x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / cris / arch-v32 / kernel / irq.c
blob5ebe6e841820ec45a5a653d66993b7b2b5952bef
1 /*
2 * Copyright (C) 2003, Axis Communications AB.
3 */
5 #include <asm/irq.h>
6 #include <linux/irq.h>
7 #include <linux/interrupt.h>
8 #include <linux/smp.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/profile.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/threads.h>
16 #include <linux/spinlock.h>
17 #include <linux/kernel_stat.h>
18 #include <hwregs/reg_map.h>
19 #include <hwregs/reg_rdwr.h>
20 #include <hwregs/intr_vect.h>
21 #include <hwregs/intr_vect_defs.h>
23 #define CPU_FIXED -1
25 /* IRQ masks (refer to comment for crisv32_do_multiple) */
26 #if TIMER0_INTR_VECT - FIRST_IRQ < 32
27 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
28 #undef TIMER_VECT1
29 #else
30 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
31 #define TIMER_VECT1
32 #endif
33 #ifdef CONFIG_ETRAX_KGDB
34 #if defined(CONFIG_ETRAX_KGDB_PORT0)
35 #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
36 #elif defined(CONFIG_ETRAX_KGDB_PORT1)
37 #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
38 #elif defined(CONFIG_ETRAX_KGB_PORT2)
39 #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
40 #elif defined(CONFIG_ETRAX_KGDB_PORT3)
41 #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
42 #endif
43 #endif
45 DEFINE_SPINLOCK(irq_lock);
47 struct cris_irq_allocation
49 int cpu; /* The CPU to which the IRQ is currently allocated. */
50 cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */
53 struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] =
54 { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} };
56 static unsigned long irq_regs[NR_CPUS] =
58 regi_irq,
59 #ifdef CONFIG_SMP
60 regi_irq2,
61 #endif
64 #if NR_REAL_IRQS > 32
65 #define NBR_REGS 2
66 #else
67 #define NBR_REGS 1
68 #endif
70 unsigned long cpu_irq_counters[NR_CPUS];
71 unsigned long irq_counters[NR_REAL_IRQS];
73 /* From irq.c. */
74 extern void weird_irq(void);
76 /* From entry.S. */
77 extern void system_call(void);
78 extern void nmi_interrupt(void);
79 extern void multiple_interrupt(void);
80 extern void gdb_handle_exception(void);
81 extern void i_mmu_refill(void);
82 extern void i_mmu_invalid(void);
83 extern void i_mmu_access(void);
84 extern void i_mmu_execute(void);
85 extern void d_mmu_refill(void);
86 extern void d_mmu_invalid(void);
87 extern void d_mmu_access(void);
88 extern void d_mmu_write(void);
90 /* From kgdb.c. */
91 extern void kgdb_init(void);
92 extern void breakpoint(void);
94 /* From traps.c. */
95 extern void breakh_BUG(void);
98 * Build the IRQ handler stubs using macros from irq.h.
100 #ifdef CONFIG_CRIS_MACH_ARTPEC3
101 BUILD_TIMER_IRQ(0x31, 0)
102 #else
103 BUILD_IRQ(0x31)
104 #endif
105 BUILD_IRQ(0x32)
106 BUILD_IRQ(0x33)
107 BUILD_IRQ(0x34)
108 BUILD_IRQ(0x35)
109 BUILD_IRQ(0x36)
110 BUILD_IRQ(0x37)
111 BUILD_IRQ(0x38)
112 BUILD_IRQ(0x39)
113 BUILD_IRQ(0x3a)
114 BUILD_IRQ(0x3b)
115 BUILD_IRQ(0x3c)
116 BUILD_IRQ(0x3d)
117 BUILD_IRQ(0x3e)
118 BUILD_IRQ(0x3f)
119 BUILD_IRQ(0x40)
120 BUILD_IRQ(0x41)
121 BUILD_IRQ(0x42)
122 BUILD_IRQ(0x43)
123 BUILD_IRQ(0x44)
124 BUILD_IRQ(0x45)
125 BUILD_IRQ(0x46)
126 BUILD_IRQ(0x47)
127 BUILD_IRQ(0x48)
128 BUILD_IRQ(0x49)
129 BUILD_IRQ(0x4a)
130 #ifdef CONFIG_ETRAXFS
131 BUILD_TIMER_IRQ(0x4b, 0)
132 #else
133 BUILD_IRQ(0x4b)
134 #endif
135 BUILD_IRQ(0x4c)
136 BUILD_IRQ(0x4d)
137 BUILD_IRQ(0x4e)
138 BUILD_IRQ(0x4f)
139 BUILD_IRQ(0x50)
140 #if MACH_IRQS > 32
141 BUILD_IRQ(0x51)
142 BUILD_IRQ(0x52)
143 BUILD_IRQ(0x53)
144 BUILD_IRQ(0x54)
145 BUILD_IRQ(0x55)
146 BUILD_IRQ(0x56)
147 BUILD_IRQ(0x57)
148 BUILD_IRQ(0x58)
149 BUILD_IRQ(0x59)
150 BUILD_IRQ(0x5a)
151 BUILD_IRQ(0x5b)
152 BUILD_IRQ(0x5c)
153 BUILD_IRQ(0x5d)
154 BUILD_IRQ(0x5e)
155 BUILD_IRQ(0x5f)
156 BUILD_IRQ(0x60)
157 BUILD_IRQ(0x61)
158 BUILD_IRQ(0x62)
159 BUILD_IRQ(0x63)
160 BUILD_IRQ(0x64)
161 BUILD_IRQ(0x65)
162 BUILD_IRQ(0x66)
163 BUILD_IRQ(0x67)
164 BUILD_IRQ(0x68)
165 BUILD_IRQ(0x69)
166 BUILD_IRQ(0x6a)
167 BUILD_IRQ(0x6b)
168 BUILD_IRQ(0x6c)
169 BUILD_IRQ(0x6d)
170 BUILD_IRQ(0x6e)
171 BUILD_IRQ(0x6f)
172 BUILD_IRQ(0x70)
173 #endif
175 /* Pointers to the low-level handlers. */
176 static void (*interrupt[MACH_IRQS])(void) = {
177 IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt,
178 IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt,
179 IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt,
180 IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt,
181 IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt,
182 IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt,
183 IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt,
184 IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt,
185 IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt,
186 IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt,
187 IRQ0x4f_interrupt, IRQ0x50_interrupt,
188 #if MACH_IRQS > 32
189 IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt,
190 IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt,
191 IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt,
192 IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt,
193 IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt,
194 IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt,
195 IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt,
196 IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt,
197 IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt,
198 IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt,
199 IRQ0x6f_interrupt, IRQ0x70_interrupt,
200 #endif
203 void
204 block_irq(int irq, int cpu)
206 int intr_mask;
207 unsigned long flags;
209 spin_lock_irqsave(&irq_lock, flags);
210 /* Remember, 1 let thru, 0 block. */
211 if (irq - FIRST_IRQ < 32) {
212 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
213 rw_mask, 0);
214 intr_mask &= ~(1 << (irq - FIRST_IRQ));
215 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
216 0, intr_mask);
217 } else {
218 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
219 rw_mask, 1);
220 intr_mask &= ~(1 << (irq - FIRST_IRQ - 32));
221 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
222 1, intr_mask);
224 spin_unlock_irqrestore(&irq_lock, flags);
227 void
228 unblock_irq(int irq, int cpu)
230 int intr_mask;
231 unsigned long flags;
233 spin_lock_irqsave(&irq_lock, flags);
234 /* Remember, 1 let thru, 0 block. */
235 if (irq - FIRST_IRQ < 32) {
236 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
237 rw_mask, 0);
238 intr_mask |= (1 << (irq - FIRST_IRQ));
239 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
240 0, intr_mask);
241 } else {
242 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
243 rw_mask, 1);
244 intr_mask |= (1 << (irq - FIRST_IRQ - 32));
245 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
246 1, intr_mask);
248 spin_unlock_irqrestore(&irq_lock, flags);
251 /* Find out which CPU the irq should be allocated to. */
252 static int irq_cpu(int irq)
254 int cpu;
255 unsigned long flags;
257 spin_lock_irqsave(&irq_lock, flags);
258 cpu = irq_allocations[irq - FIRST_IRQ].cpu;
260 /* Fixed interrupts stay on the local CPU. */
261 if (cpu == CPU_FIXED)
263 spin_unlock_irqrestore(&irq_lock, flags);
264 return smp_processor_id();
268 /* Let the interrupt stay if possible */
269 if (cpumask_test_cpu(cpu, &irq_allocations[irq - FIRST_IRQ].mask))
270 goto out;
272 /* IRQ must be moved to another CPU. */
273 cpu = cpumask_first(&irq_allocations[irq - FIRST_IRQ].mask);
274 irq_allocations[irq - FIRST_IRQ].cpu = cpu;
275 out:
276 spin_unlock_irqrestore(&irq_lock, flags);
277 return cpu;
280 void crisv32_mask_irq(int irq)
282 int cpu;
284 for (cpu = 0; cpu < NR_CPUS; cpu++)
285 block_irq(irq, cpu);
288 void crisv32_unmask_irq(int irq)
290 unblock_irq(irq, irq_cpu(irq));
294 static void enable_crisv32_irq(struct irq_data *data)
296 crisv32_unmask_irq(data->irq);
299 static void disable_crisv32_irq(struct irq_data *data)
301 crisv32_mask_irq(data->irq);
304 static int set_affinity_crisv32_irq(struct irq_data *data,
305 const struct cpumask *dest, bool force)
307 unsigned long flags;
309 spin_lock_irqsave(&irq_lock, flags);
310 irq_allocations[data->irq - FIRST_IRQ].mask = *dest;
311 spin_unlock_irqrestore(&irq_lock, flags);
312 return 0;
315 static struct irq_chip crisv32_irq_type = {
316 .name = "CRISv32",
317 .irq_shutdown = disable_crisv32_irq,
318 .irq_enable = enable_crisv32_irq,
319 .irq_disable = disable_crisv32_irq,
320 .irq_set_affinity = set_affinity_crisv32_irq,
323 void
324 set_exception_vector(int n, irqvectptr addr)
326 etrax_irv->v[n] = (irqvectptr) addr;
329 extern void do_IRQ(int irq, struct pt_regs * regs);
331 void
332 crisv32_do_IRQ(int irq, int block, struct pt_regs* regs)
334 /* Interrupts that may not be moved to another CPU and
335 * are IRQF_DISABLED may skip blocking. This is currently
336 * only valid for the timer IRQ and the IPI and is used
337 * for the timer interrupt to avoid watchdog starvation.
339 if (!block) {
340 do_IRQ(irq, regs);
341 return;
344 block_irq(irq, smp_processor_id());
345 do_IRQ(irq, regs);
347 unblock_irq(irq, irq_cpu(irq));
350 /* If multiple interrupts occur simultaneously we get a multiple
351 * interrupt from the CPU and software has to sort out which
352 * interrupts that happened. There are two special cases here:
354 * 1. Timer interrupts may never be blocked because of the
355 * watchdog (refer to comment in include/asr/arch/irq.h)
356 * 2. GDB serial port IRQs are unhandled here and will be handled
357 * as a single IRQ when it strikes again because the GDB
358 * stubb wants to save the registers in its own fashion.
360 void
361 crisv32_do_multiple(struct pt_regs* regs)
363 int cpu;
364 int mask;
365 int masked[NBR_REGS];
366 int bit;
367 int i;
369 cpu = smp_processor_id();
371 /* An extra irq_enter here to prevent softIRQs to run after
372 * each do_IRQ. This will decrease the interrupt latency.
374 irq_enter();
376 for (i = 0; i < NBR_REGS; i++) {
377 /* Get which IRQs that happened. */
378 masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
379 r_masked_vect, i);
381 /* Calculate new IRQ mask with these IRQs disabled. */
382 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
383 mask &= ~masked[i];
385 /* Timer IRQ is never masked */
386 #ifdef TIMER_VECT1
387 if ((i == 1) && (masked[0] & TIMER_MASK))
388 mask |= TIMER_MASK;
389 #else
390 if ((i == 0) && (masked[0] & TIMER_MASK))
391 mask |= TIMER_MASK;
392 #endif
393 /* Block all the IRQs */
394 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
396 /* Check for timer IRQ and handle it special. */
397 #ifdef TIMER_VECT1
398 if ((i == 1) && (masked[i] & TIMER_MASK)) {
399 masked[i] &= ~TIMER_MASK;
400 do_IRQ(TIMER0_INTR_VECT, regs);
402 #else
403 if ((i == 0) && (masked[i] & TIMER_MASK)) {
404 masked[i] &= ~TIMER_MASK;
405 do_IRQ(TIMER0_INTR_VECT, regs);
407 #endif
410 #ifdef IGNORE_MASK
411 /* Remove IRQs that can't be handled as multiple. */
412 masked[0] &= ~IGNORE_MASK;
413 #endif
415 /* Handle the rest of the IRQs. */
416 for (i = 0; i < NBR_REGS; i++) {
417 for (bit = 0; bit < 32; bit++) {
418 if (masked[i] & (1 << bit))
419 do_IRQ(bit + FIRST_IRQ + i*32, regs);
423 /* Unblock all the IRQs. */
424 for (i = 0; i < NBR_REGS; i++) {
425 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
426 mask |= masked[i];
427 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
430 /* This irq_exit() will trigger the soft IRQs. */
431 irq_exit();
435 * This is called by start_kernel. It fixes the IRQ masks and setup the
436 * interrupt vector table to point to bad_interrupt pointers.
438 void __init
439 init_IRQ(void)
441 int i;
442 int j;
443 reg_intr_vect_rw_mask vect_mask = {0};
445 /* Clear all interrupts masks. */
446 for (i = 0; i < NBR_REGS; i++)
447 REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask);
449 for (i = 0; i < 256; i++)
450 etrax_irv->v[i] = weird_irq;
452 /* Point all IRQ's to bad handlers. */
453 for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) {
454 irq_set_chip_and_handler(j, &crisv32_irq_type,
455 handle_simple_irq);
456 set_exception_vector(i, interrupt[j]);
459 /* Mark Timer and IPI IRQs as CPU local */
460 irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
461 irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU);
462 irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
463 irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU);
465 set_exception_vector(0x00, nmi_interrupt);
466 set_exception_vector(0x30, multiple_interrupt);
468 /* Set up handler for various MMU bus faults. */
469 set_exception_vector(0x04, i_mmu_refill);
470 set_exception_vector(0x05, i_mmu_invalid);
471 set_exception_vector(0x06, i_mmu_access);
472 set_exception_vector(0x07, i_mmu_execute);
473 set_exception_vector(0x08, d_mmu_refill);
474 set_exception_vector(0x09, d_mmu_invalid);
475 set_exception_vector(0x0a, d_mmu_access);
476 set_exception_vector(0x0b, d_mmu_write);
478 #ifdef CONFIG_BUG
479 /* Break 14 handler, used to implement cheap BUG(). */
480 set_exception_vector(0x1e, breakh_BUG);
481 #endif
483 /* The system-call trap is reached by "break 13". */
484 set_exception_vector(0x1d, system_call);
486 /* Exception handlers for debugging, both user-mode and kernel-mode. */
488 /* Break 8. */
489 set_exception_vector(0x18, gdb_handle_exception);
490 /* Hardware single step. */
491 set_exception_vector(0x3, gdb_handle_exception);
492 /* Hardware breakpoint. */
493 set_exception_vector(0xc, gdb_handle_exception);
495 #ifdef CONFIG_ETRAX_KGDB
496 kgdb_init();
497 /* Everything is set up; now trap the kernel. */
498 breakpoint();
499 #endif