x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / alpha / include / asm / mmu_context.h
blob4c51c05333c604a0c7ea14216b8651dbba6ce926
1 #ifndef __ALPHA_MMU_CONTEXT_H
2 #define __ALPHA_MMU_CONTEXT_H
4 /*
5 * get a new mmu context..
7 * Copyright (C) 1996, Linus Torvalds
8 */
10 #include <asm/machvec.h>
11 #include <asm/compiler.h>
12 #include <asm-generic/mm_hooks.h>
15 * Force a context reload. This is needed when we change the page
16 * table pointer or when we update the ASN of the current process.
19 /* Don't get into trouble with dueling __EXTERN_INLINEs. */
20 #ifndef __EXTERN_INLINE
21 #include <asm/io.h>
22 #endif
25 static inline unsigned long
26 __reload_thread(struct pcb_struct *pcb)
28 register unsigned long a0 __asm__("$16");
29 register unsigned long v0 __asm__("$0");
31 a0 = virt_to_phys(pcb);
32 __asm__ __volatile__(
33 "call_pal %2 #__reload_thread"
34 : "=r"(v0), "=r"(a0)
35 : "i"(PAL_swpctx), "r"(a0)
36 : "$1", "$22", "$23", "$24", "$25");
38 return v0;
43 * The maximum ASN's the processor supports. On the EV4 this is 63
44 * but the PAL-code doesn't actually use this information. On the
45 * EV5 this is 127, and EV6 has 255.
47 * On the EV4, the ASNs are more-or-less useless anyway, as they are
48 * only used as an icache tag, not for TB entries. On the EV5 and EV6,
49 * ASN's also validate the TB entries, and thus make a lot more sense.
51 * The EV4 ASN's don't even match the architecture manual, ugh. And
52 * I quote: "If a processor implements address space numbers (ASNs),
53 * and the old PTE has the Address Space Match (ASM) bit clear (ASNs
54 * in use) and the Valid bit set, then entries can also effectively be
55 * made coherent by assigning a new, unused ASN to the currently
56 * running process and not reusing the previous ASN before calling the
57 * appropriate PALcode routine to invalidate the translation buffer (TB)".
59 * In short, the EV4 has a "kind of" ASN capability, but it doesn't actually
60 * work correctly and can thus not be used (explaining the lack of PAL-code
61 * support).
63 #define EV4_MAX_ASN 63
64 #define EV5_MAX_ASN 127
65 #define EV6_MAX_ASN 255
67 #ifdef CONFIG_ALPHA_GENERIC
68 # define MAX_ASN (alpha_mv.max_asn)
69 #else
70 # ifdef CONFIG_ALPHA_EV4
71 # define MAX_ASN EV4_MAX_ASN
72 # elif defined(CONFIG_ALPHA_EV5)
73 # define MAX_ASN EV5_MAX_ASN
74 # else
75 # define MAX_ASN EV6_MAX_ASN
76 # endif
77 #endif
80 * cpu_last_asn(processor):
81 * 63 0
82 * +-------------+----------------+--------------+
83 * | asn version | this processor | hardware asn |
84 * +-------------+----------------+--------------+
87 #include <asm/smp.h>
88 #ifdef CONFIG_SMP
89 #define cpu_last_asn(cpuid) (cpu_data[cpuid].last_asn)
90 #else
91 extern unsigned long last_asn;
92 #define cpu_last_asn(cpuid) last_asn
93 #endif /* CONFIG_SMP */
95 #define WIDTH_HARDWARE_ASN 8
96 #define ASN_FIRST_VERSION (1UL << WIDTH_HARDWARE_ASN)
97 #define HARDWARE_ASN_MASK ((1UL << WIDTH_HARDWARE_ASN) - 1)
100 * NOTE! The way this is set up, the high bits of the "asn_cache" (and
101 * the "mm->context") are the ASN _version_ code. A version of 0 is
102 * always considered invalid, so to invalidate another process you only
103 * need to do "p->mm->context = 0".
105 * If we need more ASN's than the processor has, we invalidate the old
106 * user TLB's (tbiap()) and start a new ASN version. That will automatically
107 * force a new asn for any other processes the next time they want to
108 * run.
111 #ifndef __EXTERN_INLINE
112 #define __EXTERN_INLINE extern inline
113 #define __MMU_EXTERN_INLINE
114 #endif
116 extern inline unsigned long
117 __get_new_mm_context(struct mm_struct *mm, long cpu)
119 unsigned long asn = cpu_last_asn(cpu);
120 unsigned long next = asn + 1;
122 if ((asn & HARDWARE_ASN_MASK) >= MAX_ASN) {
123 tbiap();
124 imb();
125 next = (asn & ~HARDWARE_ASN_MASK) + ASN_FIRST_VERSION;
127 cpu_last_asn(cpu) = next;
128 return next;
131 __EXTERN_INLINE void
132 ev5_switch_mm(struct mm_struct *prev_mm, struct mm_struct *next_mm,
133 struct task_struct *next)
135 /* Check if our ASN is of an older version, and thus invalid. */
136 unsigned long asn;
137 unsigned long mmc;
138 long cpu = smp_processor_id();
140 #ifdef CONFIG_SMP
141 cpu_data[cpu].asn_lock = 1;
142 barrier();
143 #endif
144 asn = cpu_last_asn(cpu);
145 mmc = next_mm->context[cpu];
146 if ((mmc ^ asn) & ~HARDWARE_ASN_MASK) {
147 mmc = __get_new_mm_context(next_mm, cpu);
148 next_mm->context[cpu] = mmc;
150 #ifdef CONFIG_SMP
151 else
152 cpu_data[cpu].need_new_asn = 1;
153 #endif
155 /* Always update the PCB ASN. Another thread may have allocated
156 a new mm->context (via flush_tlb_mm) without the ASN serial
157 number wrapping. We have no way to detect when this is needed. */
158 task_thread_info(next)->pcb.asn = mmc & HARDWARE_ASN_MASK;
161 __EXTERN_INLINE void
162 ev4_switch_mm(struct mm_struct *prev_mm, struct mm_struct *next_mm,
163 struct task_struct *next)
165 /* As described, ASN's are broken for TLB usage. But we can
166 optimize for switching between threads -- if the mm is
167 unchanged from current we needn't flush. */
168 /* ??? May not be needed because EV4 PALcode recognizes that
169 ASN's are broken and does a tbiap itself on swpctx, under
170 the "Must set ASN or flush" rule. At least this is true
171 for a 1992 SRM, reports Joseph Martin (jmartin@hlo.dec.com).
172 I'm going to leave this here anyway, just to Be Sure. -- r~ */
173 if (prev_mm != next_mm)
174 tbiap();
176 /* Do continue to allocate ASNs, because we can still use them
177 to avoid flushing the icache. */
178 ev5_switch_mm(prev_mm, next_mm, next);
181 extern void __load_new_mm_context(struct mm_struct *);
183 #ifdef CONFIG_SMP
184 #define check_mmu_context() \
185 do { \
186 int cpu = smp_processor_id(); \
187 cpu_data[cpu].asn_lock = 0; \
188 barrier(); \
189 if (cpu_data[cpu].need_new_asn) { \
190 struct mm_struct * mm = current->active_mm; \
191 cpu_data[cpu].need_new_asn = 0; \
192 if (!mm->context[cpu]) \
193 __load_new_mm_context(mm); \
195 } while(0)
196 #else
197 #define check_mmu_context() do { } while(0)
198 #endif
200 __EXTERN_INLINE void
201 ev5_activate_mm(struct mm_struct *prev_mm, struct mm_struct *next_mm)
203 __load_new_mm_context(next_mm);
206 __EXTERN_INLINE void
207 ev4_activate_mm(struct mm_struct *prev_mm, struct mm_struct *next_mm)
209 __load_new_mm_context(next_mm);
210 tbiap();
213 #define deactivate_mm(tsk,mm) do { } while (0)
215 #ifdef CONFIG_ALPHA_GENERIC
216 # define switch_mm(a,b,c) alpha_mv.mv_switch_mm((a),(b),(c))
217 # define activate_mm(x,y) alpha_mv.mv_activate_mm((x),(y))
218 #else
219 # ifdef CONFIG_ALPHA_EV4
220 # define switch_mm(a,b,c) ev4_switch_mm((a),(b),(c))
221 # define activate_mm(x,y) ev4_activate_mm((x),(y))
222 # else
223 # define switch_mm(a,b,c) ev5_switch_mm((a),(b),(c))
224 # define activate_mm(x,y) ev5_activate_mm((x),(y))
225 # endif
226 #endif
228 static inline int
229 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
231 int i;
233 for_each_online_cpu(i)
234 mm->context[i] = 0;
235 if (tsk != current)
236 task_thread_info(tsk)->pcb.ptbr
237 = ((unsigned long)mm->pgd - IDENT_ADDR) >> PAGE_SHIFT;
238 return 0;
241 extern inline void
242 destroy_context(struct mm_struct *mm)
244 /* Nothing to do. */
247 static inline void
248 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
250 task_thread_info(tsk)->pcb.ptbr
251 = ((unsigned long)mm->pgd - IDENT_ADDR) >> PAGE_SHIFT;
254 #ifdef __MMU_EXTERN_INLINE
255 #undef __EXTERN_INLINE
256 #undef __MMU_EXTERN_INLINE
257 #endif
259 #endif /* __ALPHA_MMU_CONTEXT_H */