x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / ia64 / pci / pci.c
blob2326790b7d8be4f9e6cffbea4c4a22fc1ab91f3e
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
35 * Low-level SAL-based PCI configuration access functions. Note that SAL
36 * calls are already serialized (via sal_lock), so we don't need another
37 * synchronization mechanism here.
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
43 /* SAL 3.2 adds support for extended config space. */
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 int reg, int len, u32 *value)
51 u64 addr, data = 0;
52 int mode, result;
54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 return -EINVAL;
57 if ((seg | reg) <= 255) {
58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 mode = 0;
60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 mode = 1;
63 } else {
64 return -EINVAL;
67 result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 if (result != 0)
69 return -EINVAL;
71 *value = (u32) data;
72 return 0;
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 int reg, int len, u32 value)
78 u64 addr;
79 int mode, result;
81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 return -EINVAL;
84 if ((seg | reg) <= 255) {
85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 mode = 0;
87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 mode = 1;
90 } else {
91 return -EINVAL;
93 result = ia64_sal_pci_config_write(addr, mode, len, value);
94 if (result != 0)
95 return -EINVAL;
96 return 0;
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 int size, u32 *value)
102 return raw_pci_read(pci_domain_nr(bus), bus->number,
103 devfn, where, size, value);
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 int size, u32 value)
109 return raw_pci_write(pci_domain_nr(bus), bus->number,
110 devfn, where, size, value);
113 struct pci_ops pci_root_ops = {
114 .read = pci_read,
115 .write = pci_write,
118 /* Called by ACPI when it finds a new root bus. */
120 static struct pci_controller *alloc_pci_controller(int seg)
122 struct pci_controller *controller;
124 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 if (!controller)
126 return NULL;
128 controller->segment = seg;
129 controller->node = -1;
130 return controller;
133 struct pci_root_info {
134 struct acpi_device *bridge;
135 struct pci_controller *controller;
136 struct list_head resources;
137 struct resource *res;
138 resource_size_t *res_offset;
139 unsigned int res_num;
140 struct list_head io_resources;
141 char *name;
144 static unsigned int
145 new_space (u64 phys_base, int sparse)
147 u64 mmio_base;
148 int i;
150 if (phys_base == 0)
151 return 0; /* legacy I/O port space */
153 mmio_base = (u64) ioremap(phys_base, 0);
154 for (i = 0; i < num_io_spaces; i++)
155 if (io_space[i].mmio_base == mmio_base &&
156 io_space[i].sparse == sparse)
157 return i;
159 if (num_io_spaces == MAX_IO_SPACES) {
160 pr_err("PCI: Too many IO port spaces "
161 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
162 return ~0;
165 i = num_io_spaces++;
166 io_space[i].mmio_base = mmio_base;
167 io_space[i].sparse = sparse;
169 return i;
172 static u64 add_io_space(struct pci_root_info *info,
173 struct acpi_resource_address64 *addr)
175 struct iospace_resource *iospace;
176 struct resource *resource;
177 char *name;
178 unsigned long base, min, max, base_port;
179 unsigned int sparse = 0, space_nr, len;
181 len = strlen(info->name) + 32;
182 iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
183 if (!iospace) {
184 dev_err(&info->bridge->dev,
185 "PCI: No memory for %s I/O port space\n",
186 info->name);
187 goto out;
190 name = (char *)(iospace + 1);
192 min = addr->minimum;
193 max = min + addr->address_length - 1;
194 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
195 sparse = 1;
197 space_nr = new_space(addr->translation_offset, sparse);
198 if (space_nr == ~0)
199 goto free_resource;
201 base = __pa(io_space[space_nr].mmio_base);
202 base_port = IO_SPACE_BASE(space_nr);
203 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
204 base_port + min, base_port + max);
207 * The SDM guarantees the legacy 0-64K space is sparse, but if the
208 * mapping is done by the processor (not the bridge), ACPI may not
209 * mark it as sparse.
211 if (space_nr == 0)
212 sparse = 1;
214 resource = &iospace->res;
215 resource->name = name;
216 resource->flags = IORESOURCE_MEM;
217 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
218 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
219 if (insert_resource(&iomem_resource, resource)) {
220 dev_err(&info->bridge->dev,
221 "can't allocate host bridge io space resource %pR\n",
222 resource);
223 goto free_resource;
226 list_add_tail(&iospace->list, &info->io_resources);
227 return base_port;
229 free_resource:
230 kfree(iospace);
231 out:
232 return ~0;
235 static acpi_status resource_to_window(struct acpi_resource *resource,
236 struct acpi_resource_address64 *addr)
238 acpi_status status;
241 * We're only interested in _CRS descriptors that are
242 * - address space descriptors for memory or I/O space
243 * - non-zero size
244 * - producers, i.e., the address space is routed downstream,
245 * not consumed by the bridge itself
247 status = acpi_resource_to_address64(resource, addr);
248 if (ACPI_SUCCESS(status) &&
249 (addr->resource_type == ACPI_MEMORY_RANGE ||
250 addr->resource_type == ACPI_IO_RANGE) &&
251 addr->address_length &&
252 addr->producer_consumer == ACPI_PRODUCER)
253 return AE_OK;
255 return AE_ERROR;
258 static acpi_status count_window(struct acpi_resource *resource, void *data)
260 unsigned int *windows = (unsigned int *) data;
261 struct acpi_resource_address64 addr;
262 acpi_status status;
264 status = resource_to_window(resource, &addr);
265 if (ACPI_SUCCESS(status))
266 (*windows)++;
268 return AE_OK;
271 static acpi_status add_window(struct acpi_resource *res, void *data)
273 struct pci_root_info *info = data;
274 struct resource *resource;
275 struct acpi_resource_address64 addr;
276 acpi_status status;
277 unsigned long flags, offset = 0;
278 struct resource *root;
280 /* Return AE_OK for non-window resources to keep scanning for more */
281 status = resource_to_window(res, &addr);
282 if (!ACPI_SUCCESS(status))
283 return AE_OK;
285 if (addr.resource_type == ACPI_MEMORY_RANGE) {
286 flags = IORESOURCE_MEM;
287 root = &iomem_resource;
288 offset = addr.translation_offset;
289 } else if (addr.resource_type == ACPI_IO_RANGE) {
290 flags = IORESOURCE_IO;
291 root = &ioport_resource;
292 offset = add_io_space(info, &addr);
293 if (offset == ~0)
294 return AE_OK;
295 } else
296 return AE_OK;
298 resource = &info->res[info->res_num];
299 resource->name = info->name;
300 resource->flags = flags;
301 resource->start = addr.minimum + offset;
302 resource->end = resource->start + addr.address_length - 1;
303 info->res_offset[info->res_num] = offset;
305 if (insert_resource(root, resource)) {
306 dev_err(&info->bridge->dev,
307 "can't allocate host bridge window %pR\n",
308 resource);
309 } else {
310 if (offset)
311 dev_info(&info->bridge->dev, "host bridge window %pR "
312 "(PCI address [%#llx-%#llx])\n",
313 resource,
314 resource->start - offset,
315 resource->end - offset);
316 else
317 dev_info(&info->bridge->dev,
318 "host bridge window %pR\n", resource);
320 /* HP's firmware has a hack to work around a Windows bug.
321 * Ignore these tiny memory ranges */
322 if (!((resource->flags & IORESOURCE_MEM) &&
323 (resource->end - resource->start < 16)))
324 pci_add_resource_offset(&info->resources, resource,
325 info->res_offset[info->res_num]);
327 info->res_num++;
328 return AE_OK;
331 static void free_pci_root_info_res(struct pci_root_info *info)
333 struct iospace_resource *iospace, *tmp;
335 list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
336 kfree(iospace);
338 kfree(info->name);
339 kfree(info->res);
340 info->res = NULL;
341 kfree(info->res_offset);
342 info->res_offset = NULL;
343 info->res_num = 0;
344 kfree(info->controller);
345 info->controller = NULL;
348 static void __release_pci_root_info(struct pci_root_info *info)
350 int i;
351 struct resource *res;
352 struct iospace_resource *iospace;
354 list_for_each_entry(iospace, &info->io_resources, list)
355 release_resource(&iospace->res);
357 for (i = 0; i < info->res_num; i++) {
358 res = &info->res[i];
360 if (!res->parent)
361 continue;
363 if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
364 continue;
366 release_resource(res);
369 free_pci_root_info_res(info);
370 kfree(info);
373 static void release_pci_root_info(struct pci_host_bridge *bridge)
375 struct pci_root_info *info = bridge->release_data;
377 __release_pci_root_info(info);
380 static int
381 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
382 int busnum, int domain)
384 char *name;
386 name = kmalloc(16, GFP_KERNEL);
387 if (!name)
388 return -ENOMEM;
390 sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
391 info->bridge = device;
392 info->name = name;
394 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
395 &info->res_num);
396 if (info->res_num) {
397 info->res =
398 kzalloc_node(sizeof(*info->res) * info->res_num,
399 GFP_KERNEL, info->controller->node);
400 if (!info->res) {
401 kfree(name);
402 return -ENOMEM;
405 info->res_offset =
406 kzalloc_node(sizeof(*info->res_offset) * info->res_num,
407 GFP_KERNEL, info->controller->node);
408 if (!info->res_offset) {
409 kfree(name);
410 kfree(info->res);
411 info->res = NULL;
412 return -ENOMEM;
415 info->res_num = 0;
416 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
417 add_window, info);
418 } else
419 kfree(name);
421 return 0;
424 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
426 struct acpi_device *device = root->device;
427 int domain = root->segment;
428 int bus = root->secondary.start;
429 struct pci_controller *controller;
430 struct pci_root_info *info = NULL;
431 int busnum = root->secondary.start;
432 struct pci_bus *pbus;
433 int pxm, ret;
435 controller = alloc_pci_controller(domain);
436 if (!controller)
437 return NULL;
439 controller->acpi_handle = device->handle;
441 pxm = acpi_get_pxm(controller->acpi_handle);
442 #ifdef CONFIG_NUMA
443 if (pxm >= 0)
444 controller->node = pxm_to_node(pxm);
445 #endif
447 info = kzalloc(sizeof(*info), GFP_KERNEL);
448 if (!info) {
449 dev_err(&device->dev,
450 "pci_bus %04x:%02x: ignored (out of memory)\n",
451 domain, busnum);
452 kfree(controller);
453 return NULL;
456 info->controller = controller;
457 INIT_LIST_HEAD(&info->io_resources);
458 INIT_LIST_HEAD(&info->resources);
460 ret = probe_pci_root_info(info, device, busnum, domain);
461 if (ret) {
462 kfree(info->controller);
463 kfree(info);
464 return NULL;
466 /* insert busn resource at first */
467 pci_add_resource(&info->resources, &root->secondary);
469 * See arch/x86/pci/acpi.c.
470 * The desired pci bus might already be scanned in a quirk. We
471 * should handle the case here, but it appears that IA64 hasn't
472 * such quirk. So we just ignore the case now.
474 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
475 &info->resources);
476 if (!pbus) {
477 pci_free_resource_list(&info->resources);
478 __release_pci_root_info(info);
479 return NULL;
482 pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
483 release_pci_root_info, info);
484 pci_scan_child_bus(pbus);
485 return pbus;
488 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
490 struct pci_controller *controller = bridge->bus->sysdata;
492 ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
493 return 0;
496 static int is_valid_resource(struct pci_dev *dev, int idx)
498 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
499 struct resource *devr = &dev->resource[idx], *busr;
501 if (!dev->bus)
502 return 0;
504 pci_bus_for_each_resource(dev->bus, busr, i) {
505 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
506 continue;
507 if ((devr->start) && (devr->start >= busr->start) &&
508 (devr->end <= busr->end))
509 return 1;
511 return 0;
514 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
516 int i;
518 for (i = start; i < limit; i++) {
519 if (!dev->resource[i].flags)
520 continue;
521 if ((is_valid_resource(dev, i)))
522 pci_claim_resource(dev, i);
526 void pcibios_fixup_device_resources(struct pci_dev *dev)
528 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
530 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
532 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
534 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
538 * Called after each bus is probed, but before its children are examined.
540 void pcibios_fixup_bus(struct pci_bus *b)
542 struct pci_dev *dev;
544 if (b->self) {
545 pci_read_bridge_bases(b);
546 pcibios_fixup_bridge_resources(b->self);
548 list_for_each_entry(dev, &b->devices, bus_list)
549 pcibios_fixup_device_resources(dev);
550 platform_pci_fixup_bus(b);
553 void pcibios_add_bus(struct pci_bus *bus)
555 acpi_pci_add_bus(bus);
558 void pcibios_remove_bus(struct pci_bus *bus)
560 acpi_pci_remove_bus(bus);
563 void pcibios_set_master (struct pci_dev *dev)
565 /* No special bus mastering setup handling */
569 pcibios_enable_device (struct pci_dev *dev, int mask)
571 int ret;
573 ret = pci_enable_resources(dev, mask);
574 if (ret < 0)
575 return ret;
577 if (!dev->msi_enabled)
578 return acpi_pci_irq_enable(dev);
579 return 0;
582 void
583 pcibios_disable_device (struct pci_dev *dev)
585 BUG_ON(atomic_read(&dev->enable_cnt));
586 if (!dev->msi_enabled)
587 acpi_pci_irq_disable(dev);
590 resource_size_t
591 pcibios_align_resource (void *data, const struct resource *res,
592 resource_size_t size, resource_size_t align)
594 return res->start;
598 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
599 enum pci_mmap_state mmap_state, int write_combine)
601 unsigned long size = vma->vm_end - vma->vm_start;
602 pgprot_t prot;
605 * I/O space cannot be accessed via normal processor loads and
606 * stores on this platform.
608 if (mmap_state == pci_mmap_io)
610 * XXX we could relax this for I/O spaces for which ACPI
611 * indicates that the space is 1-to-1 mapped. But at the
612 * moment, we don't support multiple PCI address spaces and
613 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
615 return -EINVAL;
617 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
618 return -EINVAL;
620 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
621 vma->vm_page_prot);
624 * If the user requested WC, the kernel uses UC or WC for this region,
625 * and the chipset supports WC, we can use WC. Otherwise, we have to
626 * use the same attribute the kernel uses.
628 if (write_combine &&
629 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
630 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
631 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
632 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
633 else
634 vma->vm_page_prot = prot;
636 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
637 vma->vm_end - vma->vm_start, vma->vm_page_prot))
638 return -EAGAIN;
640 return 0;
644 * ia64_pci_get_legacy_mem - generic legacy mem routine
645 * @bus: bus to get legacy memory base address for
647 * Find the base of legacy memory for @bus. This is typically the first
648 * megabyte of bus address space for @bus or is simply 0 on platforms whose
649 * chipsets support legacy I/O and memory routing. Returns the base address
650 * or an error pointer if an error occurred.
652 * This is the ia64 generic version of this routine. Other platforms
653 * are free to override it with a machine vector.
655 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
657 return (char *)__IA64_UNCACHED_OFFSET;
661 * pci_mmap_legacy_page_range - map legacy memory space to userland
662 * @bus: bus whose legacy space we're mapping
663 * @vma: vma passed in by mmap
665 * Map legacy memory space for this device back to userspace using a machine
666 * vector to get the base address.
669 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
670 enum pci_mmap_state mmap_state)
672 unsigned long size = vma->vm_end - vma->vm_start;
673 pgprot_t prot;
674 char *addr;
676 /* We only support mmap'ing of legacy memory space */
677 if (mmap_state != pci_mmap_mem)
678 return -ENOSYS;
681 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
682 * for more details.
684 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
685 return -EINVAL;
686 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
687 vma->vm_page_prot);
689 addr = pci_get_legacy_mem(bus);
690 if (IS_ERR(addr))
691 return PTR_ERR(addr);
693 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
694 vma->vm_page_prot = prot;
696 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
697 size, vma->vm_page_prot))
698 return -EAGAIN;
700 return 0;
704 * ia64_pci_legacy_read - read from legacy I/O space
705 * @bus: bus to read
706 * @port: legacy port value
707 * @val: caller allocated storage for returned value
708 * @size: number of bytes to read
710 * Simply reads @size bytes from @port and puts the result in @val.
712 * Again, this (and the write routine) are generic versions that can be
713 * overridden by the platform. This is necessary on platforms that don't
714 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
716 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
718 int ret = size;
720 switch (size) {
721 case 1:
722 *val = inb(port);
723 break;
724 case 2:
725 *val = inw(port);
726 break;
727 case 4:
728 *val = inl(port);
729 break;
730 default:
731 ret = -EINVAL;
732 break;
735 return ret;
739 * ia64_pci_legacy_write - perform a legacy I/O write
740 * @bus: bus pointer
741 * @port: port to write
742 * @val: value to write
743 * @size: number of bytes to write from @val
745 * Simply writes @size bytes of @val to @port.
747 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
749 int ret = size;
751 switch (size) {
752 case 1:
753 outb(val, port);
754 break;
755 case 2:
756 outw(val, port);
757 break;
758 case 4:
759 outl(val, port);
760 break;
761 default:
762 ret = -EINVAL;
763 break;
766 return ret;
770 * set_pci_cacheline_size - determine cacheline size for PCI devices
772 * We want to use the line-size of the outer-most cache. We assume
773 * that this line-size is the same for all CPUs.
775 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
777 static void __init set_pci_dfl_cacheline_size(void)
779 unsigned long levels, unique_caches;
780 long status;
781 pal_cache_config_info_t cci;
783 status = ia64_pal_cache_summary(&levels, &unique_caches);
784 if (status != 0) {
785 pr_err("%s: ia64_pal_cache_summary() failed "
786 "(status=%ld)\n", __func__, status);
787 return;
790 status = ia64_pal_cache_config_info(levels - 1,
791 /* cache_type (data_or_unified)= */ 2, &cci);
792 if (status != 0) {
793 pr_err("%s: ia64_pal_cache_config_info() failed "
794 "(status=%ld)\n", __func__, status);
795 return;
797 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
800 u64 ia64_dma_get_required_mask(struct device *dev)
802 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
803 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
804 u64 mask;
806 if (!high_totalram) {
807 /* convert to mask just covering totalram */
808 low_totalram = (1 << (fls(low_totalram) - 1));
809 low_totalram += low_totalram - 1;
810 mask = low_totalram;
811 } else {
812 high_totalram = (1 << (fls(high_totalram) - 1));
813 high_totalram += high_totalram - 1;
814 mask = (((u64)high_totalram) << 32) + 0xffffffff;
816 return mask;
818 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
820 u64 dma_get_required_mask(struct device *dev)
822 return platform_dma_get_required_mask(dev);
824 EXPORT_SYMBOL_GPL(dma_get_required_mask);
826 static int __init pcibios_init(void)
828 set_pci_dfl_cacheline_size();
829 return 0;
832 subsys_initcall(pcibios_init);