x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / arm64 / kernel / smp.c
blob78db90dcc910c7cdcd112644ded112dbe14acb43
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
5 * Copyright (C) 2012 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/spinlock.h>
23 #include <linux/sched.h>
24 #include <linux/interrupt.h>
25 #include <linux/cache.h>
26 #include <linux/profile.h>
27 #include <linux/errno.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/cpu.h>
31 #include <linux/smp.h>
32 #include <linux/seq_file.h>
33 #include <linux/irq.h>
34 #include <linux/percpu.h>
35 #include <linux/clockchips.h>
36 #include <linux/completion.h>
37 #include <linux/of.h>
39 #include <asm/atomic.h>
40 #include <asm/cacheflush.h>
41 #include <asm/cputype.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/processor.h>
46 #include <asm/smp_plat.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
52 * as from 2.5, kernels no longer have an init_tasks structure
53 * so we need some other way of telling a new secondary core
54 * where to place its SVC stack
56 struct secondary_data secondary_data;
57 volatile unsigned long secondary_holding_pen_release = INVALID_HWID;
59 enum ipi_msg_type {
60 IPI_RESCHEDULE,
61 IPI_CALL_FUNC,
62 IPI_CALL_FUNC_SINGLE,
63 IPI_CPU_STOP,
66 static DEFINE_RAW_SPINLOCK(boot_lock);
69 * Write secondary_holding_pen_release in a way that is guaranteed to be
70 * visible to all observers, irrespective of whether they're taking part
71 * in coherency or not. This is necessary for the hotplug code to work
72 * reliably.
74 static void write_pen_release(u64 val)
76 void *start = (void *)&secondary_holding_pen_release;
77 unsigned long size = sizeof(secondary_holding_pen_release);
79 secondary_holding_pen_release = val;
80 __flush_dcache_area(start, size);
84 * Boot a secondary CPU, and assign it the specified idle task.
85 * This also gives us the initial stack to use for this CPU.
87 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
89 unsigned long timeout;
92 * Set synchronisation state between this boot processor
93 * and the secondary one
95 raw_spin_lock(&boot_lock);
98 * Update the pen release flag.
100 write_pen_release(cpu_logical_map(cpu));
103 * Send an event, causing the secondaries to read pen_release.
105 sev();
107 timeout = jiffies + (1 * HZ);
108 while (time_before(jiffies, timeout)) {
109 if (secondary_holding_pen_release == INVALID_HWID)
110 break;
111 udelay(10);
115 * Now the secondary core is starting up let it run its
116 * calibrations, then wait for it to finish
118 raw_spin_unlock(&boot_lock);
120 return secondary_holding_pen_release != INVALID_HWID ? -ENOSYS : 0;
123 static DECLARE_COMPLETION(cpu_running);
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
127 int ret;
130 * We need to tell the secondary core where to find its stack and the
131 * page tables.
133 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
134 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
137 * Now bring the CPU into our world.
139 ret = boot_secondary(cpu, idle);
140 if (ret == 0) {
142 * CPU was successfully started, wait for it to come online or
143 * time out.
145 wait_for_completion_timeout(&cpu_running,
146 msecs_to_jiffies(1000));
148 if (!cpu_online(cpu)) {
149 pr_crit("CPU%u: failed to come online\n", cpu);
150 ret = -EIO;
152 } else {
153 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
156 secondary_data.stack = NULL;
158 return ret;
162 * This is the secondary CPU boot entry. We're using this CPUs
163 * idle thread stack, but a set of temporary page tables.
165 asmlinkage void secondary_start_kernel(void)
167 struct mm_struct *mm = &init_mm;
168 unsigned int cpu = smp_processor_id();
170 printk("CPU%u: Booted secondary processor\n", cpu);
173 * All kernel threads share the same mm context; grab a
174 * reference and switch to it.
176 atomic_inc(&mm->mm_count);
177 current->active_mm = mm;
178 cpumask_set_cpu(cpu, mm_cpumask(mm));
181 * TTBR0 is only used for the identity mapping at this stage. Make it
182 * point to zero page to avoid speculatively fetching new entries.
184 cpu_set_reserved_ttbr0();
185 flush_tlb_all();
187 preempt_disable();
188 trace_hardirqs_off();
191 * Let the primary processor know we're out of the
192 * pen, then head off into the C entry point
194 write_pen_release(INVALID_HWID);
197 * Synchronise with the boot thread.
199 raw_spin_lock(&boot_lock);
200 raw_spin_unlock(&boot_lock);
203 * OK, now it's safe to let the boot CPU continue. Wait for
204 * the CPU migration code to notice that the CPU is online
205 * before we continue.
207 set_cpu_online(cpu, true);
208 complete(&cpu_running);
211 * Enable GIC and timers.
213 notify_cpu_starting(cpu);
215 local_irq_enable();
216 local_fiq_enable();
219 * OK, it's off to the idle thread for us
221 cpu_startup_entry(CPUHP_ONLINE);
224 void __init smp_cpus_done(unsigned int max_cpus)
226 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
229 void __init smp_prepare_boot_cpu(void)
233 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
235 static const struct smp_enable_ops *enable_ops[] __initconst = {
236 &smp_spin_table_ops,
237 &smp_psci_ops,
238 NULL,
241 static const struct smp_enable_ops *smp_enable_ops[NR_CPUS];
243 static const struct smp_enable_ops * __init smp_get_enable_ops(const char *name)
245 const struct smp_enable_ops **ops = enable_ops;
247 while (*ops) {
248 if (!strcmp(name, (*ops)->name))
249 return *ops;
251 ops++;
254 return NULL;
258 * Enumerate the possible CPU set from the device tree and build the
259 * cpu logical map array containing MPIDR values related to logical
260 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
262 void __init smp_init_cpus(void)
264 const char *enable_method;
265 struct device_node *dn = NULL;
266 int i, cpu = 1;
267 bool bootcpu_valid = false;
269 while ((dn = of_find_node_by_type(dn, "cpu"))) {
270 const u32 *cell;
271 u64 hwid;
274 * A cpu node with missing "reg" property is
275 * considered invalid to build a cpu_logical_map
276 * entry.
278 cell = of_get_property(dn, "reg", NULL);
279 if (!cell) {
280 pr_err("%s: missing reg property\n", dn->full_name);
281 goto next;
283 hwid = of_read_number(cell, of_n_addr_cells(dn));
286 * Non affinity bits must be set to 0 in the DT
288 if (hwid & ~MPIDR_HWID_BITMASK) {
289 pr_err("%s: invalid reg property\n", dn->full_name);
290 goto next;
294 * Duplicate MPIDRs are a recipe for disaster. Scan
295 * all initialized entries and check for
296 * duplicates. If any is found just ignore the cpu.
297 * cpu_logical_map was initialized to INVALID_HWID to
298 * avoid matching valid MPIDR values.
300 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) {
301 if (cpu_logical_map(i) == hwid) {
302 pr_err("%s: duplicate cpu reg properties in the DT\n",
303 dn->full_name);
304 goto next;
309 * The numbering scheme requires that the boot CPU
310 * must be assigned logical id 0. Record it so that
311 * the logical map built from DT is validated and can
312 * be used.
314 if (hwid == cpu_logical_map(0)) {
315 if (bootcpu_valid) {
316 pr_err("%s: duplicate boot cpu reg property in DT\n",
317 dn->full_name);
318 goto next;
321 bootcpu_valid = true;
324 * cpu_logical_map has already been
325 * initialized and the boot cpu doesn't need
326 * the enable-method so continue without
327 * incrementing cpu.
329 continue;
332 if (cpu >= NR_CPUS)
333 goto next;
336 * We currently support only the "spin-table" enable-method.
338 enable_method = of_get_property(dn, "enable-method", NULL);
339 if (!enable_method) {
340 pr_err("%s: missing enable-method property\n",
341 dn->full_name);
342 goto next;
345 smp_enable_ops[cpu] = smp_get_enable_ops(enable_method);
347 if (!smp_enable_ops[cpu]) {
348 pr_err("%s: invalid enable-method property: %s\n",
349 dn->full_name, enable_method);
350 goto next;
353 if (smp_enable_ops[cpu]->init_cpu(dn, cpu))
354 goto next;
356 pr_debug("cpu logical map 0x%llx\n", hwid);
357 cpu_logical_map(cpu) = hwid;
358 next:
359 cpu++;
362 /* sanity check */
363 if (cpu > NR_CPUS)
364 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n",
365 cpu, NR_CPUS);
367 if (!bootcpu_valid) {
368 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n");
369 return;
373 * All the cpus that made it to the cpu_logical_map have been
374 * validated so set them as possible cpus.
376 for (i = 0; i < NR_CPUS; i++)
377 if (cpu_logical_map(i) != INVALID_HWID)
378 set_cpu_possible(i, true);
381 void __init smp_prepare_cpus(unsigned int max_cpus)
383 int cpu, err;
384 unsigned int ncores = num_possible_cpus();
387 * are we trying to boot more cores than exist?
389 if (max_cpus > ncores)
390 max_cpus = ncores;
392 /* Don't bother if we're effectively UP */
393 if (max_cpus <= 1)
394 return;
397 * Initialise the present map (which describes the set of CPUs
398 * actually populated at the present time) and release the
399 * secondaries from the bootloader.
401 * Make sure we online at most (max_cpus - 1) additional CPUs.
403 max_cpus--;
404 for_each_possible_cpu(cpu) {
405 if (max_cpus == 0)
406 break;
408 if (cpu == smp_processor_id())
409 continue;
411 if (!smp_enable_ops[cpu])
412 continue;
414 err = smp_enable_ops[cpu]->prepare_cpu(cpu);
415 if (err)
416 continue;
418 set_cpu_present(cpu, true);
419 max_cpus--;
424 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
426 smp_cross_call = fn;
429 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
431 smp_cross_call(mask, IPI_CALL_FUNC);
434 void arch_send_call_function_single_ipi(int cpu)
436 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
439 static const char *ipi_types[NR_IPI] = {
440 #define S(x,s) [x - IPI_RESCHEDULE] = s
441 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
442 S(IPI_CALL_FUNC, "Function call interrupts"),
443 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
444 S(IPI_CPU_STOP, "CPU stop interrupts"),
447 void show_ipi_list(struct seq_file *p, int prec)
449 unsigned int cpu, i;
451 for (i = 0; i < NR_IPI; i++) {
452 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE,
453 prec >= 4 ? " " : "");
454 for_each_present_cpu(cpu)
455 seq_printf(p, "%10u ",
456 __get_irq_stat(cpu, ipi_irqs[i]));
457 seq_printf(p, " %s\n", ipi_types[i]);
461 u64 smp_irq_stat_cpu(unsigned int cpu)
463 u64 sum = 0;
464 int i;
466 for (i = 0; i < NR_IPI; i++)
467 sum += __get_irq_stat(cpu, ipi_irqs[i]);
469 return sum;
472 static DEFINE_RAW_SPINLOCK(stop_lock);
475 * ipi_cpu_stop - handle IPI from smp_send_stop()
477 static void ipi_cpu_stop(unsigned int cpu)
479 if (system_state == SYSTEM_BOOTING ||
480 system_state == SYSTEM_RUNNING) {
481 raw_spin_lock(&stop_lock);
482 pr_crit("CPU%u: stopping\n", cpu);
483 dump_stack();
484 raw_spin_unlock(&stop_lock);
487 set_cpu_online(cpu, false);
489 local_fiq_disable();
490 local_irq_disable();
492 while (1)
493 cpu_relax();
497 * Main handler for inter-processor interrupts
499 void handle_IPI(int ipinr, struct pt_regs *regs)
501 unsigned int cpu = smp_processor_id();
502 struct pt_regs *old_regs = set_irq_regs(regs);
504 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI)
505 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]);
507 switch (ipinr) {
508 case IPI_RESCHEDULE:
509 scheduler_ipi();
510 break;
512 case IPI_CALL_FUNC:
513 irq_enter();
514 generic_smp_call_function_interrupt();
515 irq_exit();
516 break;
518 case IPI_CALL_FUNC_SINGLE:
519 irq_enter();
520 generic_smp_call_function_single_interrupt();
521 irq_exit();
522 break;
524 case IPI_CPU_STOP:
525 irq_enter();
526 ipi_cpu_stop(cpu);
527 irq_exit();
528 break;
530 default:
531 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
532 break;
534 set_irq_regs(old_regs);
537 void smp_send_reschedule(int cpu)
539 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
542 void smp_send_stop(void)
544 unsigned long timeout;
546 if (num_online_cpus() > 1) {
547 cpumask_t mask;
549 cpumask_copy(&mask, cpu_online_mask);
550 cpu_clear(smp_processor_id(), mask);
552 smp_cross_call(&mask, IPI_CPU_STOP);
555 /* Wait up to one second for other CPUs to stop */
556 timeout = USEC_PER_SEC;
557 while (num_online_cpus() > 1 && timeout--)
558 udelay(1);
560 if (num_online_cpus() > 1)
561 pr_warning("SMP: failed to stop secondary CPUs\n");
565 * not supported here
567 int setup_profiling_timer(unsigned int multiplier)
569 return -EINVAL;