2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
40 * empty_zero_page is a special page that is used for
41 * zero-initialized data and COW.
43 struct page
*empty_zero_page
;
44 EXPORT_SYMBOL(empty_zero_page
);
47 * The pmd table for the upper-most set of pages.
51 #define CPOLICY_UNCACHED 0
52 #define CPOLICY_BUFFERED 1
53 #define CPOLICY_WRITETHROUGH 2
54 #define CPOLICY_WRITEBACK 3
55 #define CPOLICY_WRITEALLOC 4
57 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
58 static unsigned int ecc_mask __initdata
= 0;
60 pgprot_t pgprot_kernel
;
61 pgprot_t pgprot_hyp_device
;
63 pgprot_t pgprot_s2_device
;
65 EXPORT_SYMBOL(pgprot_user
);
66 EXPORT_SYMBOL(pgprot_kernel
);
69 const char policy
[16];
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy) policy
79 #define s2_policy(policy) 0
82 static struct cachepolicy cache_policies
[] __initdata
= {
86 .pmd
= PMD_SECT_UNCACHED
,
87 .pte
= L_PTE_MT_UNCACHED
,
88 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
92 .pmd
= PMD_SECT_BUFFERED
,
93 .pte
= L_PTE_MT_BUFFERABLE
,
94 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
96 .policy
= "writethrough",
99 .pte
= L_PTE_MT_WRITETHROUGH
,
100 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
102 .policy
= "writeback",
105 .pte
= L_PTE_MT_WRITEBACK
,
106 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
108 .policy
= "writealloc",
110 .pmd
= PMD_SECT_WBWA
,
111 .pte
= L_PTE_MT_WRITEALLOC
,
112 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
116 #ifdef CONFIG_CPU_CP15
118 * These are useful for identifying cache coherency
119 * problems by allowing the cache or the cache and
120 * writebuffer to be turned off. (Note: the write
121 * buffer should not be on and the cache off).
123 static int __init
early_cachepolicy(char *p
)
127 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
128 int len
= strlen(cache_policies
[i
].policy
);
130 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
132 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
133 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
137 if (i
== ARRAY_SIZE(cache_policies
))
138 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
140 * This restriction is partly to do with the way we boot; it is
141 * unpredictable to have memory mapped using two different sets of
142 * memory attributes (shared, type, and cache attribs). We can not
143 * change these attributes once the initial assembly has setup the
146 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
147 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
148 cachepolicy
= CPOLICY_WRITEBACK
;
151 set_cr(cr_alignment
);
154 early_param("cachepolicy", early_cachepolicy
);
156 static int __init
early_nocache(char *__unused
)
158 char *p
= "buffered";
159 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
160 early_cachepolicy(p
);
163 early_param("nocache", early_nocache
);
165 static int __init
early_nowrite(char *__unused
)
167 char *p
= "uncached";
168 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
169 early_cachepolicy(p
);
172 early_param("nowb", early_nowrite
);
174 #ifndef CONFIG_ARM_LPAE
175 static int __init
early_ecc(char *p
)
177 if (memcmp(p
, "on", 2) == 0)
178 ecc_mask
= PMD_PROTECTION
;
179 else if (memcmp(p
, "off", 3) == 0)
183 early_param("ecc", early_ecc
);
186 static int __init
noalign_setup(char *__unused
)
188 cr_alignment
&= ~CR_A
;
189 cr_no_alignment
&= ~CR_A
;
190 set_cr(cr_alignment
);
193 __setup("noalign", noalign_setup
);
196 void adjust_cr(unsigned long mask
, unsigned long set
)
204 local_irq_save(flags
);
206 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
207 cr_alignment
= (cr_alignment
& ~mask
) | set
;
209 set_cr((get_cr() & ~mask
) | set
);
211 local_irq_restore(flags
);
215 #else /* ifdef CONFIG_CPU_CP15 */
217 static int __init
early_cachepolicy(char *p
)
219 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
221 early_param("cachepolicy", early_cachepolicy
);
223 static int __init
noalign_setup(char *__unused
)
225 pr_warning("noalign kernel parameter not supported without cp15\n");
227 __setup("noalign", noalign_setup
);
229 #endif /* ifdef CONFIG_CPU_CP15 / else */
231 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
233 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
235 static struct mem_type mem_types
[] = {
236 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
237 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
239 .prot_pte_s2
= s2_policy(PROT_PTE_S2_DEVICE
) |
240 s2_policy(L_PTE_S2_MT_DEV_SHARED
) |
242 .prot_l1
= PMD_TYPE_TABLE
,
243 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
246 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
247 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
248 .prot_l1
= PMD_TYPE_TABLE
,
249 .prot_sect
= PROT_SECT_DEVICE
,
252 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
253 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
254 .prot_l1
= PMD_TYPE_TABLE
,
255 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
258 [MT_DEVICE_WC
] = { /* ioremap_wc */
259 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
260 .prot_l1
= PMD_TYPE_TABLE
,
261 .prot_sect
= PROT_SECT_DEVICE
,
265 .prot_pte
= PROT_PTE_DEVICE
,
266 .prot_l1
= PMD_TYPE_TABLE
,
267 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
271 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
272 .domain
= DOMAIN_KERNEL
,
274 #ifndef CONFIG_ARM_LPAE
276 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
277 .domain
= DOMAIN_KERNEL
,
281 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
283 .prot_l1
= PMD_TYPE_TABLE
,
284 .domain
= DOMAIN_USER
,
286 [MT_HIGH_VECTORS
] = {
287 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
288 L_PTE_USER
| L_PTE_RDONLY
,
289 .prot_l1
= PMD_TYPE_TABLE
,
290 .domain
= DOMAIN_USER
,
293 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
294 .prot_l1
= PMD_TYPE_TABLE
,
295 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
296 .domain
= DOMAIN_KERNEL
,
299 .prot_sect
= PMD_TYPE_SECT
,
300 .domain
= DOMAIN_KERNEL
,
302 [MT_MEMORY_NONCACHED
] = {
303 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
305 .prot_l1
= PMD_TYPE_TABLE
,
306 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
307 .domain
= DOMAIN_KERNEL
,
310 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
312 .prot_l1
= PMD_TYPE_TABLE
,
313 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
314 .domain
= DOMAIN_KERNEL
,
317 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
318 .prot_l1
= PMD_TYPE_TABLE
,
319 .domain
= DOMAIN_KERNEL
,
322 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
323 L_PTE_MT_UNCACHED
| L_PTE_XN
,
324 .prot_l1
= PMD_TYPE_TABLE
,
325 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
326 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
327 .domain
= DOMAIN_KERNEL
,
329 [MT_MEMORY_DMA_READY
] = {
330 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
331 .prot_l1
= PMD_TYPE_TABLE
,
332 .domain
= DOMAIN_KERNEL
,
336 const struct mem_type
*get_mem_type(unsigned int type
)
338 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
340 EXPORT_SYMBOL(get_mem_type
);
343 * Adjust the PMD section entries according to the CPU in use.
345 static void __init
build_mem_type_table(void)
347 struct cachepolicy
*cp
;
348 unsigned int cr
= get_cr();
349 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
350 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
351 int cpu_arch
= cpu_architecture();
354 if (cpu_arch
< CPU_ARCH_ARMv6
) {
355 #if defined(CONFIG_CPU_DCACHE_DISABLE)
356 if (cachepolicy
> CPOLICY_BUFFERED
)
357 cachepolicy
= CPOLICY_BUFFERED
;
358 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
359 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
360 cachepolicy
= CPOLICY_WRITETHROUGH
;
363 if (cpu_arch
< CPU_ARCH_ARMv5
) {
364 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
365 cachepolicy
= CPOLICY_WRITEBACK
;
369 cachepolicy
= CPOLICY_WRITEALLOC
;
372 * Strip out features not present on earlier architectures.
373 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
374 * without extended page tables don't have the 'Shared' bit.
376 if (cpu_arch
< CPU_ARCH_ARMv5
)
377 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
378 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
379 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
380 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
381 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
384 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
385 * "update-able on write" bit on ARM610). However, Xscale and
386 * Xscale3 require this bit to be cleared.
388 if (cpu_is_xscale() || cpu_is_xsc3()) {
389 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
390 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
391 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
393 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
394 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
395 if (mem_types
[i
].prot_l1
)
396 mem_types
[i
].prot_l1
|= PMD_BIT4
;
397 if (mem_types
[i
].prot_sect
)
398 mem_types
[i
].prot_sect
|= PMD_BIT4
;
403 * Mark the device areas according to the CPU/architecture.
405 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
406 if (!cpu_is_xsc3()) {
408 * Mark device regions on ARMv6+ as execute-never
409 * to prevent speculative instruction fetches.
411 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
412 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
413 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
414 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
416 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
418 * For ARMv7 with TEX remapping,
419 * - shared device is SXCB=1100
420 * - nonshared device is SXCB=0100
421 * - write combine device mem is SXCB=0001
422 * (Uncached Normal memory)
424 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
425 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
426 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
427 } else if (cpu_is_xsc3()) {
430 * - shared device is TEXCB=00101
431 * - nonshared device is TEXCB=01000
432 * - write combine device mem is TEXCB=00100
433 * (Inner/Outer Uncacheable in xsc3 parlance)
435 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
436 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
437 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
440 * For ARMv6 and ARMv7 without TEX remapping,
441 * - shared device is TEXCB=00001
442 * - nonshared device is TEXCB=01000
443 * - write combine device mem is TEXCB=00100
444 * (Uncached Normal in ARMv6 parlance).
446 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
447 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
448 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
452 * On others, write combining is "Uncached/Buffered"
454 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
458 * Now deal with the memory-type mappings
460 cp
= &cache_policies
[cachepolicy
];
461 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
462 s2_pgprot
= cp
->pte_s2
;
463 hyp_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
464 s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte_s2
;
467 * We don't use domains on ARMv6 (since this causes problems with
468 * v6/v7 kernels), so we must use a separate memory type for user
469 * r/o, kernel r/w to map the vectors page.
471 #ifndef CONFIG_ARM_LPAE
472 if (cpu_arch
== CPU_ARCH_ARMv6
)
473 vecs_pgprot
|= L_PTE_MT_VECTORS
;
477 * ARMv6 and above have extended page tables.
479 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
480 #ifndef CONFIG_ARM_LPAE
482 * Mark cache clean areas and XIP ROM read only
483 * from SVC mode and no access from userspace.
485 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
486 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
487 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
492 * Mark memory with the "shared" attribute
495 user_pgprot
|= L_PTE_SHARED
;
496 kern_pgprot
|= L_PTE_SHARED
;
497 vecs_pgprot
|= L_PTE_SHARED
;
498 s2_pgprot
|= L_PTE_SHARED
;
499 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
500 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
501 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
502 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
503 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
504 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
505 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
506 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
507 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
512 * Non-cacheable Normal - intended for memory areas that must
513 * not cause dirty cache line writebacks when used
515 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
516 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
517 /* Non-cacheable Normal is XCB = 001 */
518 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
521 /* For both ARMv6 and non-TEX-remapping ARMv7 */
522 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
526 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
529 #ifdef CONFIG_ARM_LPAE
531 * Do not generate access flag faults for the kernel mappings.
533 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
534 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
535 if (mem_types
[i
].prot_sect
)
536 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
538 kern_pgprot
|= PTE_EXT_AF
;
539 vecs_pgprot
|= PTE_EXT_AF
;
542 for (i
= 0; i
< 16; i
++) {
543 pteval_t v
= pgprot_val(protection_map
[i
]);
544 protection_map
[i
] = __pgprot(v
| user_pgprot
);
547 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
548 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
550 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
551 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
552 L_PTE_DIRTY
| kern_pgprot
);
553 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
554 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
555 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
557 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
558 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
559 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
560 mem_types
[MT_MEMORY
].prot_pte
|= kern_pgprot
;
561 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
562 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= ecc_mask
;
563 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
567 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
571 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
574 printk("Memory policy: ECC %sabled, Data cache %s\n",
575 ecc_mask
? "en" : "dis", cp
->policy
);
577 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
578 struct mem_type
*t
= &mem_types
[i
];
580 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
582 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
586 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
587 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
588 unsigned long size
, pgprot_t vma_prot
)
591 return pgprot_noncached(vma_prot
);
592 else if (file
->f_flags
& O_SYNC
)
593 return pgprot_writecombine(vma_prot
);
596 EXPORT_SYMBOL(phys_mem_access_prot
);
599 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
601 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
603 void *ptr
= __va(memblock_alloc(sz
, align
));
608 static void __init
*early_alloc(unsigned long sz
)
610 return early_alloc_aligned(sz
, sz
);
613 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
615 if (pmd_none(*pmd
)) {
616 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
617 __pmd_populate(pmd
, __pa(pte
), prot
);
619 BUG_ON(pmd_bad(*pmd
));
620 return pte_offset_kernel(pmd
, addr
);
623 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
624 unsigned long end
, unsigned long pfn
,
625 const struct mem_type
*type
)
627 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
629 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
631 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
634 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
635 unsigned long end
, phys_addr_t phys
,
636 const struct mem_type
*type
)
640 #ifndef CONFIG_ARM_LPAE
642 * In classic MMU format, puds and pmds are folded in to
643 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
644 * group of L1 entries making up one logical pointer to
645 * an L2 table (2MB), where as PMDs refer to the individual
646 * L1 entries (1MB). Hence increment to get the correct
647 * offset for odd 1MB sections.
648 * (See arch/arm/include/asm/pgtable-2level.h)
650 if (addr
& SECTION_SIZE
)
654 *pmd
= __pmd(phys
| type
->prot_sect
);
655 phys
+= SECTION_SIZE
;
656 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
661 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
662 unsigned long end
, phys_addr_t phys
,
663 const struct mem_type
*type
)
665 pmd_t
*pmd
= pmd_offset(pud
, addr
);
670 * With LPAE, we must loop over to map
671 * all the pmds for the given range.
673 next
= pmd_addr_end(addr
, end
);
676 * Try a section mapping - addr, next and phys must all be
677 * aligned to a section boundary.
679 if (type
->prot_sect
&&
680 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
681 __map_init_section(pmd
, addr
, next
, phys
, type
);
683 alloc_init_pte(pmd
, addr
, next
,
684 __phys_to_pfn(phys
), type
);
689 } while (pmd
++, addr
= next
, addr
!= end
);
692 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
693 unsigned long end
, phys_addr_t phys
,
694 const struct mem_type
*type
)
696 pud_t
*pud
= pud_offset(pgd
, addr
);
700 next
= pud_addr_end(addr
, end
);
701 alloc_init_pmd(pud
, addr
, next
, phys
, type
);
703 } while (pud
++, addr
= next
, addr
!= end
);
706 #ifndef CONFIG_ARM_LPAE
707 static void __init
create_36bit_mapping(struct map_desc
*md
,
708 const struct mem_type
*type
)
710 unsigned long addr
, length
, end
;
715 phys
= __pfn_to_phys(md
->pfn
);
716 length
= PAGE_ALIGN(md
->length
);
718 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
719 printk(KERN_ERR
"MM: CPU does not support supersection "
720 "mapping for 0x%08llx at 0x%08lx\n",
721 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
725 /* N.B. ARMv6 supersections are only defined to work with domain 0.
726 * Since domain assignments can in fact be arbitrary, the
727 * 'domain == 0' check below is required to insure that ARMv6
728 * supersections are only allocated for domain 0 regardless
729 * of the actual domain assignments in use.
732 printk(KERN_ERR
"MM: invalid domain in supersection "
733 "mapping for 0x%08llx at 0x%08lx\n",
734 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
738 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
739 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
740 " at 0x%08lx invalid alignment\n",
741 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
746 * Shift bits [35:32] of address into bits [23:20] of PMD
749 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
751 pgd
= pgd_offset_k(addr
);
754 pud_t
*pud
= pud_offset(pgd
, addr
);
755 pmd_t
*pmd
= pmd_offset(pud
, addr
);
758 for (i
= 0; i
< 16; i
++)
759 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
761 addr
+= SUPERSECTION_SIZE
;
762 phys
+= SUPERSECTION_SIZE
;
763 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
764 } while (addr
!= end
);
766 #endif /* !CONFIG_ARM_LPAE */
769 * Create the page directory entries and any necessary
770 * page tables for the mapping specified by `md'. We
771 * are able to cope here with varying sizes and address
772 * offsets, and we take full advantage of sections and
775 static void __init
create_mapping(struct map_desc
*md
)
777 unsigned long addr
, length
, end
;
779 const struct mem_type
*type
;
782 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
783 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
784 " at 0x%08lx in user region\n",
785 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
789 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
790 md
->virtual >= PAGE_OFFSET
&&
791 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
792 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
793 " at 0x%08lx out of vmalloc space\n",
794 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
797 type
= &mem_types
[md
->type
];
799 #ifndef CONFIG_ARM_LPAE
801 * Catch 36-bit addresses
803 if (md
->pfn
>= 0x100000) {
804 create_36bit_mapping(md
, type
);
809 addr
= md
->virtual & PAGE_MASK
;
810 phys
= __pfn_to_phys(md
->pfn
);
811 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
813 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
814 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
815 "be mapped using pages, ignoring.\n",
816 (long long)__pfn_to_phys(md
->pfn
), addr
);
820 pgd
= pgd_offset_k(addr
);
823 unsigned long next
= pgd_addr_end(addr
, end
);
825 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
829 } while (pgd
++, addr
!= end
);
833 * Create the architecture specific mappings
835 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
838 struct vm_struct
*vm
;
839 struct static_vm
*svm
;
844 svm
= early_alloc_aligned(sizeof(*svm
) * nr
, __alignof__(*svm
));
846 for (md
= io_desc
; nr
; md
++, nr
--) {
850 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
851 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
852 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
853 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
854 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
855 vm
->caller
= iotable_init
;
856 add_static_vm_early(svm
++);
860 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
863 struct vm_struct
*vm
;
864 struct static_vm
*svm
;
866 svm
= early_alloc_aligned(sizeof(*svm
), __alignof__(*svm
));
869 vm
->addr
= (void *)addr
;
871 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
873 add_static_vm_early(svm
);
876 #ifndef CONFIG_ARM_LPAE
879 * The Linux PMD is made of two consecutive section entries covering 2MB
880 * (see definition in include/asm/pgtable-2level.h). However a call to
881 * create_mapping() may optimize static mappings by using individual
882 * 1MB section mappings. This leaves the actual PMD potentially half
883 * initialized if the top or bottom section entry isn't used, leaving it
884 * open to problems if a subsequent ioremap() or vmalloc() tries to use
885 * the virtual space left free by that unused section entry.
887 * Let's avoid the issue by inserting dummy vm entries covering the unused
888 * PMD halves once the static mappings are in place.
891 static void __init
pmd_empty_section_gap(unsigned long addr
)
893 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
896 static void __init
fill_pmd_gaps(void)
898 struct static_vm
*svm
;
899 struct vm_struct
*vm
;
900 unsigned long addr
, next
= 0;
903 list_for_each_entry(svm
, &static_vmlist
, list
) {
905 addr
= (unsigned long)vm
->addr
;
910 * Check if this vm starts on an odd section boundary.
911 * If so and the first section entry for this PMD is free
912 * then we block the corresponding virtual address.
914 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
915 pmd
= pmd_off_k(addr
);
917 pmd_empty_section_gap(addr
& PMD_MASK
);
921 * Then check if this vm ends on an odd section boundary.
922 * If so and the second section entry for this PMD is empty
923 * then we block the corresponding virtual address.
926 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
927 pmd
= pmd_off_k(addr
) + 1;
929 pmd_empty_section_gap(addr
);
932 /* no need to look at any vm entry until we hit the next PMD */
933 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
938 #define fill_pmd_gaps() do { } while (0)
941 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
942 static void __init
pci_reserve_io(void)
944 struct static_vm
*svm
;
946 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
950 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
953 #define pci_reserve_io() do { } while (0)
956 #ifdef CONFIG_DEBUG_LL
957 void __init
debug_ll_io_init(void)
961 debug_ll_addr(&map
.pfn
, &map
.virtual);
962 if (!map
.pfn
|| !map
.virtual)
964 map
.pfn
= __phys_to_pfn(map
.pfn
);
965 map
.virtual &= PAGE_MASK
;
966 map
.length
= PAGE_SIZE
;
967 map
.type
= MT_DEVICE
;
968 iotable_init(&map
, 1);
972 static void * __initdata vmalloc_min
=
973 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
976 * vmalloc=size forces the vmalloc area to be exactly 'size'
977 * bytes. This can be used to increase (or decrease) the vmalloc
978 * area - the default is 240m.
980 static int __init
early_vmalloc(char *arg
)
982 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
984 if (vmalloc_reserve
< SZ_16M
) {
985 vmalloc_reserve
= SZ_16M
;
987 "vmalloc area too small, limiting to %luMB\n",
988 vmalloc_reserve
>> 20);
991 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
992 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
994 "vmalloc area is too big, limiting to %luMB\n",
995 vmalloc_reserve
>> 20);
998 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1001 early_param("vmalloc", early_vmalloc
);
1003 phys_addr_t arm_lowmem_limit __initdata
= 0;
1005 void __init
sanity_check_meminfo(void)
1007 phys_addr_t memblock_limit
= 0;
1008 int i
, j
, highmem
= 0;
1009 phys_addr_t vmalloc_limit
= __pa(vmalloc_min
- 1) + 1;
1011 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
1012 struct membank
*bank
= &meminfo
.bank
[j
];
1013 phys_addr_t size_limit
;
1015 *bank
= meminfo
.bank
[i
];
1016 size_limit
= bank
->size
;
1018 if (bank
->start
>= vmalloc_limit
)
1021 size_limit
= vmalloc_limit
- bank
->start
;
1023 bank
->highmem
= highmem
;
1025 #ifdef CONFIG_HIGHMEM
1027 * Split those memory banks which are partially overlapping
1028 * the vmalloc area greatly simplifying things later.
1030 if (!highmem
&& bank
->size
> size_limit
) {
1031 if (meminfo
.nr_banks
>= NR_BANKS
) {
1032 printk(KERN_CRIT
"NR_BANKS too low, "
1033 "ignoring high memory\n");
1035 memmove(bank
+ 1, bank
,
1036 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
1039 bank
[1].size
-= size_limit
;
1040 bank
[1].start
= vmalloc_limit
;
1041 bank
[1].highmem
= highmem
= 1;
1044 bank
->size
= size_limit
;
1048 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1051 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
1052 "(!CONFIG_HIGHMEM).\n",
1053 (unsigned long long)bank
->start
,
1054 (unsigned long long)bank
->start
+ bank
->size
- 1);
1059 * Check whether this memory bank would partially overlap
1062 if (bank
->size
> size_limit
) {
1063 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
1064 "to -%.8llx (vmalloc region overlap).\n",
1065 (unsigned long long)bank
->start
,
1066 (unsigned long long)bank
->start
+ bank
->size
- 1,
1067 (unsigned long long)bank
->start
+ size_limit
- 1);
1068 bank
->size
= size_limit
;
1071 if (!bank
->highmem
) {
1072 phys_addr_t bank_end
= bank
->start
+ bank
->size
;
1074 if (bank_end
> arm_lowmem_limit
)
1075 arm_lowmem_limit
= bank_end
;
1078 * Find the first non-section-aligned page, and point
1079 * memblock_limit at it. This relies on rounding the
1080 * limit down to be section-aligned, which happens at
1081 * the end of this function.
1083 * With this algorithm, the start or end of almost any
1084 * bank can be non-section-aligned. The only exception
1085 * is that the start of the bank 0 must be section-
1086 * aligned, since otherwise memory would need to be
1087 * allocated when mapping the start of bank 0, which
1088 * occurs before any free memory is mapped.
1090 if (!memblock_limit
) {
1091 if (!IS_ALIGNED(bank
->start
, SECTION_SIZE
))
1092 memblock_limit
= bank
->start
;
1093 else if (!IS_ALIGNED(bank_end
, SECTION_SIZE
))
1094 memblock_limit
= bank_end
;
1099 #ifdef CONFIG_HIGHMEM
1101 const char *reason
= NULL
;
1103 if (cache_is_vipt_aliasing()) {
1105 * Interactions between kmap and other mappings
1106 * make highmem support with aliasing VIPT caches
1109 reason
= "with VIPT aliasing cache";
1112 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
1114 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
1119 meminfo
.nr_banks
= j
;
1120 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1123 * Round the memblock limit down to a section size. This
1124 * helps to ensure that we will allocate memory from the
1125 * last full section, which should be mapped.
1128 memblock_limit
= round_down(memblock_limit
, SECTION_SIZE
);
1129 if (!memblock_limit
)
1130 memblock_limit
= arm_lowmem_limit
;
1132 memblock_set_current_limit(memblock_limit
);
1135 static inline void prepare_page_table(void)
1141 * Clear out all the mappings below the kernel image.
1143 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1144 pmd_clear(pmd_off_k(addr
));
1146 #ifdef CONFIG_XIP_KERNEL
1147 /* The XIP kernel is mapped in the module area -- skip over it */
1148 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
1150 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1151 pmd_clear(pmd_off_k(addr
));
1154 * Find the end of the first block of lowmem.
1156 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1157 if (end
>= arm_lowmem_limit
)
1158 end
= arm_lowmem_limit
;
1161 * Clear out all the kernel space mappings, except for the first
1162 * memory bank, up to the vmalloc region.
1164 for (addr
= __phys_to_virt(end
);
1165 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1166 pmd_clear(pmd_off_k(addr
));
1169 #ifdef CONFIG_ARM_LPAE
1170 /* the first page is reserved for pgd */
1171 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1172 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1174 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1178 * Reserve the special regions of memory
1180 void __init
arm_mm_memblock_reserve(void)
1183 * Reserve the page tables. These are already in use,
1184 * and can only be in node 0.
1186 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1188 #ifdef CONFIG_SA1111
1190 * Because of the SA1111 DMA bug, we want to preserve our
1191 * precious DMA-able memory...
1193 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1198 * Set up the device mappings. Since we clear out the page tables for all
1199 * mappings above VMALLOC_START, we will remove any debug device mappings.
1200 * This means you have to be careful how you debug this function, or any
1201 * called function. This means you can't use any function or debugging
1202 * method which may touch any device, otherwise the kernel _will_ crash.
1204 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1206 struct map_desc map
;
1211 * Allocate the vector page early.
1213 vectors
= early_alloc(PAGE_SIZE
* 2);
1215 early_trap_init(vectors
);
1217 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1218 pmd_clear(pmd_off_k(addr
));
1221 * Map the kernel if it is XIP.
1222 * It is always first in the modulearea.
1224 #ifdef CONFIG_XIP_KERNEL
1225 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1226 map
.virtual = MODULES_VADDR
;
1227 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1229 create_mapping(&map
);
1233 * Map the cache flushing regions.
1236 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1237 map
.virtual = FLUSH_BASE
;
1239 map
.type
= MT_CACHECLEAN
;
1240 create_mapping(&map
);
1242 #ifdef FLUSH_BASE_MINICACHE
1243 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1244 map
.virtual = FLUSH_BASE_MINICACHE
;
1246 map
.type
= MT_MINICLEAN
;
1247 create_mapping(&map
);
1251 * Create a mapping for the machine vectors at the high-vectors
1252 * location (0xffff0000). If we aren't using high-vectors, also
1253 * create a mapping at the low-vectors virtual address.
1255 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1256 map
.virtual = 0xffff0000;
1257 map
.length
= PAGE_SIZE
;
1258 #ifdef CONFIG_KUSER_HELPERS
1259 map
.type
= MT_HIGH_VECTORS
;
1261 map
.type
= MT_LOW_VECTORS
;
1263 create_mapping(&map
);
1265 if (!vectors_high()) {
1267 map
.length
= PAGE_SIZE
* 2;
1268 map
.type
= MT_LOW_VECTORS
;
1269 create_mapping(&map
);
1272 /* Now create a kernel read-only mapping */
1274 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1275 map
.length
= PAGE_SIZE
;
1276 map
.type
= MT_LOW_VECTORS
;
1277 create_mapping(&map
);
1280 * Ask the machine support to map in the statically mapped devices.
1288 /* Reserve fixed i/o space in VMALLOC region */
1292 * Finally flush the caches and tlb to ensure that we're in a
1293 * consistent state wrt the writebuffer. This also ensures that
1294 * any write-allocated cache lines in the vector page are written
1295 * back. After this point, we can start to touch devices again.
1297 local_flush_tlb_all();
1301 static void __init
kmap_init(void)
1303 #ifdef CONFIG_HIGHMEM
1304 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1305 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1309 static void __init
map_lowmem(void)
1311 struct memblock_region
*reg
;
1313 /* Map all the lowmem memory banks. */
1314 for_each_memblock(memory
, reg
) {
1315 phys_addr_t start
= reg
->base
;
1316 phys_addr_t end
= start
+ reg
->size
;
1317 struct map_desc map
;
1319 if (end
> arm_lowmem_limit
)
1320 end
= arm_lowmem_limit
;
1324 map
.pfn
= __phys_to_pfn(start
);
1325 map
.virtual = __phys_to_virt(start
);
1326 map
.length
= end
- start
;
1327 map
.type
= MT_MEMORY
;
1329 create_mapping(&map
);
1334 * paging_init() sets up the page tables, initialises the zone memory
1335 * maps, and sets up the zero page, bad page and bad page tables.
1337 void __init
paging_init(const struct machine_desc
*mdesc
)
1341 build_mem_type_table();
1342 prepare_page_table();
1344 dma_contiguous_remap();
1345 devicemaps_init(mdesc
);
1349 top_pmd
= pmd_off_k(0xffff0000);
1351 /* allocate the zero page. */
1352 zero_page
= early_alloc(PAGE_SIZE
);
1356 empty_zero_page
= virt_to_page(zero_page
);
1357 __flush_dcache_page(NULL
, empty_zero_page
);