x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / ia64 / sn / kernel / sn2 / sn_hwperf.c
blobb9992571c0368a123bffd493571478af6180fde8
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
8 * SGI Altix topology and hardware performance monitoring API.
9 * Mark Goodwin <markgw@sgi.com>.
11 * Creates /proc/sgi_sn/sn_topology (read-only) to export
12 * info about Altix nodes, routers, CPUs and NumaLink
13 * interconnection/topology.
15 * Also creates a dynamic misc device named "sn_hwperf"
16 * that supports an ioctl interface to call down into SAL
17 * to discover hw objects, topology and to read/write
18 * memory mapped registers, e.g. for performance monitoring.
19 * The "sn_hwperf" device is registered only after the procfs
20 * file is first opened, i.e. only if/when it's needed.
22 * This API is used by SGI Performance Co-Pilot and other
23 * tools, see http://oss.sgi.com/projects/pcp
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/seq_file.h>
31 #include <linux/miscdevice.h>
32 #include <linux/utsname.h>
33 #include <linux/cpumask.h>
34 #include <linux/nodemask.h>
35 #include <linux/smp.h>
36 #include <linux/mutex.h>
38 #include <asm/processor.h>
39 #include <asm/topology.h>
40 #include <asm/uaccess.h>
41 #include <asm/sal.h>
42 #include <asm/sn/io.h>
43 #include <asm/sn/sn_sal.h>
44 #include <asm/sn/module.h>
45 #include <asm/sn/geo.h>
46 #include <asm/sn/sn2/sn_hwperf.h>
47 #include <asm/sn/addrs.h>
49 static void *sn_hwperf_salheap = NULL;
50 static int sn_hwperf_obj_cnt = 0;
51 static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
52 static int sn_hwperf_init(void);
53 static DEFINE_MUTEX(sn_hwperf_init_mutex);
55 #define cnode_possible(n) ((n) < num_cnodes)
57 static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
59 int e;
60 u64 sz;
61 struct sn_hwperf_object_info *objbuf = NULL;
63 if ((e = sn_hwperf_init()) < 0) {
64 printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
65 goto out;
68 sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
69 objbuf = vmalloc(sz);
70 if (objbuf == NULL) {
71 printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
72 e = -ENOMEM;
73 goto out;
76 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
77 0, sz, (u64) objbuf, 0, 0, NULL);
78 if (e != SN_HWPERF_OP_OK) {
79 e = -EINVAL;
80 vfree(objbuf);
83 out:
84 *nobj = sn_hwperf_obj_cnt;
85 *ret = objbuf;
86 return e;
89 static int sn_hwperf_location_to_bpos(char *location,
90 int *rack, int *bay, int *slot, int *slab)
92 char type;
94 /* first scan for an old style geoid string */
95 if (sscanf(location, "%03d%c%02d#%d",
96 rack, &type, bay, slab) == 4)
97 *slot = 0;
98 else /* scan for a new bladed geoid string */
99 if (sscanf(location, "%03d%c%02d^%02d#%d",
100 rack, &type, bay, slot, slab) != 5)
101 return -1;
102 /* success */
103 return 0;
106 static int sn_hwperf_geoid_to_cnode(char *location)
108 int cnode;
109 geoid_t geoid;
110 moduleid_t module_id;
111 int rack, bay, slot, slab;
112 int this_rack, this_bay, this_slot, this_slab;
114 if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
115 return -1;
118 * FIXME: replace with cleaner for_each_XXX macro which addresses
119 * both compute and IO nodes once ACPI3.0 is available.
121 for (cnode = 0; cnode < num_cnodes; cnode++) {
122 geoid = cnodeid_get_geoid(cnode);
123 module_id = geo_module(geoid);
124 this_rack = MODULE_GET_RACK(module_id);
125 this_bay = MODULE_GET_BPOS(module_id);
126 this_slot = geo_slot(geoid);
127 this_slab = geo_slab(geoid);
128 if (rack == this_rack && bay == this_bay &&
129 slot == this_slot && slab == this_slab) {
130 break;
134 return cnode_possible(cnode) ? cnode : -1;
137 static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
139 if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
140 BUG();
141 if (SN_HWPERF_FOREIGN(obj))
142 return -1;
143 return sn_hwperf_geoid_to_cnode(obj->location);
146 static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
147 struct sn_hwperf_object_info *objs)
149 int ordinal;
150 struct sn_hwperf_object_info *p;
152 for (ordinal=0, p=objs; p != obj; p++) {
153 if (SN_HWPERF_FOREIGN(p))
154 continue;
155 if (SN_HWPERF_SAME_OBJTYPE(p, obj))
156 ordinal++;
159 return ordinal;
162 static const char *slabname_node = "node"; /* SHub asic */
163 static const char *slabname_ionode = "ionode"; /* TIO asic */
164 static const char *slabname_router = "router"; /* NL3R or NL4R */
165 static const char *slabname_other = "other"; /* unknown asic */
167 static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
168 struct sn_hwperf_object_info *objs, int *ordinal)
170 int isnode;
171 const char *slabname = slabname_other;
173 if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
174 slabname = isnode ? slabname_node : slabname_ionode;
175 *ordinal = sn_hwperf_obj_to_cnode(obj);
177 else {
178 *ordinal = sn_hwperf_generic_ordinal(obj, objs);
179 if (SN_HWPERF_IS_ROUTER(obj))
180 slabname = slabname_router;
183 return slabname;
186 static void print_pci_topology(struct seq_file *s)
188 char *p;
189 size_t sz;
190 int e;
192 for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
193 if (!(p = kmalloc(sz, GFP_KERNEL)))
194 break;
195 e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
196 if (e == SALRET_OK)
197 seq_puts(s, p);
198 kfree(p);
199 if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
200 break;
204 static inline int sn_hwperf_has_cpus(cnodeid_t node)
206 return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
209 static inline int sn_hwperf_has_mem(cnodeid_t node)
211 return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
214 static struct sn_hwperf_object_info *
215 sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
216 int nobj, int id)
218 int i;
219 struct sn_hwperf_object_info *p = objbuf;
221 for (i=0; i < nobj; i++, p++) {
222 if (p->id == id)
223 return p;
226 return NULL;
230 static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
231 int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
233 int e;
234 struct sn_hwperf_object_info *nodeobj = NULL;
235 struct sn_hwperf_object_info *op;
236 struct sn_hwperf_object_info *dest;
237 struct sn_hwperf_object_info *router;
238 struct sn_hwperf_port_info ptdata[16];
239 int sz, i, j;
240 cnodeid_t c;
241 int found_mem = 0;
242 int found_cpu = 0;
244 if (!cnode_possible(node))
245 return -EINVAL;
247 if (sn_hwperf_has_cpus(node)) {
248 if (near_cpu_node)
249 *near_cpu_node = node;
250 found_cpu++;
253 if (sn_hwperf_has_mem(node)) {
254 if (near_mem_node)
255 *near_mem_node = node;
256 found_mem++;
259 if (found_cpu && found_mem)
260 return 0; /* trivially successful */
262 /* find the argument node object */
263 for (i=0, op=objbuf; i < nobj; i++, op++) {
264 if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
265 continue;
266 if (node == sn_hwperf_obj_to_cnode(op)) {
267 nodeobj = op;
268 break;
271 if (!nodeobj) {
272 e = -ENOENT;
273 goto err;
276 /* get it's interconnect topology */
277 sz = op->ports * sizeof(struct sn_hwperf_port_info);
278 BUG_ON(sz > sizeof(ptdata));
279 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
280 SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
281 (u64)&ptdata, 0, 0, NULL);
282 if (e != SN_HWPERF_OP_OK) {
283 e = -EINVAL;
284 goto err;
287 /* find nearest node with cpus and nearest memory */
288 for (router=NULL, j=0; j < op->ports; j++) {
289 dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
290 if (dest && SN_HWPERF_IS_ROUTER(dest))
291 router = dest;
292 if (!dest || SN_HWPERF_FOREIGN(dest) ||
293 !SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
294 continue;
296 c = sn_hwperf_obj_to_cnode(dest);
297 if (!found_cpu && sn_hwperf_has_cpus(c)) {
298 if (near_cpu_node)
299 *near_cpu_node = c;
300 found_cpu++;
302 if (!found_mem && sn_hwperf_has_mem(c)) {
303 if (near_mem_node)
304 *near_mem_node = c;
305 found_mem++;
309 if (router && (!found_cpu || !found_mem)) {
310 /* search for a node connected to the same router */
311 sz = router->ports * sizeof(struct sn_hwperf_port_info);
312 BUG_ON(sz > sizeof(ptdata));
313 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
314 SN_HWPERF_ENUM_PORTS, router->id, sz,
315 (u64)&ptdata, 0, 0, NULL);
316 if (e != SN_HWPERF_OP_OK) {
317 e = -EINVAL;
318 goto err;
320 for (j=0; j < router->ports; j++) {
321 dest = sn_hwperf_findobj_id(objbuf, nobj,
322 ptdata[j].conn_id);
323 if (!dest || dest->id == node ||
324 SN_HWPERF_FOREIGN(dest) ||
325 !SN_HWPERF_IS_NODE(dest) ||
326 SN_HWPERF_IS_IONODE(dest)) {
327 continue;
329 c = sn_hwperf_obj_to_cnode(dest);
330 if (!found_cpu && sn_hwperf_has_cpus(c)) {
331 if (near_cpu_node)
332 *near_cpu_node = c;
333 found_cpu++;
335 if (!found_mem && sn_hwperf_has_mem(c)) {
336 if (near_mem_node)
337 *near_mem_node = c;
338 found_mem++;
340 if (found_cpu && found_mem)
341 break;
345 if (!found_cpu || !found_mem) {
346 /* resort to _any_ node with CPUs and memory */
347 for (i=0, op=objbuf; i < nobj; i++, op++) {
348 if (SN_HWPERF_FOREIGN(op) ||
349 SN_HWPERF_IS_IONODE(op) ||
350 !SN_HWPERF_IS_NODE(op)) {
351 continue;
353 c = sn_hwperf_obj_to_cnode(op);
354 if (!found_cpu && sn_hwperf_has_cpus(c)) {
355 if (near_cpu_node)
356 *near_cpu_node = c;
357 found_cpu++;
359 if (!found_mem && sn_hwperf_has_mem(c)) {
360 if (near_mem_node)
361 *near_mem_node = c;
362 found_mem++;
364 if (found_cpu && found_mem)
365 break;
369 if (!found_cpu || !found_mem)
370 e = -ENODATA;
372 err:
373 return e;
377 static int sn_topology_show(struct seq_file *s, void *d)
379 int sz;
380 int pt;
381 int e = 0;
382 int i;
383 int j;
384 const char *slabname;
385 int ordinal;
386 char slice;
387 struct cpuinfo_ia64 *c;
388 struct sn_hwperf_port_info *ptdata;
389 struct sn_hwperf_object_info *p;
390 struct sn_hwperf_object_info *obj = d; /* this object */
391 struct sn_hwperf_object_info *objs = s->private; /* all objects */
392 u8 shubtype;
393 u8 system_size;
394 u8 sharing_size;
395 u8 partid;
396 u8 coher;
397 u8 nasid_shift;
398 u8 region_size;
399 u16 nasid_mask;
400 int nasid_msb;
402 if (obj == objs) {
403 seq_printf(s, "# sn_topology version 2\n");
404 seq_printf(s, "# objtype ordinal location partition"
405 " [attribute value [, ...]]\n");
407 if (ia64_sn_get_sn_info(0,
408 &shubtype, &nasid_mask, &nasid_shift, &system_size,
409 &sharing_size, &partid, &coher, &region_size))
410 BUG();
411 for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
412 if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
413 break;
415 seq_printf(s, "partition %u %s local "
416 "shubtype %s, "
417 "nasid_mask 0x%016llx, "
418 "nasid_bits %d:%d, "
419 "system_size %d, "
420 "sharing_size %d, "
421 "coherency_domain %d, "
422 "region_size %d\n",
424 partid, utsname()->nodename,
425 shubtype ? "shub2" : "shub1",
426 (u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
427 system_size, sharing_size, coher, region_size);
429 print_pci_topology(s);
432 if (SN_HWPERF_FOREIGN(obj)) {
433 /* private in another partition: not interesting */
434 return 0;
437 for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
438 if (obj->name[i] == ' ')
439 obj->name[i] = '_';
442 slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
443 seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
444 obj->sn_hwp_this_part ? "local" : "shared", obj->name);
446 if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
447 seq_putc(s, '\n');
448 else {
449 cnodeid_t near_mem = -1;
450 cnodeid_t near_cpu = -1;
452 seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
454 if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
455 ordinal, &near_mem, &near_cpu) == 0) {
456 seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
457 near_mem, near_cpu);
460 if (!SN_HWPERF_IS_IONODE(obj)) {
461 for_each_online_node(i) {
462 seq_printf(s, i ? ":%d" : ", dist %d",
463 node_distance(ordinal, i));
467 seq_putc(s, '\n');
470 * CPUs on this node, if any
472 if (!SN_HWPERF_IS_IONODE(obj)) {
473 for_each_cpu_and(i, cpu_online_mask,
474 cpumask_of_node(ordinal)) {
475 slice = 'a' + cpuid_to_slice(i);
476 c = cpu_data(i);
477 seq_printf(s, "cpu %d %s%c local"
478 " freq %luMHz, arch ia64",
479 i, obj->location, slice,
480 c->proc_freq / 1000000);
481 for_each_online_cpu(j) {
482 seq_printf(s, j ? ":%d" : ", dist %d",
483 node_distance(
484 cpu_to_node(i),
485 cpu_to_node(j)));
487 seq_putc(s, '\n');
492 if (obj->ports) {
494 * numalink ports
496 sz = obj->ports * sizeof(struct sn_hwperf_port_info);
497 if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
498 return -ENOMEM;
499 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
500 SN_HWPERF_ENUM_PORTS, obj->id, sz,
501 (u64) ptdata, 0, 0, NULL);
502 if (e != SN_HWPERF_OP_OK)
503 return -EINVAL;
504 for (ordinal=0, p=objs; p != obj; p++) {
505 if (!SN_HWPERF_FOREIGN(p))
506 ordinal += p->ports;
508 for (pt = 0; pt < obj->ports; pt++) {
509 for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
510 if (ptdata[pt].conn_id == p->id) {
511 break;
514 seq_printf(s, "numalink %d %s-%d",
515 ordinal+pt, obj->location, ptdata[pt].port);
517 if (i >= sn_hwperf_obj_cnt) {
518 /* no connection */
519 seq_puts(s, " local endpoint disconnected"
520 ", protocol unknown\n");
521 continue;
524 if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
525 /* both ends local to this partition */
526 seq_puts(s, " local");
527 else if (SN_HWPERF_FOREIGN(p))
528 /* both ends of the link in foreign partiton */
529 seq_puts(s, " foreign");
530 else
531 /* link straddles a partition */
532 seq_puts(s, " shared");
535 * Unlikely, but strictly should query the LLP config
536 * registers because an NL4R can be configured to run
537 * NL3 protocol, even when not talking to an NL3 router.
538 * Ditto for node-node.
540 seq_printf(s, " endpoint %s-%d, protocol %s\n",
541 p->location, ptdata[pt].conn_port,
542 (SN_HWPERF_IS_NL3ROUTER(obj) ||
543 SN_HWPERF_IS_NL3ROUTER(p)) ? "LLP3" : "LLP4");
545 kfree(ptdata);
548 return 0;
551 static void *sn_topology_start(struct seq_file *s, loff_t * pos)
553 struct sn_hwperf_object_info *objs = s->private;
555 if (*pos < sn_hwperf_obj_cnt)
556 return (void *)(objs + *pos);
558 return NULL;
561 static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
563 ++*pos;
564 return sn_topology_start(s, pos);
567 static void sn_topology_stop(struct seq_file *m, void *v)
569 return;
573 * /proc/sgi_sn/sn_topology, read-only using seq_file
575 static const struct seq_operations sn_topology_seq_ops = {
576 .start = sn_topology_start,
577 .next = sn_topology_next,
578 .stop = sn_topology_stop,
579 .show = sn_topology_show
582 struct sn_hwperf_op_info {
583 u64 op;
584 struct sn_hwperf_ioctl_args *a;
585 void *p;
586 int *v0;
587 int ret;
590 static void sn_hwperf_call_sal(void *info)
592 struct sn_hwperf_op_info *op_info = info;
593 int r;
595 r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
596 op_info->a->arg, op_info->a->sz,
597 (u64) op_info->p, 0, 0, op_info->v0);
598 op_info->ret = r;
601 static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
603 u32 cpu;
604 u32 use_ipi;
605 int r = 0;
606 cpumask_t save_allowed;
608 cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
609 use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
610 op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
612 if (cpu != SN_HWPERF_ARG_ANY_CPU) {
613 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
614 r = -EINVAL;
615 goto out;
619 if (cpu == SN_HWPERF_ARG_ANY_CPU) {
620 /* don't care which cpu */
621 sn_hwperf_call_sal(op_info);
622 } else if (cpu == get_cpu()) {
623 /* already on correct cpu */
624 sn_hwperf_call_sal(op_info);
625 put_cpu();
626 } else {
627 put_cpu();
628 if (use_ipi) {
629 /* use an interprocessor interrupt to call SAL */
630 smp_call_function_single(cpu, sn_hwperf_call_sal,
631 op_info, 1);
633 else {
634 /* migrate the task before calling SAL */
635 save_allowed = current->cpus_allowed;
636 set_cpus_allowed_ptr(current, cpumask_of(cpu));
637 sn_hwperf_call_sal(op_info);
638 set_cpus_allowed_ptr(current, &save_allowed);
641 r = op_info->ret;
643 out:
644 return r;
647 /* map SAL hwperf error code to system error code */
648 static int sn_hwperf_map_err(int hwperf_err)
650 int e;
652 switch(hwperf_err) {
653 case SN_HWPERF_OP_OK:
654 e = 0;
655 break;
657 case SN_HWPERF_OP_NOMEM:
658 e = -ENOMEM;
659 break;
661 case SN_HWPERF_OP_NO_PERM:
662 e = -EPERM;
663 break;
665 case SN_HWPERF_OP_IO_ERROR:
666 e = -EIO;
667 break;
669 case SN_HWPERF_OP_BUSY:
670 e = -EBUSY;
671 break;
673 case SN_HWPERF_OP_RECONFIGURE:
674 e = -EAGAIN;
675 break;
677 case SN_HWPERF_OP_INVAL:
678 default:
679 e = -EINVAL;
680 break;
683 return e;
687 * ioctl for "sn_hwperf" misc device
689 static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
691 struct sn_hwperf_ioctl_args a;
692 struct cpuinfo_ia64 *cdata;
693 struct sn_hwperf_object_info *objs;
694 struct sn_hwperf_object_info *cpuobj;
695 struct sn_hwperf_op_info op_info;
696 void *p = NULL;
697 int nobj;
698 char slice;
699 int node;
700 int r;
701 int v0;
702 int i;
703 int j;
705 /* only user requests are allowed here */
706 if ((op & SN_HWPERF_OP_MASK) < 10) {
707 r = -EINVAL;
708 goto error;
710 r = copy_from_user(&a, (const void __user *)arg,
711 sizeof(struct sn_hwperf_ioctl_args));
712 if (r != 0) {
713 r = -EFAULT;
714 goto error;
718 * Allocate memory to hold a kernel copy of the user buffer. The
719 * buffer contents are either copied in or out (or both) of user
720 * space depending on the flags encoded in the requested operation.
722 if (a.ptr) {
723 p = vmalloc(a.sz);
724 if (!p) {
725 r = -ENOMEM;
726 goto error;
730 if (op & SN_HWPERF_OP_MEM_COPYIN) {
731 r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
732 if (r != 0) {
733 r = -EFAULT;
734 goto error;
738 switch (op) {
739 case SN_HWPERF_GET_CPU_INFO:
740 if (a.sz == sizeof(u64)) {
741 /* special case to get size needed */
742 *(u64 *) p = (u64) num_online_cpus() *
743 sizeof(struct sn_hwperf_object_info);
744 } else
745 if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
746 r = -ENOMEM;
747 goto error;
748 } else
749 if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
750 int cpuobj_index = 0;
752 memset(p, 0, a.sz);
753 for (i = 0; i < nobj; i++) {
754 if (!SN_HWPERF_IS_NODE(objs + i))
755 continue;
756 node = sn_hwperf_obj_to_cnode(objs + i);
757 for_each_online_cpu(j) {
758 if (node != cpu_to_node(j))
759 continue;
760 cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
761 slice = 'a' + cpuid_to_slice(j);
762 cdata = cpu_data(j);
763 cpuobj->id = j;
764 snprintf(cpuobj->name,
765 sizeof(cpuobj->name),
766 "CPU %luMHz %s",
767 cdata->proc_freq / 1000000,
768 cdata->vendor);
769 snprintf(cpuobj->location,
770 sizeof(cpuobj->location),
771 "%s%c", objs[i].location,
772 slice);
776 vfree(objs);
778 break;
780 case SN_HWPERF_GET_NODE_NASID:
781 if (a.sz != sizeof(u64) ||
782 (node = a.arg) < 0 || !cnode_possible(node)) {
783 r = -EINVAL;
784 goto error;
786 *(u64 *)p = (u64)cnodeid_to_nasid(node);
787 break;
789 case SN_HWPERF_GET_OBJ_NODE:
790 i = a.arg;
791 if (a.sz != sizeof(u64) || i < 0) {
792 r = -EINVAL;
793 goto error;
795 if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
796 if (i >= nobj) {
797 r = -EINVAL;
798 vfree(objs);
799 goto error;
801 if (objs[i].id != a.arg) {
802 for (i = 0; i < nobj; i++) {
803 if (objs[i].id == a.arg)
804 break;
807 if (i == nobj) {
808 r = -EINVAL;
809 vfree(objs);
810 goto error;
813 if (!SN_HWPERF_IS_NODE(objs + i) &&
814 !SN_HWPERF_IS_IONODE(objs + i)) {
815 r = -ENOENT;
816 vfree(objs);
817 goto error;
820 *(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
821 vfree(objs);
823 break;
825 case SN_HWPERF_GET_MMRS:
826 case SN_HWPERF_SET_MMRS:
827 case SN_HWPERF_OBJECT_DISTANCE:
828 op_info.p = p;
829 op_info.a = &a;
830 op_info.v0 = &v0;
831 op_info.op = op;
832 r = sn_hwperf_op_cpu(&op_info);
833 if (r) {
834 r = sn_hwperf_map_err(r);
835 a.v0 = v0;
836 goto error;
838 break;
840 default:
841 /* all other ops are a direct SAL call */
842 r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
843 a.arg, a.sz, (u64) p, 0, 0, &v0);
844 if (r) {
845 r = sn_hwperf_map_err(r);
846 goto error;
848 a.v0 = v0;
849 break;
852 if (op & SN_HWPERF_OP_MEM_COPYOUT) {
853 r = copy_to_user((void __user *)a.ptr, p, a.sz);
854 if (r != 0) {
855 r = -EFAULT;
856 goto error;
860 error:
861 vfree(p);
863 return r;
866 static const struct file_operations sn_hwperf_fops = {
867 .unlocked_ioctl = sn_hwperf_ioctl,
868 .llseek = noop_llseek,
871 static struct miscdevice sn_hwperf_dev = {
872 MISC_DYNAMIC_MINOR,
873 "sn_hwperf",
874 &sn_hwperf_fops
877 static int sn_hwperf_init(void)
879 u64 v;
880 int salr;
881 int e = 0;
883 /* single threaded, once-only initialization */
884 mutex_lock(&sn_hwperf_init_mutex);
886 if (sn_hwperf_salheap) {
887 mutex_unlock(&sn_hwperf_init_mutex);
888 return e;
892 * The PROM code needs a fixed reference node. For convenience the
893 * same node as the console I/O is used.
895 sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
898 * Request the needed size and install the PROM scratch area.
899 * The PROM keeps various tracking bits in this memory area.
901 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
902 (u64) SN_HWPERF_GET_HEAPSIZE, 0,
903 (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
904 if (salr != SN_HWPERF_OP_OK) {
905 e = -EINVAL;
906 goto out;
909 if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
910 e = -ENOMEM;
911 goto out;
913 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
914 SN_HWPERF_INSTALL_HEAP, 0, v,
915 (u64) sn_hwperf_salheap, 0, 0, NULL);
916 if (salr != SN_HWPERF_OP_OK) {
917 e = -EINVAL;
918 goto out;
921 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
922 SN_HWPERF_OBJECT_COUNT, 0,
923 sizeof(u64), (u64) &v, 0, 0, NULL);
924 if (salr != SN_HWPERF_OP_OK) {
925 e = -EINVAL;
926 goto out;
928 sn_hwperf_obj_cnt = (int)v;
930 out:
931 if (e < 0 && sn_hwperf_salheap) {
932 vfree(sn_hwperf_salheap);
933 sn_hwperf_salheap = NULL;
934 sn_hwperf_obj_cnt = 0;
936 mutex_unlock(&sn_hwperf_init_mutex);
937 return e;
940 int sn_topology_open(struct inode *inode, struct file *file)
942 int e;
943 struct seq_file *seq;
944 struct sn_hwperf_object_info *objbuf;
945 int nobj;
947 if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
948 e = seq_open(file, &sn_topology_seq_ops);
949 seq = file->private_data;
950 seq->private = objbuf;
953 return e;
956 int sn_topology_release(struct inode *inode, struct file *file)
958 struct seq_file *seq = file->private_data;
960 vfree(seq->private);
961 return seq_release(inode, file);
964 int sn_hwperf_get_nearest_node(cnodeid_t node,
965 cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
967 int e;
968 int nobj;
969 struct sn_hwperf_object_info *objbuf;
971 if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
972 e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
973 node, near_mem_node, near_cpu_node);
974 vfree(objbuf);
977 return e;
980 static int sn_hwperf_misc_register_init(void)
982 int e;
984 if (!ia64_platform_is("sn2"))
985 return 0;
987 sn_hwperf_init();
990 * Register a dynamic misc device for hwperf ioctls. Platforms
991 * supporting hotplug will create /dev/sn_hwperf, else user
992 * can to look up the minor number in /proc/misc.
994 if ((e = misc_register(&sn_hwperf_dev)) != 0) {
995 printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
996 "register misc device for \"%s\"\n", sn_hwperf_dev.name);
999 return e;
1002 device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
1003 EXPORT_SYMBOL(sn_hwperf_get_nearest_node);