x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / alpha / kernel / process.c
blobf2360a74e5d5544983160d951c46bddb98819e0e
1 /*
2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
5 */
7 /*
8 * This file handles the architecture-dependent parts of process handling.
9 */
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 #include <linux/rcupdate.h>
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
40 #include "proto.h"
41 #include "pci_impl.h"
44 * Power off function, if any
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
49 struct halt_info {
50 int mode;
51 char *restart_cmd;
54 static void
55 common_shutdown_1(void *generic_ptr)
57 struct halt_info *how = (struct halt_info *)generic_ptr;
58 struct percpu_struct *cpup;
59 unsigned long *pflags, flags;
60 int cpuid = smp_processor_id();
62 /* No point in taking interrupts anymore. */
63 local_irq_disable();
65 cpup = (struct percpu_struct *)
66 ((unsigned long)hwrpb + hwrpb->processor_offset
67 + hwrpb->processor_size * cpuid);
68 pflags = &cpup->flags;
69 flags = *pflags;
71 /* Clear reason to "default"; clear "bootstrap in progress". */
72 flags &= ~0x00ff0001UL;
74 #ifdef CONFIG_SMP
75 /* Secondaries halt here. */
76 if (cpuid != boot_cpuid) {
77 flags |= 0x00040000UL; /* "remain halted" */
78 *pflags = flags;
79 set_cpu_present(cpuid, false);
80 set_cpu_possible(cpuid, false);
81 halt();
83 #endif
85 if (how->mode == LINUX_REBOOT_CMD_RESTART) {
86 if (!how->restart_cmd) {
87 flags |= 0x00020000UL; /* "cold bootstrap" */
88 } else {
89 /* For SRM, we could probably set environment
90 variables to get this to work. We'd have to
91 delay this until after srm_paging_stop unless
92 we ever got srm_fixup working.
94 At the moment, SRM will use the last boot device,
95 but the file and flags will be the defaults, when
96 doing a "warm" bootstrap. */
97 flags |= 0x00030000UL; /* "warm bootstrap" */
99 } else {
100 flags |= 0x00040000UL; /* "remain halted" */
102 *pflags = flags;
104 #ifdef CONFIG_SMP
105 /* Wait for the secondaries to halt. */
106 set_cpu_present(boot_cpuid, false);
107 set_cpu_possible(boot_cpuid, false);
108 while (cpumask_weight(cpu_present_mask))
109 barrier();
110 #endif
112 /* If booted from SRM, reset some of the original environment. */
113 if (alpha_using_srm) {
114 #ifdef CONFIG_DUMMY_CONSOLE
115 /* If we've gotten here after SysRq-b, leave interrupt
116 context before taking over the console. */
117 if (in_interrupt())
118 irq_exit();
119 /* This has the effect of resetting the VGA video origin. */
120 console_lock();
121 do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
122 console_unlock();
123 #endif
124 pci_restore_srm_config();
125 set_hae(srm_hae);
128 if (alpha_mv.kill_arch)
129 alpha_mv.kill_arch(how->mode);
131 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
132 /* Unfortunately, since MILO doesn't currently understand
133 the hwrpb bits above, we can't reliably halt the
134 processor and keep it halted. So just loop. */
135 return;
138 if (alpha_using_srm)
139 srm_paging_stop();
141 halt();
144 static void
145 common_shutdown(int mode, char *restart_cmd)
147 struct halt_info args;
148 args.mode = mode;
149 args.restart_cmd = restart_cmd;
150 on_each_cpu(common_shutdown_1, &args, 0);
153 void
154 machine_restart(char *restart_cmd)
156 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
160 void
161 machine_halt(void)
163 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
167 void
168 machine_power_off(void)
170 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
174 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
175 saved in the context it's used. */
177 void
178 show_regs(struct pt_regs *regs)
180 show_regs_print_info(KERN_DEFAULT);
181 dik_show_regs(regs, NULL);
185 * Re-start a thread when doing execve()
187 void
188 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
190 regs->pc = pc;
191 regs->ps = 8;
192 wrusp(sp);
194 EXPORT_SYMBOL(start_thread);
197 * Free current thread data structures etc..
199 void
200 exit_thread(void)
204 void
205 flush_thread(void)
207 /* Arrange for each exec'ed process to start off with a clean slate
208 with respect to the FPU. This is all exceptions disabled. */
209 current_thread_info()->ieee_state = 0;
210 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
212 /* Clean slate for TLS. */
213 current_thread_info()->pcb.unique = 0;
216 void
217 release_thread(struct task_struct *dead_task)
222 * Copy an alpha thread..
226 copy_thread(unsigned long clone_flags, unsigned long usp,
227 unsigned long arg,
228 struct task_struct *p)
230 extern void ret_from_fork(void);
231 extern void ret_from_kernel_thread(void);
233 struct thread_info *childti = task_thread_info(p);
234 struct pt_regs *childregs = task_pt_regs(p);
235 struct pt_regs *regs = current_pt_regs();
236 struct switch_stack *childstack, *stack;
238 childstack = ((struct switch_stack *) childregs) - 1;
239 childti->pcb.ksp = (unsigned long) childstack;
240 childti->pcb.flags = 1; /* set FEN, clear everything else */
242 if (unlikely(p->flags & PF_KTHREAD)) {
243 /* kernel thread */
244 memset(childstack, 0,
245 sizeof(struct switch_stack) + sizeof(struct pt_regs));
246 childstack->r26 = (unsigned long) ret_from_kernel_thread;
247 childstack->r9 = usp; /* function */
248 childstack->r10 = arg;
249 childregs->hae = alpha_mv.hae_cache,
250 childti->pcb.usp = 0;
251 return 0;
253 /* Note: if CLONE_SETTLS is not set, then we must inherit the
254 value from the parent, which will have been set by the block
255 copy in dup_task_struct. This is non-intuitive, but is
256 required for proper operation in the case of a threaded
257 application calling fork. */
258 if (clone_flags & CLONE_SETTLS)
259 childti->pcb.unique = regs->r20;
260 childti->pcb.usp = usp ?: rdusp();
261 *childregs = *regs;
262 childregs->r0 = 0;
263 childregs->r19 = 0;
264 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
265 regs->r20 = 0;
266 stack = ((struct switch_stack *) regs) - 1;
267 *childstack = *stack;
268 childstack->r26 = (unsigned long) ret_from_fork;
269 return 0;
273 * Fill in the user structure for a ELF core dump.
275 void
276 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
278 /* switch stack follows right below pt_regs: */
279 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
281 dest[ 0] = pt->r0;
282 dest[ 1] = pt->r1;
283 dest[ 2] = pt->r2;
284 dest[ 3] = pt->r3;
285 dest[ 4] = pt->r4;
286 dest[ 5] = pt->r5;
287 dest[ 6] = pt->r6;
288 dest[ 7] = pt->r7;
289 dest[ 8] = pt->r8;
290 dest[ 9] = sw->r9;
291 dest[10] = sw->r10;
292 dest[11] = sw->r11;
293 dest[12] = sw->r12;
294 dest[13] = sw->r13;
295 dest[14] = sw->r14;
296 dest[15] = sw->r15;
297 dest[16] = pt->r16;
298 dest[17] = pt->r17;
299 dest[18] = pt->r18;
300 dest[19] = pt->r19;
301 dest[20] = pt->r20;
302 dest[21] = pt->r21;
303 dest[22] = pt->r22;
304 dest[23] = pt->r23;
305 dest[24] = pt->r24;
306 dest[25] = pt->r25;
307 dest[26] = pt->r26;
308 dest[27] = pt->r27;
309 dest[28] = pt->r28;
310 dest[29] = pt->gp;
311 dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
312 dest[31] = pt->pc;
314 /* Once upon a time this was the PS value. Which is stupid
315 since that is always 8 for usermode. Usurped for the more
316 useful value of the thread's UNIQUE field. */
317 dest[32] = ti->pcb.unique;
319 EXPORT_SYMBOL(dump_elf_thread);
322 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
324 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
325 return 1;
327 EXPORT_SYMBOL(dump_elf_task);
330 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
332 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
333 memcpy(dest, sw->fp, 32 * 8);
334 return 1;
336 EXPORT_SYMBOL(dump_elf_task_fp);
339 * Return saved PC of a blocked thread. This assumes the frame
340 * pointer is the 6th saved long on the kernel stack and that the
341 * saved return address is the first long in the frame. This all
342 * holds provided the thread blocked through a call to schedule() ($15
343 * is the frame pointer in schedule() and $15 is saved at offset 48 by
344 * entry.S:do_switch_stack).
346 * Under heavy swap load I've seen this lose in an ugly way. So do
347 * some extra sanity checking on the ranges we expect these pointers
348 * to be in so that we can fail gracefully. This is just for ps after
349 * all. -- r~
352 unsigned long
353 thread_saved_pc(struct task_struct *t)
355 unsigned long base = (unsigned long)task_stack_page(t);
356 unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
358 if (sp > base && sp+6*8 < base + 16*1024) {
359 fp = ((unsigned long*)sp)[6];
360 if (fp > sp && fp < base + 16*1024)
361 return *(unsigned long *)fp;
364 return 0;
367 unsigned long
368 get_wchan(struct task_struct *p)
370 unsigned long schedule_frame;
371 unsigned long pc;
372 if (!p || p == current || p->state == TASK_RUNNING)
373 return 0;
375 * This one depends on the frame size of schedule(). Do a
376 * "disass schedule" in gdb to find the frame size. Also, the
377 * code assumes that sleep_on() follows immediately after
378 * interruptible_sleep_on() and that add_timer() follows
379 * immediately after interruptible_sleep(). Ugly, isn't it?
380 * Maybe adding a wchan field to task_struct would be better,
381 * after all...
384 pc = thread_saved_pc(p);
385 if (in_sched_functions(pc)) {
386 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
387 return ((unsigned long *)schedule_frame)[12];
389 return pc;