_notify(SIGTRAP
, exit_code
, CLD_TRAPPED
);
1990 spin_unlock_irq(¤t
->sighand
->siglock
);
1994 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1995 * @signr: signr causing group stop if initiating
1997 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1998 * and participate in it. If already set, participate in the existing
1999 * group stop. If participated in a group stop (and thus slept), %true is
2000 * returned with siglock released.
2002 * If ptraced, this function doesn't handle stop itself. Instead,
2003 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2004 * untouched. The caller must ensure that INTERRUPT trap handling takes
2005 * places afterwards.
2008 * Must be called with @current->sighand->siglock held, which is released
2012 * %false if group stop is already cancelled or ptrace trap is scheduled.
2013 * %true if participated in group stop.
2015 static bool do_signal_stop(int signr
)
2016 __releases(¤t
->sighand
->siglock
)
2018 struct signal_struct
*sig
= current
->signal
;
2020 if (!(current
->jobctl
& JOBCTL_STOP_PENDING
)) {
2021 unsigned int gstop
= JOBCTL_STOP_PENDING
| JOBCTL_STOP_CONSUME
;
2022 struct task_struct
*t
;
2024 /* signr will be recorded in task->jobctl for retries */
2025 WARN_ON_ONCE(signr
& ~JOBCTL_STOP_SIGMASK
);
2027 if (!likely(current
->jobctl
& JOBCTL_STOP_DEQUEUED
) ||
2028 unlikely(signal_group_exit(sig
)))
2031 * There is no group stop already in progress. We must
2034 * While ptraced, a task may be resumed while group stop is
2035 * still in effect and then receive a stop signal and
2036 * initiate another group stop. This deviates from the
2037 * usual behavior as two consecutive stop signals can't
2038 * cause two group stops when !ptraced. That is why we
2039 * also check !task_is_stopped(t) below.
2041 * The condition can be distinguished by testing whether
2042 * SIGNAL_STOP_STOPPED is already set. Don't generate
2043 * group_exit_code in such case.
2045 * This is not necessary for SIGNAL_STOP_CONTINUED because
2046 * an intervening stop signal is required to cause two
2047 * continued events regardless of ptrace.
2049 if (!(sig
->flags
& SIGNAL_STOP_STOPPED
))
2050 sig
->group_exit_code
= signr
;
2052 sig
->group_stop_count
= 0;
2054 if (task_set_jobctl_pending(current
, signr
| gstop
))
2055 sig
->group_stop_count
++;
2057 for (t
= next_thread(current
); t
!= current
;
2058 t
= next_thread(t
)) {
2060 * Setting state to TASK_STOPPED for a group
2061 * stop is always done with the siglock held,
2062 * so this check has no races.
2064 if (!task_is_stopped(t
) &&
2065 task_set_jobctl_pending(t
, signr
| gstop
)) {
2066 sig
->group_stop_count
++;
2067 if (likely(!(t
->ptrace
& PT_SEIZED
)))
2068 signal_wake_up(t
, 0);
2070 ptrace_trap_notify(t
);
2075 if (likely(!current
->ptrace
)) {
2079 * If there are no other threads in the group, or if there
2080 * is a group stop in progress and we are the last to stop,
2081 * report to the parent.
2083 if (task_participate_group_stop(current
))
2084 notify
= CLD_STOPPED
;
2086 __set_current_state(TASK_STOPPED
);
2087 spin_unlock_irq(¤t
->sighand
->siglock
);
2090 * Notify the parent of the group stop completion. Because
2091 * we're not holding either the siglock or tasklist_lock
2092 * here, ptracer may attach inbetween; however, this is for
2093 * group stop and should always be delivered to the real
2094 * parent of the group leader. The new ptracer will get
2095 * its notification when this task transitions into
2099 read_lock(&tasklist_lock
);
2100 do_notify_parent_cldstop(current
, false, notify
);
2101 read_unlock(&tasklist_lock
);
2104 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2109 * While ptraced, group stop is handled by STOP trap.
2110 * Schedule it and let the caller deal with it.
2112 task_set_jobctl_pending(current
, JOBCTL_TRAP_STOP
);
2118 * do_jobctl_trap - take care of ptrace jobctl traps
2120 * When PT_SEIZED, it's used for both group stop and explicit
2121 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2122 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2123 * the stop signal; otherwise, %SIGTRAP.
2125 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2126 * number as exit_code and no siginfo.
2129 * Must be called with @current->sighand->siglock held, which may be
2130 * released and re-acquired before returning with intervening sleep.
2132 static void do_jobctl_trap(void)
2134 struct signal_struct
*signal
= current
->signal
;
2135 int signr
= current
->jobctl
& JOBCTL_STOP_SIGMASK
;
2137 if (current
->ptrace
& PT_SEIZED
) {
2138 if (!signal
->group_stop_count
&&
2139 !(signal
->flags
& SIGNAL_STOP_STOPPED
))
2141 WARN_ON_ONCE(!signr
);
2142 ptrace_do_notify(signr
, signr
| (PTRACE_EVENT_STOP
<< 8),
2145 WARN_ON_ONCE(!signr
);
2146 ptrace_stop(signr
, CLD_STOPPED
, 0, NULL
);
2147 current
->exit_code
= 0;
2151 static int ptrace_signal(int signr
, siginfo_t
*info
,
2152 struct pt_regs
*regs
, void *cookie
)
2154 ptrace_signal_deliver(regs
, cookie
);
2156 * We do not check sig_kernel_stop(signr) but set this marker
2157 * unconditionally because we do not know whether debugger will
2158 * change signr. This flag has no meaning unless we are going
2159 * to stop after return from ptrace_stop(). In this case it will
2160 * be checked in do_signal_stop(), we should only stop if it was
2161 * not cleared by SIGCONT while we were sleeping. See also the
2162 * comment in dequeue_signal().
2164 current
->jobctl
|= JOBCTL_STOP_DEQUEUED
;
2165 ptrace_stop(signr
, CLD_TRAPPED
, 0, info
);
2167 /* We're back. Did the debugger cancel the sig? */
2168 signr
= current
->exit_code
;
2172 current
->exit_code
= 0;
2175 * Update the siginfo structure if the signal has
2176 * changed. If the debugger wanted something
2177 * specific in the siginfo structure then it should
2178 * have updated *info via PTRACE_SETSIGINFO.
2180 if (signr
!= info
->si_signo
) {
2181 info
->si_signo
= signr
;
2183 info
->si_code
= SI_USER
;
2185 info
->si_pid
= task_pid_vnr(current
->parent
);
2186 info
->si_uid
= map_cred_ns(__task_cred(current
->parent
),
2191 /* If the (new) signal is now blocked, requeue it. */
2192 if (sigismember(¤t
->blocked
, signr
)) {
2193 specific_send_sig_info(signr
, info
, current
);
2200 int get_signal_to_deliver(siginfo_t
*info
, struct k_sigaction
*return_ka
,
2201 struct pt_regs
*regs
, void *cookie
)
2203 struct sighand_struct
*sighand
= current
->sighand
;
2204 struct signal_struct
*signal
= current
->signal
;
2209 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2210 * While in TASK_STOPPED, we were considered "frozen enough".
2211 * Now that we woke up, it's crucial if we're supposed to be
2212 * frozen that we freeze now before running anything substantial.
2216 spin_lock_irq(&sighand
->siglock
);
2218 * Every stopped thread goes here after wakeup. Check to see if
2219 * we should notify the parent, prepare_signal(SIGCONT) encodes
2220 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2222 if (unlikely(signal
->flags
& SIGNAL_CLD_MASK
)) {
2225 if (signal
->flags
& SIGNAL_CLD_CONTINUED
)
2226 why
= CLD_CONTINUED
;
2230 signal
->flags
&= ~SIGNAL_CLD_MASK
;
2232 spin_unlock_irq(&sighand
->siglock
);
2235 * Notify the parent that we're continuing. This event is
2236 * always per-process and doesn't make whole lot of sense
2237 * for ptracers, who shouldn't consume the state via
2238 * wait(2) either, but, for backward compatibility, notify
2239 * the ptracer of the group leader too unless it's gonna be
2242 read_lock(&tasklist_lock
);
2243 do_notify_parent_cldstop(current
, false, why
);
2245 if (ptrace_reparented(current
->group_leader
))
2246 do_notify_parent_cldstop(current
->group_leader
,
2248 read_unlock(&tasklist_lock
);
2254 struct k_sigaction
*ka
;
2256 if (unlikely(current
->jobctl
& JOBCTL_STOP_PENDING
) &&
2260 if (unlikely(current
->jobctl
& JOBCTL_TRAP_MASK
)) {
2262 spin_unlock_irq(&sighand
->siglock
);
2266 signr
= dequeue_signal(current
, ¤t
->blocked
, info
);
2269 break; /* will return 0 */
2271 if (unlikely(current
->ptrace
) && signr
!= SIGKILL
) {
2272 signr
= ptrace_signal(signr
, info
,
2278 ka
= &sighand
->action
[signr
-1];
2280 /* Trace actually delivered signals. */
2281 trace_signal_deliver(signr
, info
, ka
);
2283 if (ka
->sa
.sa_handler
== SIG_IGN
) /* Do nothing. */
2285 if (ka
->sa
.sa_handler
!= SIG_DFL
) {
2286 /* Run the handler. */
2289 if (ka
->sa
.sa_flags
& SA_ONESHOT
)
2290 ka
->sa
.sa_handler
= SIG_DFL
;
2292 break; /* will return non-zero "signr" value */
2296 * Now we are doing the default action for this signal.
2298 if (sig_kernel_ignore(signr
)) /* Default is nothing. */
2302 * Global init gets no signals it doesn't want.
2303 * Container-init gets no signals it doesn't want from same
2306 * Note that if global/container-init sees a sig_kernel_only()
2307 * signal here, the signal must have been generated internally
2308 * or must have come from an ancestor namespace. In either
2309 * case, the signal cannot be dropped.
2311 if (unlikely(signal
->flags
& SIGNAL_UNKILLABLE
) &&
2312 !sig_kernel_only(signr
))
2315 if (sig_kernel_stop(signr
)) {
2317 * The default action is to stop all threads in
2318 * the thread group. The job control signals
2319 * do nothing in an orphaned pgrp, but SIGSTOP
2320 * always works. Note that siglock needs to be
2321 * dropped during the call to is_orphaned_pgrp()
2322 * because of lock ordering with tasklist_lock.
2323 * This allows an intervening SIGCONT to be posted.
2324 * We need to check for that and bail out if necessary.
2326 if (signr
!= SIGSTOP
) {
2327 spin_unlock_irq(&sighand
->siglock
);
2329 /* signals can be posted during this window */
2331 if (is_current_pgrp_orphaned())
2334 spin_lock_irq(&sighand
->siglock
);
2337 if (likely(do_signal_stop(info
->si_signo
))) {
2338 /* It released the siglock. */
2343 * We didn't actually stop, due to a race
2344 * with SIGCONT or something like that.
2349 spin_unlock_irq(&sighand
->siglock
);
2352 * Anything else is fatal, maybe with a core dump.
2354 current
->flags
|= PF_SIGNALED
;
2356 if (sig_kernel_coredump(signr
)) {
2357 if (print_fatal_signals
)
2358 print_fatal_signal(regs
, info
->si_signo
);
2360 * If it was able to dump core, this kills all
2361 * other threads in the group and synchronizes with
2362 * their demise. If we lost the race with another
2363 * thread getting here, it set group_exit_code
2364 * first and our do_group_exit call below will use
2365 * that value and ignore the one we pass it.
2367 do_coredump(info
->si_signo
, info
->si_signo
, regs
);
2371 * Death signals, no core dump.
2373 do_group_exit(info
->si_signo
);
2376 spin_unlock_irq(&sighand
->siglock
);
2381 * block_sigmask - add @ka's signal mask to current->blocked
2382 * @ka: action for @signr
2383 * @signr: signal that has been successfully delivered
2385 * This function should be called when a signal has succesfully been
2386 * delivered. It adds the mask of signals for @ka to current->blocked
2387 * so that they are blocked during the execution of the signal
2388 * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2389 * set in @ka->sa.sa_flags.
2391 void block_sigmask(struct k_sigaction
*ka
, int signr
)
2395 sigorsets(&blocked
, ¤t
->blocked
, &ka
->sa
.sa_mask
);
2396 if (!(ka
->sa
.sa_flags
& SA_NODEFER
))
2397 sigaddset(&blocked
, signr
);
2398 set_current_blocked(&blocked
);
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2406 static void retarget_shared_pending(struct task_struct
*tsk
, sigset_t
*which
)
2409 struct task_struct
*t
;
2411 sigandsets(&retarget
, &tsk
->signal
->shared_pending
.signal
, which
);
2412 if (sigisemptyset(&retarget
))
2416 while_each_thread(tsk
, t
) {
2417 if (t
->flags
& PF_EXITING
)
2420 if (!has_pending_signals(&retarget
, &t
->blocked
))
2422 /* Remove the signals this thread can handle. */
2423 sigandsets(&retarget
, &retarget
, &t
->blocked
);
2425 if (!signal_pending(t
))
2426 signal_wake_up(t
, 0);
2428 if (sigisemptyset(&retarget
))
2433 void exit_signals(struct task_struct
*tsk
)
2439 * @tsk is about to have PF_EXITING set - lock out users which
2440 * expect stable threadgroup.
2442 threadgroup_change_begin(tsk
);
2444 if (thread_group_empty(tsk
) || signal_group_exit(tsk
->signal
)) {
2445 tsk
->flags
|= PF_EXITING
;
2446 threadgroup_change_end(tsk
);
2450 spin_lock_irq(&tsk
->sighand
->siglock
);
2452 * From now this task is not visible for group-wide signals,
2453 * see wants_signal(), do_signal_stop().
2455 tsk
->flags
|= PF_EXITING
;
2457 threadgroup_change_end(tsk
);
2459 if (!signal_pending(tsk
))
2462 unblocked
= tsk
->blocked
;
2463 signotset(&unblocked
);
2464 retarget_shared_pending(tsk
, &unblocked
);
2466 if (unlikely(tsk
->jobctl
& JOBCTL_STOP_PENDING
) &&
2467 task_participate_group_stop(tsk
))
2468 group_stop
= CLD_STOPPED
;
2470 spin_unlock_irq(&tsk
->sighand
->siglock
);
2473 * If group stop has completed, deliver the notification. This
2474 * should always go to the real parent of the group leader.
2476 if (unlikely(group_stop
)) {
2477 read_lock(&tasklist_lock
);
2478 do_notify_parent_cldstop(tsk
, false, group_stop
);
2479 read_unlock(&tasklist_lock
);
2483 EXPORT_SYMBOL(recalc_sigpending
);
2484 EXPORT_SYMBOL_GPL(dequeue_signal
);
2485 EXPORT_SYMBOL(flush_signals
);
2486 EXPORT_SYMBOL(force_sig
);
2487 EXPORT_SYMBOL(send_sig
);
2488 EXPORT_SYMBOL(send_sig_info
);
2489 EXPORT_SYMBOL(sigprocmask
);
2490 EXPORT_SYMBOL(block_all_signals
);
2491 EXPORT_SYMBOL(unblock_all_signals
);
2495 * System call entry points.
2499 * sys_restart_syscall - restart a system call
2501 SYSCALL_DEFINE0(restart_syscall
)
2503 struct restart_block
*restart
= ¤t_thread_info()->restart_block
;
2504 return restart
->fn(restart
);
2507 long do_no_restart_syscall(struct restart_block
*param
)
2512 static void __set_task_blocked(struct task_struct
*tsk
, const sigset_t
*newset
)
2514 if (signal_pending(tsk
) && !thread_group_empty(tsk
)) {
2515 sigset_t newblocked
;
2516 /* A set of now blocked but previously unblocked signals. */
2517 sigandnsets(&newblocked
, newset
, ¤t
->blocked
);
2518 retarget_shared_pending(tsk
, &newblocked
);
2520 tsk
->blocked
= *newset
;
2521 recalc_sigpending();
2525 * set_current_blocked - change current->blocked mask
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2531 void set_current_blocked(const sigset_t
*newset
)
2533 struct task_struct
*tsk
= current
;
2535 spin_lock_irq(&tsk
->sighand
->siglock
);
2536 __set_task_blocked(tsk
, newset
);
2537 spin_unlock_irq(&tsk
->sighand
->siglock
);
2541 * This is also useful for kernel threads that want to temporarily
2542 * (or permanently) block certain signals.
2544 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2545 * interface happily blocks "unblockable" signals like SIGKILL
2548 int sigprocmask(int how
, sigset_t
*set
, sigset_t
*oldset
)
2550 struct task_struct
*tsk
= current
;
2553 /* Lockless, only current can change ->blocked, never from irq */
2555 *oldset
= tsk
->blocked
;
2559 sigorsets(&newset
, &tsk
->blocked
, set
);
2562 sigandnsets(&newset
, &tsk
->blocked
, set
);
2571 set_current_blocked(&newset
);
2576 * sys_rt_sigprocmask - change the list of currently blocked signals
2577 * @how: whether to add, remove, or set signals
2578 * @nset: stores pending signals
2579 * @oset: previous value of signal mask if non-null
2580 * @sigsetsize: size of sigset_t type
2582 SYSCALL_DEFINE4(rt_sigprocmask
, int, how
, sigset_t __user
*, nset
,
2583 sigset_t __user
*, oset
, size_t, sigsetsize
)
2585 sigset_t old_set
, new_set
;
2588 /* XXX: Don't preclude handling different sized sigset_t's. */
2589 if (sigsetsize
!= sizeof(sigset_t
))
2592 old_set
= current
->blocked
;
2595 if (copy_from_user(&new_set
, nset
, sizeof(sigset_t
)))
2597 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2599 error
= sigprocmask(how
, &new_set
, NULL
);
2605 if (copy_to_user(oset
, &old_set
, sizeof(sigset_t
)))
2612 long do_sigpending(void __user
*set
, unsigned long sigsetsize
)
2614 long error
= -EINVAL
;
2617 if (sigsetsize
> sizeof(sigset_t
))
2620 spin_lock_irq(¤t
->sighand
->siglock
);
2621 sigorsets(&pending
, ¤t
->pending
.signal
,
2622 ¤t
->signal
->shared_pending
.signal
);
2623 spin_unlock_irq(¤t
->sighand
->siglock
);
2625 /* Outside the lock because only this thread touches it. */
2626 sigandsets(&pending
, ¤t
->blocked
, &pending
);
2629 if (!copy_to_user(set
, &pending
, sigsetsize
))
2637 * sys_rt_sigpending - examine a pending signal that has been raised
2639 * @set: stores pending signals
2640 * @sigsetsize: size of sigset_t type or larger
2642 SYSCALL_DEFINE2(rt_sigpending
, sigset_t __user
*, set
, size_t, sigsetsize
)
2644 return do_sigpending(set
, sigsetsize
);
2647 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2649 int copy_siginfo_to_user(siginfo_t __user
*to
, siginfo_t
*from
)
2653 if (!access_ok (VERIFY_WRITE
, to
, sizeof(siginfo_t
)))
2655 if (from
->si_code
< 0)
2656 return __copy_to_user(to
, from
, sizeof(siginfo_t
))
2659 * If you change siginfo_t structure, please be sure
2660 * this code is fixed accordingly.
2661 * Please remember to update the signalfd_copyinfo() function
2662 * inside fs/signalfd.c too, in case siginfo_t changes.
2663 * It should never copy any pad contained in the structure
2664 * to avoid security leaks, but must copy the generic
2665 * 3 ints plus the relevant union member.
2667 err
= __put_user(from
->si_signo
, &to
->si_signo
);
2668 err
|= __put_user(from
->si_errno
, &to
->si_errno
);
2669 err
|= __put_user((short)from
->si_code
, &to
->si_code
);
2670 switch (from
->si_code
& __SI_MASK
) {
2672 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2673 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2676 err
|= __put_user(from
->si_tid
, &to
->si_tid
);
2677 err
|= __put_user(from
->si_overrun
, &to
->si_overrun
);
2678 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2681 err
|= __put_user(from
->si_band
, &to
->si_band
);
2682 err
|= __put_user(from
->si_fd
, &to
->si_fd
);
2685 err
|= __put_user(from
->si_addr
, &to
->si_addr
);
2686 #ifdef __ARCH_SI_TRAPNO
2687 err
|= __put_user(from
->si_trapno
, &to
->si_trapno
);
2689 #ifdef BUS_MCEERR_AO
2691 * Other callers might not initialize the si_lsb field,
2692 * so check explicitly for the right codes here.
2694 if (from
->si_code
== BUS_MCEERR_AR
|| from
->si_code
== BUS_MCEERR_AO
)
2695 err
|= __put_user(from
->si_addr_lsb
, &to
->si_addr_lsb
);
2699 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2700 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2701 err
|= __put_user(from
->si_status
, &to
->si_status
);
2702 err
|= __put_user(from
->si_utime
, &to
->si_utime
);
2703 err
|= __put_user(from
->si_stime
, &to
->si_stime
);
2705 case __SI_RT
: /* This is not generated by the kernel as of now. */
2706 case __SI_MESGQ
: /* But this is */
2707 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2708 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2709 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2711 default: /* this is just in case for now ... */
2712 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2713 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2722 * do_sigtimedwait - wait for queued signals specified in @which
2723 * @which: queued signals to wait for
2724 * @info: if non-null, the signal's siginfo is returned here
2725 * @ts: upper bound on process time suspension
2727 int do_sigtimedwait(const sigset_t
*which
, siginfo_t
*info
,
2728 const struct timespec
*ts
)
2730 struct task_struct
*tsk
= current
;
2731 long timeout
= MAX_SCHEDULE_TIMEOUT
;
2732 sigset_t mask
= *which
;
2736 if (!timespec_valid(ts
))
2738 timeout
= timespec_to_jiffies(ts
);
2740 * We can be close to the next tick, add another one
2741 * to ensure we will wait at least the time asked for.
2743 if (ts
->tv_sec
|| ts
->tv_nsec
)
2748 * Invert the set of allowed signals to get those we want to block.
2750 sigdelsetmask(&mask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2753 spin_lock_irq(&tsk
->sighand
->siglock
);
2754 sig
= dequeue_signal(tsk
, &mask
, info
);
2755 if (!sig
&& timeout
) {
2757 * None ready, temporarily unblock those we're interested
2758 * while we are sleeping in so that we'll be awakened when
2759 * they arrive. Unblocking is always fine, we can avoid
2760 * set_current_blocked().
2762 tsk
->real_blocked
= tsk
->blocked
;
2763 sigandsets(&tsk
->blocked
, &tsk
->blocked
, &mask
);
2764 recalc_sigpending();
2765 spin_unlock_irq(&tsk
->sighand
->siglock
);
2767 timeout
= schedule_timeout_interruptible(timeout
);
2769 spin_lock_irq(&tsk
->sighand
->siglock
);
2770 __set_task_blocked(tsk
, &tsk
->real_blocked
);
2771 siginitset(&tsk
->real_blocked
, 0);
2772 sig
= dequeue_signal(tsk
, &mask
, info
);
2774 spin_unlock_irq(&tsk
->sighand
->siglock
);
2778 return timeout
? -EINTR
: -EAGAIN
;
2782 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2784 * @uthese: queued signals to wait for
2785 * @uinfo: if non-null, the signal's siginfo is returned here
2786 * @uts: upper bound on process time suspension
2787 * @sigsetsize: size of sigset_t type
2789 SYSCALL_DEFINE4(rt_sigtimedwait
, const sigset_t __user
*, uthese
,
2790 siginfo_t __user
*, uinfo
, const struct timespec __user
*, uts
,
2798 /* XXX: Don't preclude handling different sized sigset_t's. */
2799 if (sigsetsize
!= sizeof(sigset_t
))
2802 if (copy_from_user(&these
, uthese
, sizeof(these
)))
2806 if (copy_from_user(&ts
, uts
, sizeof(ts
)))
2810 ret
= do_sigtimedwait(&these
, &info
, uts
? &ts
: NULL
);
2812 if (ret
> 0 && uinfo
) {
2813 if (copy_siginfo_to_user(uinfo
, &info
))
2821 * sys_kill - send a signal to a process
2822 * @pid: the PID of the process
2823 * @sig: signal to be sent
2825 SYSCALL_DEFINE2(kill
, pid_t
, pid
, int, sig
)
2827 struct siginfo info
;
2829 info
.si_signo
= sig
;
2831 info
.si_code
= SI_USER
;
2832 info
.si_pid
= task_tgid_vnr(current
);
2833 info
.si_uid
= current_uid();
2835 return kill_something_info(sig
, &info
, pid
);
2839 do_send_specific(pid_t tgid
, pid_t pid
, int sig
, struct siginfo
*info
)
2841 struct task_struct
*p
;
2845 p
= find_task_by_vpid(pid
);
2846 if (p
&& (tgid
<= 0 || task_tgid_vnr(p
) == tgid
)) {
2847 error
= check_kill_permission(sig
, info
, p
);
2849 * The null signal is a permissions and process existence
2850 * probe. No signal is actually delivered.
2852 if (!error
&& sig
) {
2853 error
= do_send_sig_info(sig
, info
, p
, false);
2855 * If lock_task_sighand() failed we pretend the task
2856 * dies after receiving the signal. The window is tiny,
2857 * and the signal is private anyway.
2859 if (unlikely(error
== -ESRCH
))
2868 static int do_tkill(pid_t tgid
, pid_t pid
, int sig
)
2870 struct siginfo info
= {};
2872 info
.si_signo
= sig
;
2874 info
.si_code
= SI_TKILL
;
2875 info
.si_pid
= task_tgid_vnr(current
);
2876 info
.si_uid
= current_uid();
2878 return do_send_specific(tgid
, pid
, sig
, &info
);
2882 * sys_tgkill - send signal to one specific thread
2883 * @tgid: the thread group ID of the thread
2884 * @pid: the PID of the thread
2885 * @sig: signal to be sent
2887 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2888 * exists but it's not belonging to the target process anymore. This
2889 * method solves the problem of threads exiting and PIDs getting reused.
2891 SYSCALL_DEFINE3(tgkill
, pid_t
, tgid
, pid_t
, pid
, int, sig
)
2893 /* This is only valid for single tasks */
2894 if (pid
<= 0 || tgid
<= 0)
2897 return do_tkill(tgid
, pid
, sig
);
2901 * sys_tkill - send signal to one specific task
2902 * @pid: the PID of the task
2903 * @sig: signal to be sent
2905 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2907 SYSCALL_DEFINE2(tkill
, pid_t
, pid
, int, sig
)
2909 /* This is only valid for single tasks */
2913 return do_tkill(0, pid
, sig
);
2917 * sys_rt_sigqueueinfo - send signal information to a signal
2918 * @pid: the PID of the thread
2919 * @sig: signal to be sent
2920 * @uinfo: signal info to be sent
2922 SYSCALL_DEFINE3(rt_sigqueueinfo
, pid_t
, pid
, int, sig
,
2923 siginfo_t __user
*, uinfo
)
2927 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2930 /* Not even root can pretend to send signals from the kernel.
2931 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2933 if (info
.si_code
>= 0 || info
.si_code
== SI_TKILL
) {
2934 /* We used to allow any < 0 si_code */
2935 WARN_ON_ONCE(info
.si_code
< 0);
2938 info
.si_signo
= sig
;
2940 /* POSIX.1b doesn't mention process groups. */
2941 return kill_proc_info(sig
, &info
, pid
);
2944 long do_rt_tgsigqueueinfo(pid_t tgid
, pid_t pid
, int sig
, siginfo_t
*info
)
2946 /* This is only valid for single tasks */
2947 if (pid
<= 0 || tgid
<= 0)
2950 /* Not even root can pretend to send signals from the kernel.
2951 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2953 if (info
->si_code
>= 0 || info
->si_code
== SI_TKILL
) {
2954 /* We used to allow any < 0 si_code */
2955 WARN_ON_ONCE(info
->si_code
< 0);
2958 info
->si_signo
= sig
;
2960 return do_send_specific(tgid
, pid
, sig
, info
);
2963 SYSCALL_DEFINE4(rt_tgsigqueueinfo
, pid_t
, tgid
, pid_t
, pid
, int, sig
,
2964 siginfo_t __user
*, uinfo
)
2968 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2971 return do_rt_tgsigqueueinfo(tgid
, pid
, sig
, &info
);
2974 int do_sigaction(int sig
, struct k_sigaction
*act
, struct k_sigaction
*oact
)
2976 struct task_struct
*t
= current
;
2977 struct k_sigaction
*k
;
2980 if (!valid_signal(sig
) || sig
< 1 || (act
&& sig_kernel_only(sig
)))
2983 k
= &t
->sighand
->action
[sig
-1];
2985 spin_lock_irq(¤t
->sighand
->siglock
);
2990 sigdelsetmask(&act
->sa
.sa_mask
,
2991 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2995 * "Setting a signal action to SIG_IGN for a signal that is
2996 * pending shall cause the pending signal to be discarded,
2997 * whether or not it is blocked."
2999 * "Setting a signal action to SIG_DFL for a signal that is
3000 * pending and whose default action is to ignore the signal
3001 * (for example, SIGCHLD), shall cause the pending signal to
3002 * be discarded, whether or not it is blocked"
3004 if (sig_handler_ignored(sig_handler(t
, sig
), sig
)) {
3006 sigaddset(&mask
, sig
);
3007 rm_from_queue_full(&mask
, &t
->signal
->shared_pending
);
3009 rm_from_queue_full(&mask
, &t
->pending
);
3011 } while (t
!= current
);
3015 spin_unlock_irq(¤t
->sighand
->siglock
);
3020 do_sigaltstack (const stack_t __user
*uss
, stack_t __user
*uoss
, unsigned long sp
)
3025 oss
.ss_sp
= (void __user
*) current
->sas_ss_sp
;
3026 oss
.ss_size
= current
->sas_ss_size
;
3027 oss
.ss_flags
= sas_ss_flags(sp
);
3035 if (!access_ok(VERIFY_READ
, uss
, sizeof(*uss
)))
3037 error
= __get_user(ss_sp
, &uss
->ss_sp
) |
3038 __get_user(ss_flags
, &uss
->ss_flags
) |
3039 __get_user(ss_size
, &uss
->ss_size
);
3044 if (on_sig_stack(sp
))
3049 * Note - this code used to test ss_flags incorrectly:
3050 * old code may have been written using ss_flags==0
3051 * to mean ss_flags==SS_ONSTACK (as this was the only
3052 * way that worked) - this fix preserves that older
3055 if (ss_flags
!= SS_DISABLE
&& ss_flags
!= SS_ONSTACK
&& ss_flags
!= 0)
3058 if (ss_flags
== SS_DISABLE
) {
3063 if (ss_size
< MINSIGSTKSZ
)
3067 current
->sas_ss_sp
= (unsigned long) ss_sp
;
3068 current
->sas_ss_size
= ss_size
;
3074 if (!access_ok(VERIFY_WRITE
, uoss
, sizeof(*uoss
)))
3076 error
= __put_user(oss
.ss_sp
, &uoss
->ss_sp
) |
3077 __put_user(oss
.ss_size
, &uoss
->ss_size
) |
3078 __put_user(oss
.ss_flags
, &uoss
->ss_flags
);
3085 #ifdef __ARCH_WANT_SYS_SIGPENDING
3088 * sys_sigpending - examine pending signals
3089 * @set: where mask of pending signal is returned
3091 SYSCALL_DEFINE1(sigpending
, old_sigset_t __user
*, set
)
3093 return do_sigpending(set
, sizeof(*set
));
3098 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3100 * sys_sigprocmask - examine and change blocked signals
3101 * @how: whether to add, remove, or set signals
3102 * @nset: signals to add or remove (if non-null)
3103 * @oset: previous value of signal mask if non-null
3105 * Some platforms have their own version with special arguments;
3106 * others support only sys_rt_sigprocmask.
3109 SYSCALL_DEFINE3(sigprocmask
, int, how
, old_sigset_t __user
*, nset
,
3110 old_sigset_t __user
*, oset
)
3112 old_sigset_t old_set
, new_set
;
3113 sigset_t new_blocked
;
3115 old_set
= current
->blocked
.sig
[0];
3118 if (copy_from_user(&new_set
, nset
, sizeof(*nset
)))
3120 new_set
&= ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
));
3122 new_blocked
= current
->blocked
;
3126 sigaddsetmask(&new_blocked
, new_set
);
3129 sigdelsetmask(&new_blocked
, new_set
);
3132 new_blocked
.sig
[0] = new_set
;
3138 set_current_blocked(&new_blocked
);
3142 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
3148 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3150 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3152 * sys_rt_sigaction - alter an action taken by a process
3153 * @sig: signal to be sent
3154 * @act: new sigaction
3155 * @oact: used to save the previous sigaction
3156 * @sigsetsize: size of sigset_t type
3158 SYSCALL_DEFINE4(rt_sigaction
, int, sig
,
3159 const struct sigaction __user
*, act
,
3160 struct sigaction __user
*, oact
,
3163 struct k_sigaction new_sa
, old_sa
;
3166 /* XXX: Don't preclude handling different sized sigset_t's. */
3167 if (sigsetsize
!= sizeof(sigset_t
))
3171 if (copy_from_user(&new_sa
.sa
, act
, sizeof(new_sa
.sa
)))
3175 ret
= do_sigaction(sig
, act
? &new_sa
: NULL
, oact
? &old_sa
: NULL
);
3178 if (copy_to_user(oact
, &old_sa
.sa
, sizeof(old_sa
.sa
)))
3184 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3186 #ifdef __ARCH_WANT_SYS_SGETMASK
3189 * For backwards compatibility. Functionality superseded by sigprocmask.
3191 SYSCALL_DEFINE0(sgetmask
)
3194 return current
->blocked
.sig
[0];
3197 SYSCALL_DEFINE1(ssetmask
, int, newmask
)
3199 int old
= current
->blocked
.sig
[0];
3202 siginitset(&newset
, newmask
& ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
)));
3203 set_current_blocked(&newset
);
3207 #endif /* __ARCH_WANT_SGETMASK */
3209 #ifdef __ARCH_WANT_SYS_SIGNAL
3211 * For backwards compatibility. Functionality superseded by sigaction.
3213 SYSCALL_DEFINE2(signal
, int, sig
, __sighandler_t
, handler
)
3215 struct k_sigaction new_sa
, old_sa
;
3218 new_sa
.sa
.sa_handler
= handler
;
3219 new_sa
.sa
.sa_flags
= SA_ONESHOT
| SA_NOMASK
;
3220 sigemptyset(&new_sa
.sa
.sa_mask
);
3222 ret
= do_sigaction(sig
, &new_sa
, &old_sa
);
3224 return ret
? ret
: (unsigned long)old_sa
.sa
.sa_handler
;
3226 #endif /* __ARCH_WANT_SYS_SIGNAL */
3228 #ifdef __ARCH_WANT_SYS_PAUSE
3230 SYSCALL_DEFINE0(pause
)
3232 while (!signal_pending(current
)) {
3233 current
->state
= TASK_INTERRUPTIBLE
;
3236 return -ERESTARTNOHAND
;
3241 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3243 * sys_rt_sigsuspend - replace the signal mask for a value with the
3244 * @unewset value until a signal is received
3245 * @unewset: new signal mask value
3246 * @sigsetsize: size of sigset_t type
3248 SYSCALL_DEFINE2(rt_sigsuspend
, sigset_t __user
*, unewset
, size_t, sigsetsize
)
3252 /* XXX: Don't preclude handling different sized sigset_t's. */
3253 if (sigsetsize
!= sizeof(sigset_t
))
3256 if (copy_from_user(&newset
, unewset
, sizeof(newset
)))
3258 sigdelsetmask(&newset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
3260 current
->saved_sigmask
= current
->blocked
;
3261 set_current_blocked(&newset
);
3263 current
->state
= TASK_INTERRUPTIBLE
;
3265 set_restore_sigmask();
3266 return -ERESTARTNOHAND
;
3268 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3270 __attribute__((weak
)) const char *arch_vma_name(struct vm_area_struct
*vma
)
3275 void __init
signals_init(void)
3277 sigqueue_cachep
= KMEM_CACHE(sigqueue
, SLAB_PANIC
);
3280 #ifdef CONFIG_KGDB_KDB
3281 #include <linux/kdb.h>
3283 * kdb_send_sig_info - Allows kdb to send signals without exposing
3284 * signal internals. This function checks if the required locks are
3285 * available before calling the main signal code, to avoid kdb
3289 kdb_send_sig_info(struct task_struct
*t
, struct siginfo
*info
)
3291 static struct task_struct
*kdb_prev_t
;
3293 if (!spin_trylock(&t
->sighand
->siglock
)) {
3294 kdb_printf("Can't do kill command now.\n"
3295 "The sigmask lock is held somewhere else in "
3296 "kernel, try again later\n");
3299 spin_unlock(&t
->sighand
->siglock
);
3300 new_t
= kdb_prev_t
!= t
;
3302 if (t
->state
!= TASK_RUNNING
&& new_t
) {
3303 kdb_printf("Process is not RUNNING, sending a signal from "
3304 "kdb risks deadlock\n"
3305 "on the run queue locks. "
3306 "The signal has _not_ been sent.\n"
3307 "Reissue the kill command if you want to risk "
3311 sig
= info
->si_signo
;
3312 if (send_sig_info(sig
, info
, t
))
3313 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3316 kdb_printf("Signal %d is sent to process %d.\n", sig
, t
->pid
);
3318 #endif /* CONFIG_KGDB_KDB */