3 ** head.S -- This file contains the initial boot code for the
6 ** Copyright 1993 by Hamish Macdonald
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
15 ** VME Support by Richard Hirst
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
26 ** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
38 * At this point, the boot loader has:
41 * Put us in supervisor state.
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
49 * . Enable cache memories
50 * . Jump to kernel startup
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
79 * Also, there will be a description of engaging the MMU and
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
89 * ######################################################################
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
100 * mmu_map (logical, physical, length, cache_type)
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
127 * ######################################################################
130 * ######################################################################
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
142 * ######################################################################
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
150 * ######################################################################
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
181 * ######################################################################
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
190 * ######################################################################
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
252 * Macintosh constants:
253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
257 #include <linux/linkage.h>
258 #include <linux/init.h>
259 #include <asm/bootinfo.h>
260 #include <asm/setup.h>
261 #include <asm/entry.h>
262 #include <asm/pgtable.h>
263 #include <asm/page.h>
264 #include <asm/asm-offsets.h>
268 #include <asm/machw.h>
270 #ifdef CONFIG_FRAMEBUFFER_CONSOLE
272 #define CONSOLE_PENGUIN
275 #ifdef CONFIG_EARLY_PRINTK
281 #else /* !CONFIG_MAC */
285 #endif /* !CONFIG_MAC */
288 #undef MMU_NOCACHE_KERNEL
292 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
293 * The 8x8 font is harder to read but fits more on the screen.
295 #define FONT_8x8 /* default */
296 /* #define FONT_8x16 */ /* 2nd choice */
297 /* #define FONT_6x11 */ /* 3rd choice */
301 .globl m68k_pgtable_cachemode
302 .globl m68k_supervisor_cachemode
303 #ifdef CONFIG_MVME16x
310 CPUTYPE_040 = 1 /* indicates an 040 */
311 CPUTYPE_060 = 2 /* indicates an 060 */
312 CPUTYPE_0460 = 3 /* if either above are set, this is set */
313 CPUTYPE_020 = 4 /* indicates an 020 */
315 /* Translation control register */
320 /* Transparent translation registers */
321 TTR_ENABLE = 0x8000 /* enable transparent translation */
322 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
323 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
324 TTR_USERMODE = 0x0000 /* only user mode access */
325 TTR_CI = 0x0400 /* inhibit cache */
326 TTR_RW = 0x0200 /* read/write mode */
327 TTR_RWM = 0x0100 /* read/write mask */
328 TTR_FCB2 = 0x0040 /* function code base bit 2 */
329 TTR_FCB1 = 0x0020 /* function code base bit 1 */
330 TTR_FCB0 = 0x0010 /* function code base bit 0 */
331 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
332 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
333 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
335 /* Cache Control registers */
336 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
337 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
338 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
339 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
340 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
341 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
342 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
343 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
344 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
345 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
346 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
347 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
348 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
349 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
350 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
351 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
352 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
353 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
354 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
355 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
356 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
357 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
359 /* Miscellaneous definitions */
363 ROOT_TABLE_SIZE = 128
366 ROOT_INDEX_SHIFT = 25
368 PAGE_INDEX_SHIFT = 12
371 /* When debugging use readable names for labels */
373 #define L(name) .head.S.##name
375 #define L(name) .head.S./**/name
379 #define L(name) .L##name
381 #define L(name) .L/**/name
385 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
387 #define __INITDATA .data
388 #define __FINIT .previous
391 /* Several macros to make the writing of subroutines easier:
392 * - func_start marks the beginning of the routine which setups the frame
393 * register and saves the registers, it also defines another macro
394 * to automatically restore the registers again.
395 * - func_return marks the end of the routine and simply calls the prepared
396 * macro to restore registers and jump back to the caller.
397 * - func_define generates another macro to automatically put arguments
398 * onto the stack call the subroutine and cleanup the stack again.
401 /* Within subroutines these macros can be used to access the arguments
402 * on the stack. With STACK some allocated memory on the stack can be
403 * accessed and ARG0 points to the return address (used by mmu_engage).
405 #define STACK %a6@(stackstart)
408 #define ARG2 %a6@(12)
409 #define ARG3 %a6@(16)
410 #define ARG4 %a6@(20)
412 .macro func_start name,saveregs,stack=0
415 moveml \saveregs,%sp@-
416 .set stackstart,-\stack
418 .macro func_return_\name
419 moveml %sp@+,\saveregs
425 .macro func_return name
429 .macro func_call name
433 .macro move_stack nr,arg1,arg2,arg3,arg4
435 move_stack "(\nr-1)",\arg2,\arg3,\arg4
440 .macro func_define name,nr=0
441 .macro \name arg1,arg2,arg3,arg4
442 move_stack \nr,\arg1,\arg2,\arg3,\arg4
450 func_define mmu_map,4
451 func_define mmu_map_tt,4
452 func_define mmu_fixup_page_mmu_cache,1
453 func_define mmu_temp_map,2
454 func_define mmu_engage
455 func_define mmu_get_root_table_entry,1
456 func_define mmu_get_ptr_table_entry,2
457 func_define mmu_get_page_table_entry,2
458 func_define mmu_print
459 func_define get_new_page
460 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
464 .macro mmu_map_eq arg1,arg2,arg3
465 mmu_map \arg1,\arg1,\arg2,\arg3
468 .macro get_bi_record record
470 func_call get_bi_record
474 func_define serial_putc,1
475 func_define console_putc,1
477 func_define console_init
478 func_define console_put_stats
479 func_define console_put_penguin
480 func_define console_plot_pixel,3
481 func_define console_scroll
484 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
488 func_call console_putc
491 func_call serial_putc
493 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
513 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
530 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
531 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
532 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
533 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
534 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
535 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
536 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
537 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
538 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
539 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
540 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
541 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
542 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
544 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
546 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
550 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
551 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
552 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
553 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
554 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
555 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
556 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
558 /* On the HP300 we use the on-board LEDs for debug output before
559 the console is running. Writing a 1 bit turns the corresponding LED
560 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
562 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
574 * Version numbers of the bootinfo interface
575 * The area from _stext to _start will later be used as kernel pointer table
577 bras 1f /* Jump over bootinfo version numbers */
579 .long BOOTINFOV_MAGIC
580 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
581 .long MACH_ATARI, ATARI_BOOTI_VERSION
582 .long MACH_MVME147, MVME147_BOOTI_VERSION
583 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
584 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
585 .long MACH_MAC, MAC_BOOTI_VERSION
586 .long MACH_Q40, Q40_BOOTI_VERSION
587 .long MACH_HP300, HP300_BOOTI_VERSION
591 .equ kernel_pg_dir,_stext
593 .equ .,_stext+PAGESIZE
600 * Setup initial stack pointer
605 * Record the CPU and machine type.
607 get_bi_record BI_MACHTYPE
608 lea %pc@(m68k_machtype),%a1
611 get_bi_record BI_FPUTYPE
612 lea %pc@(m68k_fputype),%a1
615 get_bi_record BI_MMUTYPE
616 lea %pc@(m68k_mmutype),%a1
619 get_bi_record BI_CPUTYPE
620 lea %pc@(m68k_cputype),%a1
627 * For Macintosh, we need to determine the display parameters early (at least
628 * while debugging it).
631 is_not_mac(L(test_notmac))
633 get_bi_record BI_MAC_VADDR
634 lea %pc@(L(mac_videobase)),%a1
637 get_bi_record BI_MAC_VDEPTH
638 lea %pc@(L(mac_videodepth)),%a1
641 get_bi_record BI_MAC_VDIM
642 lea %pc@(L(mac_dimensions)),%a1
645 get_bi_record BI_MAC_VROW
646 lea %pc@(L(mac_rowbytes)),%a1
650 get_bi_record BI_MAC_SCCBASE
651 lea %pc@(L(mac_sccbase)),%a1
659 lea %pc@(L(mac_videobase)),%a0
661 lea %pc@(L(mac_dimensions)),%a0
663 swap %d1 /* #rows is high bytes */
664 andl #0xFFFF,%d1 /* rows */
666 lea %pc@(L(mac_rowbytes)),%a0
677 #endif /* CONFIG_MAC */
681 * There are ultimately two pieces of information we want for all kinds of
682 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
683 * and is converted here from a booter type definition to a separate bit
684 * number which allows for the standard is_0x0 macro tests.
686 movel %pc@(m68k_cputype),%d0
693 * Test the BootInfo cputype for 060
697 bset #CPUTYPE_060,%d1
698 bset #CPUTYPE_0460,%d1
702 * Test the BootInfo cputype for 040
706 bset #CPUTYPE_040,%d1
707 bset #CPUTYPE_0460,%d1
711 * Test the BootInfo cputype for 020
715 bset #CPUTYPE_020,%d1
719 * Record the cpu type
721 lea %pc@(L(cputype)),%a0
727 * Now the macros are valid:
736 * Determine the cache mode for pages holding MMU tables
737 * and for supervisor mode, unused for '020 and '030
742 is_not_040_or_060(L(save_cachetype))
746 * d1 := cacheable write-through
747 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
748 * but we have been using write-through since at least 2.0.29 so I
751 #ifdef CONFIG_060_WRITETHROUGH
753 * If this is a 68060 board using drivers with cache coherency
754 * problems, then supervisor memory accesses need to be write-through
755 * also; otherwise, we want copyback.
759 movel #_PAGE_CACHE040W,%d0
760 jra L(save_cachetype)
761 #endif /* CONFIG_060_WRITETHROUGH */
763 movew #_PAGE_CACHE040,%d0
765 movel #_PAGE_CACHE040W,%d1
768 /* Save cache mode for supervisor mode and page tables
770 lea %pc@(m68k_supervisor_cachemode),%a0
772 lea %pc@(m68k_pgtable_cachemode),%a0
776 * raise interrupt level
781 If running on an Atari, determine the I/O base of the
782 serial port and test if we are running on a Medusa or Hades.
783 This test is necessary here, because on the Hades the serial
784 port is only accessible in the high I/O memory area.
786 The test whether it is a Medusa is done by writing to the byte at
787 phys. 0x0. This should result in a bus error on all other machines.
789 ...should, but doesn't. The Afterburner040 for the Falcon has the
790 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
791 another test to distinguish Medusa and AB040. This is a
792 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
793 (+AB040), but is in the range where the Medusa always asserts DTACK.
795 The test for the Hades is done by reading address 0xb0000000. This
796 should give a bus error on the Medusa.
800 is_not_atari(L(notypetest))
802 /* get special machine type (Medusa/Hades/AB40) */
803 moveq #0,%d3 /* default if tag doesn't exist */
804 get_bi_record BI_ATARI_MCH_TYPE
808 lea %pc@(atari_mch_type),%a0
811 /* On the Hades, the iobase must be set up before opening the
812 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
814 cmpl #ATARI_MACH_HADES,%d3
816 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
817 1: lea %pc@(L(iobase)),%a0
824 is_mvme147(L(getvmetype))
825 is_bvme6000(L(getvmetype))
826 is_not_mvme16x(L(gvtdone))
828 /* See if the loader has specified the BI_VME_TYPE tag. Recent
829 * versions of VMELILO and TFTPLILO do this. We have to do this
830 * early so we know how to handle console output. If the tag
831 * doesn't exist then we use the Bug for output on MVME16x.
834 get_bi_record BI_VME_TYPE
838 lea %pc@(vme_brdtype),%a0
841 #ifdef CONFIG_MVME16x
842 is_not_mvme16x(L(gvtdone))
844 /* Need to get the BRD_ID info to differentiate between 162, 167,
845 * etc. This is available as a BI_VME_BRDINFO tag with later
846 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
848 get_bi_record BI_VME_BRDINFO
852 /* Get pointer to board ID data from Bug */
855 .word 0x70 /* trap 0x70 - .BRD_ID */
858 lea %pc@(mvme_bdid),%a1
859 /* Structure is 32 bytes long */
875 is_not_hp300(L(nothp))
877 /* Get the address of the UART for serial debugging */
878 get_bi_record BI_HP300_UART_ADDR
882 lea %pc@(L(uartbase)),%a0
884 get_bi_record BI_HP300_UART_SCODE
888 lea %pc@(L(uart_scode)),%a0
895 * Initialize serial port
906 #ifdef CONSOLE_PENGUIN
908 #endif /* CONSOLE_PENGUIN */
912 #endif /* CONFIG_MAC */
918 dputn %pc@(L(cputype))
919 dputn %pc@(m68k_supervisor_cachemode)
920 dputn %pc@(m68k_pgtable_cachemode)
924 * Save physical start address of kernel
926 lea %pc@(L(phys_kernel_start)),%a0
929 addl #PAGE_OFFSET,%a1
939 * This block of code does what's necessary to map in the various kinds
940 * of machines for execution of Linux.
941 * First map the first 4 MB of kernel code & data
944 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
945 %pc@(m68k_supervisor_cachemode)
953 is_not_amiga(L(mmu_init_not_amiga))
960 is_not_040_or_060(1f)
963 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
965 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
967 * Map the Zorro III I/O space with transparent translation
968 * for frame buffer memory etc.
970 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
972 jbra L(mmu_init_done)
976 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
978 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
979 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
981 jbra L(mmu_init_done)
983 L(mmu_init_not_amiga):
990 is_not_atari(L(mmu_init_not_atari))
994 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
995 the last 16 MB of virtual address space to the first 16 MB (i.e.
996 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
997 needed. I/O ranges are marked non-cachable.
999 For the Medusa it is better to map the I/O region transparently
1000 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1001 accessible only in the high area.
1003 On the Hades all I/O registers are only accessible in the high
1007 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1009 movel %pc@(atari_mch_type),%d3
1010 cmpl #ATARI_MACH_MEDUSA,%d3
1012 cmpl #ATARI_MACH_HADES,%d3
1014 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1017 is_040_or_060(L(spata68040))
1019 /* Map everything non-cacheable, though not all parts really
1020 * need to disable caches (crucial only for 0xff8000..0xffffff
1021 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1022 * isn't really used, except for sometimes peeking into the
1023 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1025 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1027 jbra L(mmu_init_done)
1031 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1033 jbra L(mmu_init_done)
1035 L(mmu_init_not_atari):
1039 is_not_q40(L(notq40))
1041 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1042 * non-cached serialized etc..
1043 * this includes master chip, DAC, RTC and ISA ports
1044 * 0xfe000000-0xfeffffff is for screen and ROM
1049 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1050 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1052 jbra L(mmu_init_done)
1058 is_not_hp300(L(nothp300))
1060 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1061 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1062 * The ROM mapping is needed because the LEDs are mapped there too.
1068 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1070 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1072 jbra L(mmu_init_done)
1076 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1078 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1080 jbra L(mmu_init_done)
1083 #endif /* CONFIG_HP300 */
1085 #ifdef CONFIG_MVME147
1087 is_not_mvme147(L(not147))
1090 * On MVME147 we have already created kernel page tables for
1091 * 4MB of RAM at address 0, so now need to do a transparent
1092 * mapping of the top of memory space. Make it 0.5GByte for now,
1093 * so we can access on-board i/o areas.
1096 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1098 jbra L(mmu_init_done)
1101 #endif /* CONFIG_MVME147 */
1103 #ifdef CONFIG_MVME16x
1105 is_not_mvme16x(L(not16x))
1108 * On MVME16x we have already created kernel page tables for
1109 * 4MB of RAM at address 0, so now need to do a transparent
1110 * mapping of the top of memory space. Make it 0.5GByte for now.
1111 * Supervisor only access, so transparent mapping doesn't
1112 * clash with User code virtual address space.
1113 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1114 * mapping is needed to allow 167Bug to run.
1115 * IO is in the range 0xfff00000 to 0xfffeffff.
1116 * PROM is 0xff800000->0xffbfffff and SRAM is
1117 * 0xffe00000->0xffe1ffff.
1120 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1122 jbra L(mmu_init_done)
1125 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1127 #ifdef CONFIG_BVME6000
1129 is_not_bvme6000(L(not6000))
1132 * On BVME6000 we have already created kernel page tables for
1133 * 4MB of RAM at address 0, so now need to do a transparent
1134 * mapping of the top of memory space. Make it 0.5GByte for now,
1135 * so we can access on-board i/o areas.
1136 * Supervisor only access, so transparent mapping doesn't
1137 * clash with User code virtual address space.
1140 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1142 jbra L(mmu_init_done)
1145 #endif /* CONFIG_BVME6000 */
1150 * The Macintosh mappings are less clear.
1152 * Even as of this writing, it is unclear how the
1153 * Macintosh mappings will be done. However, as
1154 * the first author of this code I'm proposing the
1157 * Map the kernel (that's already done),
1158 * Map the I/O (on most machines that's the
1159 * 0x5000.0000 ... 0x5300.0000 range,
1160 * Map the video frame buffer using as few pages
1161 * as absolutely (this requirement mostly stems from
1162 * the fact that when the frame buffer is at
1163 * 0x0000.0000 then we know there is valid RAM just
1164 * above the screen that we don't want to waste!).
1166 * By the way, if the frame buffer is at 0x0000.0000
1167 * then the Macintosh is known as an RBV based Mac.
1169 * By the way 2, the code currently maps in a bunch of
1170 * regions. But I'd like to cut that out. (And move most
1171 * of the mappings up into the kernel proper ... or only
1172 * map what's necessary.)
1179 is_not_mac(L(mmu_init_not_mac))
1183 is_not_040_or_060(1f)
1185 moveq #_PAGE_NOCACHE_S,%d3
1188 moveq #_PAGE_NOCACHE030,%d3
1191 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1192 * we simply map the 4MB that contains the videomem
1195 movel #VIDEOMEMMASK,%d0
1196 andl %pc@(L(mac_videobase)),%d0
1198 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1199 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1200 mmu_map_eq #0x40000000,#0x02000000,%d3
1201 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1202 mmu_map_eq #0x50000000,#0x03000000,%d3
1203 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1204 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1206 jbra L(mmu_init_done)
1208 L(mmu_init_not_mac):
1212 is_not_sun3x(L(notsun3x))
1214 /* oh, the pain.. We're gonna want the prom code after
1215 * starting the MMU, so we copy the mappings, translating
1216 * from 8k -> 4k pages as we go.
1219 /* copy maps from 0xfee00000 to 0xff000000 */
1220 movel #0xfee00000, %d0
1221 moveq #ROOT_INDEX_SHIFT, %d1
1223 mmu_get_root_table_entry %d0
1225 movel #0xfee00000, %d0
1226 moveq #PTR_INDEX_SHIFT, %d1
1228 andl #PTR_TABLE_SIZE-1, %d0
1229 mmu_get_ptr_table_entry %a0,%d0
1231 movel #0xfee00000, %d0
1232 moveq #PAGE_INDEX_SHIFT, %d1
1234 andl #PAGE_TABLE_SIZE-1, %d0
1235 mmu_get_page_table_entry %a0,%d0
1237 /* this is where the prom page table lives */
1238 movel 0xfefe00d4, %a1
1241 movel #((0x200000 >> 13)-1), %d1
1251 /* setup tt1 for I/O */
1252 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1253 jbra L(mmu_init_done)
1258 #ifdef CONFIG_APOLLO
1259 is_not_apollo(L(notapollo))
1262 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1265 jbra L(mmu_init_done)
1276 * On the 040 class machines, all pages that are used for the
1277 * mmu have to be fixed up. According to Motorola, pages holding mmu
1278 * tables should be non-cacheable on a '040 and write-through on a
1279 * '060. But analysis of the reasons for this, and practical
1280 * experience, showed that write-through also works on a '040.
1282 * Allocated memory so far goes from kernel_end to memory_start that
1283 * is used for all kind of tables, for that the cache attributes
1288 is_not_040_or_060(L(mmu_fixup_done))
1290 #ifdef MMU_NOCACHE_KERNEL
1291 jbra L(mmu_fixup_done)
1294 /* first fix the page at the start of the kernel, that
1295 * contains also kernel_pg_dir.
1297 movel %pc@(L(phys_kernel_start)),%d0
1298 subl #PAGE_OFFSET,%d0
1299 lea %pc@(_stext),%a0
1301 mmu_fixup_page_mmu_cache %a0
1303 movel %pc@(L(kernel_end)),%a0
1305 movel %pc@(L(memory_start)),%a1
1309 mmu_fixup_page_mmu_cache %a0
1324 * This chunk of code performs the gruesome task of engaging the MMU.
1325 * The reason its gruesome is because when the MMU becomes engaged it
1326 * maps logical addresses to physical addresses. The Program Counter
1327 * register is then passed through the MMU before the next instruction
1328 * is fetched (the instruction following the engage MMU instruction).
1329 * This may mean one of two things:
1330 * 1. The Program Counter falls within the logical address space of
1331 * the kernel of which there are two sub-possibilities:
1332 * A. The PC maps to the correct instruction (logical PC == physical
1333 * code location), or
1334 * B. The PC does not map through and the processor will read some
1335 * data (or instruction) which is not the logically next instr.
1336 * As you can imagine, A is good and B is bad.
1338 * 2. The Program Counter does not map through the MMU. The processor
1339 * will take a Bus Error.
1340 * Clearly, 2 is bad.
1341 * It doesn't take a wiz kid to figure you want 1.A.
1342 * This code creates that possibility.
1343 * There are two possible 1.A. states (we now ignore the other above states):
1344 * A. The kernel is located at physical memory addressed the same as
1345 * the logical memory for the kernel, i.e., 0x01000.
1346 * B. The kernel is located some where else. e.g., 0x0400.0000
1348 * Under some conditions the Macintosh can look like A or B.
1349 * [A friend and I once noted that Apple hardware engineers should be
1350 * wacked twice each day: once when they show up at work (as in, Whack!,
1351 * "This is for the screwy hardware we know you're going to design today."),
1352 * and also at the end of the day (as in, Whack! "I don't know what
1353 * you designed today, but I'm sure it wasn't good."). -- rst]
1355 * This code works on the following premise:
1356 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1357 * then create a mapping for the kernel at logical 0x8000.0000 to
1358 * the physical location of the pc. And, create a transparent
1359 * translation register for the first 16 Meg. Then, after the MMU
1360 * is engaged, the PC can be moved up into the 0x8000.0000 range
1361 * and then the transparent translation can be turned off and then
1362 * the PC can jump to the correct logical location and it will be
1363 * home (finally). This is essentially the code that the Amiga used
1364 * to use. Now, it's generalized for all processors. Which means
1365 * that a fresh (but temporary) mapping has to be created. The mapping
1366 * is made in page 0 (an as of yet unused location -- except for the
1367 * stack!). This temporary mapping will only require 1 pointer table
1368 * and a single page table (it can map 256K).
1370 * OK, alternatively, imagine that the Program Counter is not within
1371 * the first 16 Meg. Then, just use Transparent Translation registers
1372 * to do the right thing.
1374 * Last, if _start is already at 0x01000, then there's nothing special
1375 * to do (in other words, in a degenerate case of the first case above,
1388 * After this point no new memory is allocated and
1389 * the start of available memory is stored in availmem.
1390 * (The bootmem allocator requires now the physicall address.)
1393 movel L(memory_start),availmem
1397 /* fixup the Amiga custom register location before printing */
1404 /* fixup the Atari iobase register location before printing */
1405 movel #0xff000000,L(iobase)
1411 movel #~VIDEOMEMMASK,%d0
1412 andl L(mac_videobase),%d0
1413 addl #VIDEOMEMBASE,%d0
1414 movel %d0,L(mac_videobase)
1415 #if defined(CONSOLE)
1416 movel %pc@(L(phys_kernel_start)),%d0
1417 subl #PAGE_OFFSET,%d0
1418 subl %d0,L(console_font)
1419 subl %d0,L(console_font_data)
1422 orl #0x50000000,L(mac_sccbase)
1430 * Fix up the iobase register to point to the new location of the LEDs.
1432 movel #0xf0000000,L(iobase)
1435 * Energise the FPU and caches.
1438 movel #0x60,0xf05f400c
1442 * 040: slightly different, apparently.
1444 1: movew #0,0xf05f400e
1445 movew #0x64,0xf05f400e
1453 oriw #0x4000,0x61000000
1457 #ifdef CONFIG_APOLLO
1461 * Fix up the iobase before printing
1463 movel #0x80000000,L(iobase)
1474 is_not_040_or_060(L(cache_not_680460))
1482 is_060(L(cache68060))
1484 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1485 /* MMU stuff works in copyback mode now, so enable the cache */
1490 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1491 /* MMU stuff works in copyback mode now, so enable the cache */
1493 /* enable superscalar dispatch in PCR */
1499 L(cache_not_680460):
1502 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512 * Setup initial stack pointer
1514 lea init_task,%curptr
1515 lea init_thread_union+THREAD_SIZE,%sp
1519 subl %a6,%a6 /* clear a6 for gdb */
1522 * The new 64bit printf support requires an early exception initialization.
1526 /* jump to the kernel start */
1534 * Find a tag record in the bootinfo structure
1535 * The bootinfo structure is located right after the kernel bss
1536 * Returns: d0: size (-1 if not found)
1537 * a0: data pointer (end-of-records if not found)
1539 func_start get_bi_record,%d1
1543 1: tstw %a0@(BIR_TAG)
1545 cmpw %a0@(BIR_TAG),%d0
1547 addw %a0@(BIR_SIZE),%a0
1550 movew %a0@(BIR_SIZE),%d0
1551 lea %a0@(BIR_DATA),%a0
1554 lea %a0@(BIR_SIZE),%a0
1556 func_return get_bi_record
1560 * MMU Initialization Begins Here
1562 * The structure of the MMU tables on the 68k machines
1565 * Logical addresses are translated through
1566 * a hierarchical translation mechanism where the high-order
1567 * seven bits of the logical address (LA) are used as an
1568 * index into the "root table." Each entry in the root
1569 * table has a bit which specifies if it's a valid pointer to a
1570 * pointer table. Each entry defines a 32KMeg range of memory.
1571 * If an entry is invalid then that logical range of 32M is
1572 * invalid and references to that range of memory (when the MMU
1573 * is enabled) will fault. If the entry is valid, then it does
1574 * one of two things. On 040/060 class machines, it points to
1575 * a pointer table which then describes more finely the memory
1576 * within that 32M range. On 020/030 class machines, a technique
1577 * called "early terminating descriptors" are used. This technique
1578 * allows an entire 32Meg to be described by a single entry in the
1579 * root table. Thus, this entry in the root table, contains the
1580 * physical address of the memory or I/O at the logical address
1581 * which the entry represents and it also contains the necessary
1582 * cache bits for this region.
1585 * Per the Root Table, there will be one or more
1586 * pointer tables. Each pointer table defines a 32M range.
1587 * Not all of the 32M range need be defined. Again, the next
1588 * seven bits of the logical address are used an index into
1589 * the pointer table to point to page tables (if the pointer
1590 * is valid). There will undoubtedly be more than one
1591 * pointer table for the kernel because each pointer table
1592 * defines a range of only 32M. Valid pointer table entries
1593 * point to page tables, or are early terminating entries
1597 * Per the Pointer Tables, each page table entry points
1598 * to the physical page in memory that supports the logical
1599 * address that translates to the particular index.
1601 * In short, the Logical Address gets translated as follows:
1602 * bits 31..26 - index into the Root Table
1603 * bits 25..18 - index into the Pointer Table
1604 * bits 17..12 - index into the Page Table
1605 * bits 11..0 - offset into a particular 4K page
1607 * The algorithms which follows do one thing: they abstract
1608 * the MMU hardware. For example, there are three kinds of
1609 * cache settings that are relevant. Either, memory is
1610 * being mapped in which case it is either Kernel Code (or
1611 * the RamDisk) or it is MMU data. On the 030, the MMU data
1612 * option also describes the kernel. Or, I/O is being mapped
1613 * in which case it has its own kind of cache bits. There
1614 * are constants which abstract these notions from the code that
1615 * actually makes the call to map some range of memory.
1625 * This algorithm will print out the current MMU mappings.
1628 * %a5 points to the root table. Everything else is calculated
1632 #define mmu_next_valid 0
1633 #define mmu_start_logical 4
1634 #define mmu_next_logical 8
1635 #define mmu_start_physical 12
1636 #define mmu_next_physical 16
1638 #define MMU_PRINT_INVALID -1
1639 #define MMU_PRINT_VALID 1
1640 #define MMU_PRINT_UNINITED 0
1642 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1644 func_start mmu_print,%a0-%a6/%d0-%d7
1646 movel %pc@(L(kernel_pgdir_ptr)),%a5
1647 lea %pc@(L(mmu_print_data)),%a0
1648 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1650 is_not_040_or_060(mmu_030_print)
1659 * The following #if/#endif block is a tight algorithm for dumping the 040
1660 * MMU Map in gory detail. It really isn't that practical unless the
1661 * MMU Map algorithm appears to go awry and you need to debug it at the
1662 * entry per entry level.
1664 movel #ROOT_TABLE_SIZE,%d5
1666 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1667 subql #1,%d5 | they (might) work
1677 andil #0xFFFFFE00,%d7
1679 movel #PTR_TABLE_SIZE,%d4
1689 andil #0xFFFFFF00,%d7
1691 movel #PAGE_TABLE_SIZE,%d3
1705 movel #8+1+8+1+1,%d2
1720 #endif /* MMU 040 Dumping code that's gory and detailed */
1722 lea %pc@(kernel_pg_dir),%a5
1723 movel %a5,%a0 /* a0 has the address of the root table ptr */
1724 movel #0x00000000,%a4 /* logical address */
1727 /* Increment the logical address and preserve in d5 */
1729 addil #PAGESIZE<<13,%d5
1733 jbsr mmu_print_tuple_invalidate
1737 andil #0xfffffe00,%d6
1741 addil #PAGESIZE<<6,%d5
1745 jbsr mmu_print_tuple_invalidate
1749 andil #0xffffff00,%d6
1757 jbsr mmu_print_tuple_invalidate
1760 moveml %d0-%d1,%sp@-
1763 andil #0xfffff4e0,%d1
1764 lea %pc@(mmu_040_print_flags),%a6
1765 jbsr mmu_print_tuple
1766 moveml %sp@+,%d0-%d1
1778 movel %d5,%a4 /* move to the next logical address */
1786 andiw #0x8000,%d1 /* is it valid ? */
1787 jbeq 1f /* No, bail out */
1790 andil #0xff000000,%d1 /* Get the address */
1796 jbsr mmu_040_print_flags_tt
1800 andiw #0x8000,%d1 /* is it valid ? */
1801 jbeq 1f /* No, bail out */
1804 andil #0xff000000,%d1 /* Get the address */
1810 jbsr mmu_040_print_flags_tt
1816 mmu_040_print_flags:
1818 putZc(' ','G') /* global bit */
1820 putZc(' ','S') /* supervisor bit */
1821 mmu_040_print_flags_tt:
1826 putZc('w','c') /* write through or copy-back */
1831 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1835 mmu_030_print_flags:
1837 putZc('C','I') /* write through or copy-back */
1846 andil #0xfffffff0,%d0
1848 movel #0x00000000,%a4 /* logical address */
1852 addil #PAGESIZE<<13,%d5
1854 btst #1,%d6 /* is it a table ptr? */
1856 btst #0,%d6 /* is it early terminating? */
1858 jbsr mmu_030_print_helper
1861 jbsr mmu_print_tuple_invalidate
1865 andil #0xfffffff0,%d6
1869 addil #PAGESIZE<<6,%d5
1871 btst #1,%d6 /* is it a table ptr? */
1873 btst #0,%d6 /* is it a page descriptor? */
1875 jbsr mmu_030_print_helper
1878 jbsr mmu_print_tuple_invalidate
1882 andil #0xfffffff0,%d6
1890 jbsr mmu_print_tuple_invalidate
1893 jbsr mmu_030_print_helper
1905 movel %d5,%a4 /* move to the next logical address */
1913 func_return mmu_print
1916 mmu_030_print_helper:
1917 moveml %d0-%d1,%sp@-
1920 lea %pc@(mmu_030_print_flags),%a6
1921 jbsr mmu_print_tuple
1922 moveml %sp@+,%d0-%d1
1925 mmu_print_tuple_invalidate:
1926 moveml %a0/%d7,%sp@-
1928 lea %pc@(L(mmu_print_data)),%a0
1929 tstl %a0@(mmu_next_valid)
1930 jbmi mmu_print_tuple_invalidate_exit
1932 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1938 mmu_print_tuple_invalidate_exit:
1939 moveml %sp@+,%a0/%d7
1944 moveml %d0-%d7/%a0,%sp@-
1946 lea %pc@(L(mmu_print_data)),%a0
1948 tstl %a0@(mmu_next_valid)
1949 jble mmu_print_tuple_print
1951 cmpl %a0@(mmu_next_physical),%d1
1952 jbeq mmu_print_tuple_increment
1954 mmu_print_tuple_print:
1962 mmu_print_tuple_record:
1963 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1965 movel %d1,%a0@(mmu_next_physical)
1967 mmu_print_tuple_increment:
1970 addl %d7,%a0@(mmu_next_physical)
1972 mmu_print_tuple_exit:
1973 moveml %sp@+,%d0-%d7/%a0
1976 mmu_print_machine_cpu_types:
1998 is_not_040_or_060(2f)
2006 #endif /* MMU_PRINT */
2011 * This is a specific function which works on all 680x0 machines.
2012 * On 030, 040 & 060 it will attempt to use Transparent Translation
2014 * On 020 it will call the standard mmu_map which will use early
2015 * terminating descriptors.
2017 func_start mmu_map_tt,%d0/%d1/%a0,4
2028 /* Extract the highest bit set
2030 bfffo ARG3{#0,#32},%d1
2046 /* Generate the upper 16bit of the tt register
2052 is_040_or_060(L(mmu_map_tt_040))
2054 /* set 030 specific bits (read/write access for supervisor mode
2055 * (highest function code set, lower two bits masked))
2057 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2073 jra L(mmu_map_tt_done)
2075 /* set 040 specific bits
2078 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2092 jra L(mmu_map_tt_done)
2095 mmu_map_eq ARG2,ARG3,ARG4
2099 func_return mmu_map_tt
2104 * This routine will map a range of memory using a pointer
2105 * table and allocating the pages on the fly from the kernel.
2106 * The pointer table does not have to be already linked into
2107 * the root table, this routine will do that if necessary.
2110 * This routine will assert failure and use the serial_putc
2111 * routines in the case of a run-time error. For example,
2112 * if the address is already mapped.
2115 * This routine will use early terminating descriptors
2116 * where possible for the 68020+68851 and 68030 type
2119 func_start mmu_map,%d0-%d4/%a0-%a4
2128 /* Get logical address and round it down to 256KB
2131 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2134 /* Get the end address
2140 /* Get physical address and round it down to 256KB
2143 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2146 /* Add page attributes to the physical address
2149 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2156 is_not_040_or_060(L(mmu_map_030))
2158 addw #_PAGE_GLOBAL040,%a2
2160 * MMU 040 & 060 Support
2162 * The MMU usage for the 040 and 060 is different enough from
2163 * the 030 and 68851 that there is separate code. This comment
2164 * block describes the data structures and algorithms built by
2167 * The 040 does not support early terminating descriptors, as
2168 * the 030 does. Therefore, a third level of table is needed
2169 * for the 040, and that would be the page table. In Linux,
2170 * page tables are allocated directly from the memory above the
2176 /* Calculate the offset into the root table
2179 moveq #ROOT_INDEX_SHIFT,%d1
2181 mmu_get_root_table_entry %d0
2183 /* Calculate the offset into the pointer table
2186 moveq #PTR_INDEX_SHIFT,%d1
2188 andl #PTR_TABLE_SIZE-1,%d0
2189 mmu_get_ptr_table_entry %a0,%d0
2191 /* Calculate the offset into the page table
2194 moveq #PAGE_INDEX_SHIFT,%d1
2196 andl #PAGE_TABLE_SIZE-1,%d0
2197 mmu_get_page_table_entry %a0,%d0
2199 /* The page table entry must not no be busy
2202 jne L(mmu_map_error)
2204 /* Do the mapping and advance the pointers
2211 /* Ready with mapping?
2219 /* Calculate the offset into the root table
2222 moveq #ROOT_INDEX_SHIFT,%d1
2224 mmu_get_root_table_entry %d0
2226 /* Check if logical address 32MB aligned,
2227 * so we can try to map it once
2230 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2233 /* Is there enough to map for 32MB at once
2235 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2241 /* The root table entry must not no be busy
2244 jne L(mmu_map_error)
2246 /* Do the mapping and advance the pointers
2256 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2257 jra L(mmu_mapnext_030)
2259 /* Calculate the offset into the pointer table
2262 moveq #PTR_INDEX_SHIFT,%d1
2264 andl #PTR_TABLE_SIZE-1,%d0
2265 mmu_get_ptr_table_entry %a0,%d0
2267 /* The pointer table entry must not no be busy
2270 jne L(mmu_map_error)
2272 /* Do the mapping and advance the pointers
2280 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2281 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2284 /* Ready with mapping?
2293 dputs "mmu_map error:"
2305 * On the 040 class machines, all pages that are used for the
2306 * mmu have to be fixed up.
2309 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2311 dputs "mmu_fixup_page_mmu_cache"
2314 /* Calculate the offset into the root table
2317 moveq #ROOT_INDEX_SHIFT,%d1
2319 mmu_get_root_table_entry %d0
2321 /* Calculate the offset into the pointer table
2324 moveq #PTR_INDEX_SHIFT,%d1
2326 andl #PTR_TABLE_SIZE-1,%d0
2327 mmu_get_ptr_table_entry %a0,%d0
2329 /* Calculate the offset into the page table
2332 moveq #PAGE_INDEX_SHIFT,%d1
2334 andl #PAGE_TABLE_SIZE-1,%d0
2335 mmu_get_page_table_entry %a0,%d0
2338 andil #_CACHEMASK040,%d0
2339 orl %pc@(m68k_pgtable_cachemode),%d0
2344 func_return mmu_fixup_page_mmu_cache
2349 * create a temporary mapping to enable the mmu,
2350 * this we don't need any transparation translation tricks.
2353 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2355 dputs "mmu_temp_map"
2360 lea %pc@(L(temp_mmap_mem)),%a1
2362 /* Calculate the offset in the root table
2365 moveq #ROOT_INDEX_SHIFT,%d1
2367 mmu_get_root_table_entry %d0
2369 /* Check if the table is temporary allocated, so we have to reuse it
2372 cmpl %pc@(L(memory_start)),%d0
2375 /* Temporary allocate a ptr table and insert it into the root table
2378 addl #PTR_TABLE_SIZE*4,%a1@
2379 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2384 /* Mask the root table entry for the ptr table
2386 andw #-ROOT_TABLE_SIZE,%d0
2389 /* Calculate the offset into the pointer table
2392 moveq #PTR_INDEX_SHIFT,%d1
2394 andl #PTR_TABLE_SIZE-1,%d0
2398 /* Check if a temporary page table is already allocated
2403 /* Temporary allocate a page table and insert it into the ptr table
2406 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2407 alignment restriction for pointer tables on the '0[46]0. */
2409 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2414 /* Mask the ptr table entry for the page table
2416 andw #-PTR_TABLE_SIZE,%d0
2419 /* Calculate the offset into the page table
2422 moveq #PAGE_INDEX_SHIFT,%d1
2424 andl #PAGE_TABLE_SIZE-1,%d0
2428 /* Insert the address into the page table
2432 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2438 func_return mmu_temp_map
2440 func_start mmu_engage,%d0-%d2/%a0-%a3
2442 moveq #ROOT_TABLE_SIZE-1,%d0
2443 /* Temporarily use a different root table. */
2444 lea %pc@(L(kernel_pgdir_ptr)),%a0
2446 movel %pc@(L(memory_start)),%a1
2453 lea %pc@(L(temp_mmap_mem)),%a0
2456 movew #PAGESIZE-1,%d0
2463 /* Skip temp mappings if phys == virt */
2467 mmu_temp_map %a0,%a0
2468 mmu_temp_map %a0,%a1
2472 mmu_temp_map %a0,%a0
2473 mmu_temp_map %a0,%a1
2475 movel %pc@(L(memory_start)),%a3
2476 movel %pc@(L(phys_kernel_start)),%d2
2478 is_not_040_or_060(L(mmu_engage_030))
2488 movel #TC_ENABLE+TC_PAGE4K,%d0
2489 movec %d0,%tc /* enable the MMU */
2498 jra L(mmu_engage_cleanup)
2500 L(mmu_engage_030_temp):
2504 lea %pc@(L(mmu_engage_030_temp)),%a0
2505 movel #0x80000002,%a0@
2512 * enable,super root enable,4096 byte pages,7 bit root index,
2513 * 7 bit pointer index, 6 bit page table index.
2515 movel #0x82c07760,%a0@(8)
2516 pmove %a0@(8),%tc /* enable the MMU */
2518 1: movel %a2,%a0@(4)
2525 L(mmu_engage_cleanup):
2526 subl #PAGE_OFFSET,%d2
2528 movel %a2,L(kernel_pgdir_ptr)
2533 func_return mmu_engage
2535 func_start mmu_get_root_table_entry,%d0/%a1
2538 dputs "mmu_get_root_table_entry:"
2543 movel %pc@(L(kernel_pgdir_ptr)),%a0
2549 /* Find the start of free memory, get_bi_record does this for us,
2550 * as the bootinfo structure is located directly behind the kernel
2551 * and and we simply search for the last entry.
2553 get_bi_record BI_LAST
2554 addw #PAGESIZE-1,%a0
2560 lea %pc@(L(memory_start)),%a0
2562 lea %pc@(L(kernel_end)),%a0
2565 /* we have to return the first page at _stext since the init code
2566 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2567 * page is used for further ptr tables in get_ptr_table.
2569 lea %pc@(_stext),%a0
2570 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2572 addl #ROOT_TABLE_SIZE*4,%a1@
2574 lea %pc@(L(mmu_num_pointer_tables)),%a1
2580 movew #PAGESIZE/4-1,%d0
2585 lea %pc@(L(kernel_pgdir_ptr)),%a1
2599 func_return mmu_get_root_table_entry
2603 func_start mmu_get_ptr_table_entry,%d0/%a1
2606 dputs "mmu_get_ptr_table_entry:"
2616 /* Keep track of the number of pointer tables we use
2618 dputs "\nmmu_get_new_ptr_table:"
2619 lea %pc@(L(mmu_num_pointer_tables)),%a0
2623 /* See if there is a free pointer table in our cache of pointer tables
2625 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2629 /* Get a new pointer table page from above the kernel memory
2634 /* There is an unused pointer table in our cache... use it
2637 addl #PTR_TABLE_SIZE*4,%a1@
2642 /* Insert the new pointer table into the root table
2645 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2648 /* Extract the pointer table entry
2650 andw #-PTR_TABLE_SIZE,%d0
2660 func_return mmu_get_ptr_table_entry
2663 func_start mmu_get_page_table_entry,%d0/%a1
2666 dputs "mmu_get_page_table_entry:"
2676 /* If the page table entry doesn't exist, we allocate a complete new
2677 * page and use it as one continues big page table which can cover
2678 * 4MB of memory, nearly almost all mappings have that alignment.
2681 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2683 /* align pointer table entry for a page of page tables
2686 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2689 /* Insert the page tables into the pointer entries
2691 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2694 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2697 /* Now we can get the initialized pointer table entry
2702 /* Extract the page table entry
2704 andw #-PAGE_TABLE_SIZE,%d0
2714 func_return mmu_get_page_table_entry
2719 * Return a new page from the memory start and clear it.
2721 func_start get_new_page,%d0/%a1
2723 dputs "\nget_new_page:"
2725 /* allocate the page and adjust memory_start
2727 lea %pc@(L(memory_start)),%a0
2731 /* clear the new page
2734 movew #PAGESIZE/4-1,%d0
2742 func_return get_new_page
2747 * Debug output support
2748 * Atarians have a choice between the parallel port, the serial port
2749 * from the MFP or a serial port of the SCC
2754 L(scc_initable_mac):
2755 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2756 .byte 3,0xc0 /* receiver: 8 bpc */
2757 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2758 .byte 10,0 /* NRZ */
2759 .byte 11,0x50 /* use baud rate generator */
2760 .byte 12,1,13,0 /* 38400 baud */
2761 .byte 14,1 /* Baud rate generator enable */
2762 .byte 3,0xc1 /* enable receiver */
2763 .byte 5,0xea /* enable transmitter */
2769 /* #define USE_PRINTER */
2770 /* #define USE_SCC_B */
2771 /* #define USE_SCC_A */
2774 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2776 /* Initialisation table for SCC */
2778 .byte 9,12 /* Reset */
2779 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2780 .byte 3,0xc0 /* receiver: 8 bpc */
2781 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2782 .byte 9,0 /* no interrupts */
2783 .byte 10,0 /* NRZ */
2784 .byte 11,0x50 /* use baud rate generator */
2785 .byte 12,24,13,0 /* 9600 baud */
2786 .byte 14,2,14,3 /* use master clock for BRG, enable */
2787 .byte 3,0xc1 /* enable receiver */
2788 .byte 5,0xea /* enable transmitter */
2795 LPSG_SELECT = 0xff8800
2796 LPSG_READ = 0xff8800
2797 LPSG_WRITE = 0xff8802
2801 LSTMFP_GPIP = 0xfffa01
2802 LSTMFP_DDR = 0xfffa05
2803 LSTMFP_IERB = 0xfffa09
2805 #elif defined(USE_SCC_B)
2807 LSCC_CTRL = 0xff8c85
2808 LSCC_DATA = 0xff8c87
2810 #elif defined(USE_SCC_A)
2812 LSCC_CTRL = 0xff8c81
2813 LSCC_DATA = 0xff8c83
2815 #elif defined(USE_MFP)
2818 LMFP_TDCDR = 0xfffa1d
2819 LMFP_TDDR = 0xfffa25
2824 #endif /* CONFIG_ATARI */
2827 * Serial port output support.
2831 * Initialize serial port hardware for 9600/8/1
2833 func_start serial_init,%d0/%d1/%a0/%a1
2835 * Some of the register usage that follows
2837 * a0 = pointer to boot info record
2838 * d0 = boot info offset
2840 * a0 = address of SCC
2841 * a1 = Liobase address/address of scc_initable
2842 * d0 = init data for serial port
2844 * a0 = address of SCC
2845 * a1 = address of scc_initable_mac
2846 * d0 = init data for serial port
2850 #define SERIAL_DTR 7
2851 #define SERIAL_CNTRL CIABBASE+C_PRA
2854 lea %pc@(L(custom)),%a0
2855 movel #-ZTWOBASE,%a0@
2856 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2857 get_bi_record BI_AMIGA_SERPER
2858 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2859 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2864 movel %pc@(L(iobase)),%a1
2865 #if defined(USE_PRINTER)
2866 bclr #0,%a1@(LSTMFP_IERB)
2867 bclr #0,%a1@(LSTMFP_DDR)
2868 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2869 moveb #0xff,%a1@(LPSG_WRITE)
2870 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2871 clrb %a1@(LPSG_WRITE)
2872 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2873 moveb %a1@(LPSG_READ),%d0
2875 moveb %d0,%a1@(LPSG_WRITE)
2876 #elif defined(USE_SCC)
2877 lea %a1@(LSCC_CTRL),%a0
2878 lea %pc@(L(scc_initable)),%a1
2885 #elif defined(USE_MFP)
2886 bclr #1,%a1@(LMFP_TSR)
2887 moveb #0x88,%a1@(LMFP_UCR)
2888 andb #0x70,%a1@(LMFP_TDCDR)
2889 moveb #2,%a1@(LMFP_TDDR)
2890 orb #1,%a1@(LMFP_TDCDR)
2891 bset #1,%a1@(LMFP_TSR)
2893 jra L(serial_init_done)
2897 is_not_mac(L(serial_init_not_mac))
2901 /* You may define either or both of these. */
2902 #define MAC_USE_SCC_A /* Modem port */
2903 #define MAC_USE_SCC_B /* Printer port */
2905 #define mac_scc_cha_b_ctrl_offset 0x0
2906 #define mac_scc_cha_a_ctrl_offset 0x2
2907 #define mac_scc_cha_b_data_offset 0x4
2908 #define mac_scc_cha_a_data_offset 0x6
2910 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2911 movel %pc@(L(mac_sccbase)),%a0
2912 /* Reset SCC device */
2913 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2914 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2915 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2916 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2923 #ifdef MAC_USE_SCC_A
2924 /* Initialize channel A */
2925 lea %pc@(L(scc_initable_mac)),%a1
2928 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2929 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2932 #endif /* MAC_USE_SCC_A */
2934 #ifdef MAC_USE_SCC_B
2935 /* Initialize channel B */
2936 lea %pc@(L(scc_initable_mac)),%a1
2939 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2940 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2943 #endif /* MAC_USE_SCC_B */
2945 #endif /* SERIAL_DEBUG */
2947 jra L(serial_init_done)
2948 L(serial_init_not_mac):
2949 #endif /* CONFIG_MAC */
2953 /* debug output goes into SRAM, so we don't do it unless requested
2954 - check for '%LX$' signature in SRAM */
2955 lea %pc@(q40_mem_cptr),%a1
2956 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2957 move.l #0xff020000,%a1
2970 lea %pc@(L(q40_do_debug)),%a1
2972 /*nodbg: q40_do_debug is 0 by default*/
2976 #ifdef CONFIG_APOLLO
2977 /* We count on the PROM initializing SIO1 */
2981 /* We count on the boot loader initialising the UART */
2984 L(serial_init_done):
2985 func_return serial_init
2988 * Output character on serial port.
2990 func_start serial_putc,%d0/%d1/%a0/%a1
2996 /* A little safe recursion is good for the soul */
3004 movel %pc@(L(custom)),%a0
3005 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3006 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3009 jra L(serial_putc_done)
3018 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3019 movel %pc@(L(mac_sccbase)),%a1
3022 #ifdef MAC_USE_SCC_A
3023 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3025 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3026 #endif /* MAC_USE_SCC_A */
3028 #ifdef MAC_USE_SCC_B
3029 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3031 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3032 #endif /* MAC_USE_SCC_B */
3034 #endif /* SERIAL_DEBUG */
3036 jra L(serial_putc_done)
3038 #endif /* CONFIG_MAC */
3042 movel %pc@(L(iobase)),%a1
3043 #if defined(USE_PRINTER)
3044 3: btst #0,%a1@(LSTMFP_GPIP)
3046 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3047 moveb %d0,%a1@(LPSG_WRITE)
3048 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3049 moveb %a1@(LPSG_READ),%d0
3051 moveb %d0,%a1@(LPSG_WRITE)
3055 moveb %d0,%a1@(LPSG_WRITE)
3056 #elif defined(USE_SCC)
3057 3: btst #2,%a1@(LSCC_CTRL)
3059 moveb %d0,%a1@(LSCC_DATA)
3060 #elif defined(USE_MFP)
3061 3: btst #7,%a1@(LMFP_TSR)
3063 moveb %d0,%a1@(LMFP_UDR)
3065 jra L(serial_putc_done)
3067 #endif /* CONFIG_ATARI */
3069 #ifdef CONFIG_MVME147
3071 1: btst #2,M147_SCC_CTRL_A
3073 moveb %d0,M147_SCC_DATA_A
3074 jbra L(serial_putc_done)
3078 #ifdef CONFIG_MVME16x
3081 * If the loader gave us a board type then we can use that to
3082 * select an appropriate output routine; otherwise we just use
3083 * the Bug code. If we have to use the Bug that means the Bug
3084 * workspace has to be valid, which means the Bug has to use
3085 * the SRAM, which is non-standard.
3087 moveml %d0-%d7/%a2-%a6,%sp@-
3088 movel vme_brdtype,%d1
3089 jeq 1f | No tag - use the Bug
3090 cmpi #VME_TYPE_MVME162,%d1
3092 cmpi #VME_TYPE_MVME172,%d1
3094 /* 162/172; it's an SCC */
3095 6: btst #2,M162_SCC_CTRL_A
3100 moveb #8,M162_SCC_CTRL_A
3104 moveb %d0,M162_SCC_CTRL_A
3107 /* 166/167/177; it's a CD2401 */
3109 moveb M167_CYIER,%d2
3110 moveb #0x02,M167_CYIER
3112 btst #5,M167_PCSCCTICR
3114 moveb M167_PCTPIACKR,%d1
3115 moveb M167_CYLICR,%d1
3117 moveb #0x08,M167_CYTEOIR
3120 moveb %d0,M167_CYTDR
3121 moveb #0,M167_CYTEOIR
3122 moveb %d2,M167_CYIER
3127 .word 0x0020 /* TRAP 0x020 */
3129 moveml %sp@+,%d0-%d7/%a2-%a6
3130 jbra L(serial_putc_done)
3132 #endif /* CONFIG_MVME16x */
3134 #ifdef CONFIG_BVME6000
3137 * The BVME6000 machine has a serial port ...
3139 1: btst #2,BVME_SCC_CTRL_A
3141 moveb %d0,BVME_SCC_DATA_A
3142 jbra L(serial_putc_done)
3149 movel 0xFEFE0018,%a1
3152 jbra L(serial_putc_done)
3158 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3160 lea %pc@(q40_mem_cptr),%a1
3165 jbra L(serial_putc_done)
3169 #ifdef CONFIG_APOLLO
3171 movl %pc@(L(iobase)),%a1
3172 moveb %d0,%a1@(LTHRB0)
3173 1: moveb %a1@(LSRB0),%d0
3176 jbra L(serial_putc_done)
3182 movl %pc@(L(iobase)),%a1
3183 addl %pc@(L(uartbase)),%a1
3184 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3185 jmi 3f /* Unset? Exit */
3186 cmpi #256,%d1 /* APCI scode? */
3188 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3191 moveb %d0,%a1@(DCADATA)
3192 jbra L(serial_putc_done)
3193 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3196 moveb %d0,%a1@(APCIDATA)
3197 jbra L(serial_putc_done)
3201 L(serial_putc_done):
3202 func_return serial_putc
3207 func_start puts,%d0/%a0
3224 * Output number in hex notation.
3227 func_start putn,%d0-%d2
3239 addb #'A'-('9'+1),%d2
3255 * This routine takes its parameters on the stack. It then
3256 * turns around and calls the internal routines. This routine
3257 * is used by the boot console.
3259 * The calling parameters are:
3260 * void mac_early_print(const char *str, unsigned length);
3262 * This routine does NOT understand variable arguments only
3265 ENTRY(mac_early_print)
3266 moveml %d0/%d1/%a0,%sp@-
3269 movel %sp@(18),%a0 /* fetch parameter */
3270 movel %sp@(22),%d1 /* fetch parameter */
3285 moveml %sp@+,%d0/%d1/%a0
3287 #endif /* CONFIG_MAC */
3289 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3290 func_start set_leds,%d0/%a0
3294 movel %pc@(L(iobase)),%a0
3295 moveb %d0,%a0@(0x1ffff)
3299 #ifdef CONFIG_APOLLO
3300 movel %pc@(L(iobase)),%a0
3303 moveb %d0,%a0@(LCPUCTRL)
3306 func_return set_leds
3311 * For continuity, see the data alignment
3312 * to which this structure is tied.
3314 #define Lconsole_struct_cur_column 0
3315 #define Lconsole_struct_cur_row 4
3316 #define Lconsole_struct_num_columns 8
3317 #define Lconsole_struct_num_rows 12
3318 #define Lconsole_struct_left_edge 16
3319 #define Lconsole_struct_penguin_putc 20
3321 func_start console_init,%a0-%a4/%d0-%d7
3323 * Some of the register usage that follows
3324 * a0 = pointer to boot_info
3325 * a1 = pointer to screen
3326 * a2 = pointer to Lconsole_globals
3327 * d3 = pixel width of screen
3328 * d4 = pixel height of screen
3329 * (d3,d4) ~= (x,y) of a point just below
3330 * and to the right of the screen
3331 * NOT on the screen!
3332 * d5 = number of bytes per scan line
3333 * d6 = number of bytes on the entire screen
3336 lea %pc@(L(console_globals)),%a2
3337 movel %pc@(L(mac_videobase)),%a1
3338 movel %pc@(L(mac_rowbytes)),%d5
3339 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3341 swap %d4 /* -> high byte */
3342 andl #0xffff,%d3 /* d3 = screen width in pixels */
3343 andl #0xffff,%d4 /* d4 = screen height in pixels */
3347 mulul %d4,%d6 /* scan line bytes x num scan lines */
3348 divul #8,%d6 /* we'll clear 8 bytes at a time */
3349 moveq #-1,%d0 /* Mac_black */
3352 L(console_clear_loop):
3355 dbra %d6,L(console_clear_loop)
3357 /* Calculate font size */
3359 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3360 lea %pc@(font_vga_8x8),%a0
3361 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3362 lea %pc@(font_vga_8x16),%a0
3363 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3364 lea %pc@(font_vga_6x11),%a0
3365 #elif defined(CONFIG_FONT_8x8) /* default */
3366 lea %pc@(font_vga_8x8),%a0
3367 #else /* no compiled-in font */
3372 * At this point we make a shift in register usage
3373 * a1 = address of console_font pointer
3375 lea %pc@(L(console_font)),%a1
3376 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3379 lea %pc@(L(console_font_data)),%a4
3380 movel %a0@(FONT_DESC_DATA),%d0
3381 subl #L(console_font),%a1
3386 * Calculate global maxs
3387 * Note - we can use either an
3388 * 8 x 16 or 8 x 8 character font
3389 * 6 x 11 also supported
3391 /* ASSERT: a0 = contents of Lconsole_font */
3392 movel %d3,%d0 /* screen width in pixels */
3393 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3395 movel %d4,%d1 /* screen height in pixels */
3396 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3398 movel %d0,%a2@(Lconsole_struct_num_columns)
3399 movel %d1,%a2@(Lconsole_struct_num_rows)
3402 * Clear the current row and column
3404 clrl %a2@(Lconsole_struct_cur_column)
3405 clrl %a2@(Lconsole_struct_cur_row)
3406 clrl %a2@(Lconsole_struct_left_edge)
3409 * Initialization is complete
3412 func_return console_init
3414 func_start console_put_stats,%a0/%d7
3416 * Some of the register usage that follows
3417 * a0 = pointer to boot_info
3418 * d7 = value of boot_info fields
3424 putn %pc@(L(mac_videobase)) /* video addr. */
3427 lea %pc@(_stext),%a0
3435 putn %pc@(L(cputype))
3439 putn %pc@(L(mac_sccbase))
3443 jbsr mmu_print_machine_cpu_types
3445 #endif /* SERIAL_DEBUG */
3449 func_return console_put_stats
3451 #ifdef CONSOLE_PENGUIN
3452 func_start console_put_penguin,%a0-%a1/%d0-%d7
3454 * Get 'that_penguin' onto the screen in the upper right corner
3455 * penguin is 64 x 74 pixels, align against right edge of screen
3457 lea %pc@(L(mac_dimensions)),%a0
3460 subil #64,%d0 /* snug up against the right edge */
3461 clrl %d1 /* start at the top */
3463 lea %pc@(L(that_penguin)),%a1
3464 L(console_penguin_row):
3466 L(console_penguin_pixel_pair):
3469 console_plot_pixel %d0,%d1,%d2
3472 console_plot_pixel %d0,%d1,%d2
3474 dbra %d6,L(console_penguin_pixel_pair)
3478 dbra %d7,L(console_penguin_row)
3480 func_return console_put_penguin
3482 /* include penguin bitmap */
3484 #include "../mac/mac_penguin.S"
3488 * Calculate source and destination addresses
3493 func_start console_scroll,%a0-%a4/%d0-%d7
3494 lea %pc@(L(mac_videobase)),%a0
3497 lea %pc@(L(mac_rowbytes)),%a0
3499 movel %pc@(L(console_font)),%a0
3502 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3508 lea %pc@(L(mac_dimensions)),%a0
3512 andl #0xffff,%d3 /* d3 = screen width in pixels */
3513 andl #0xffff,%d4 /* d4 = screen height in pixels */
3516 * Calculate number of bytes to move
3518 lea %pc@(L(mac_rowbytes)),%a0
3520 movel %pc@(L(console_font)),%a0
3521 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3522 mulul %d4,%d6 /* scan line bytes x num scan lines */
3523 divul #32,%d6 /* we'll move 8 longs at a time */
3526 L(console_scroll_loop):
3535 dbra %d6,L(console_scroll_loop)
3537 lea %pc@(L(mac_rowbytes)),%a0
3539 movel %pc@(L(console_font)),%a0
3540 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3541 divul #32,%d6 /* we'll move 8 words at a time */
3545 L(console_scroll_clear_loop):
3554 dbra %d6,L(console_scroll_clear_loop)
3557 func_return console_scroll
3560 func_start console_putc,%a0/%a1/%d0-%d7
3562 is_not_mac(L(console_exit))
3563 tstl %pc@(L(console_font))
3566 /* Output character in d7 on console.
3572 /* A little safe recursion is good for the soul */
3575 lea %pc@(L(console_globals)),%a0
3578 jne L(console_not_lf)
3579 movel %a0@(Lconsole_struct_cur_row),%d0
3581 movel %d0,%a0@(Lconsole_struct_cur_row)
3582 movel %a0@(Lconsole_struct_num_rows),%d1
3586 movel %d0,%a0@(Lconsole_struct_cur_row)
3593 jne L(console_not_cr)
3594 clrl %a0@(Lconsole_struct_cur_column)
3599 jne L(console_not_home)
3600 clrl %a0@(Lconsole_struct_cur_row)
3601 clrl %a0@(Lconsole_struct_cur_column)
3605 * At this point we know that the %d7 character is going to be
3606 * rendered on the screen. Register usage is -
3607 * a0 = pointer to console globals
3609 * d0 = cursor column
3610 * d1 = cursor row to draw the character
3611 * d7 = character number
3613 L(console_not_home):
3614 movel %a0@(Lconsole_struct_cur_column),%d0
3615 addql #1,%a0@(Lconsole_struct_cur_column)
3616 movel %a0@(Lconsole_struct_num_columns),%d1
3619 console_putc #'\n' /* recursion is OK! */
3621 movel %a0@(Lconsole_struct_cur_row),%d1
3624 * At this point we make a shift in register usage
3625 * a0 = address of pointer to font data (fbcon_font_desc)
3627 movel %pc@(L(console_font)),%a0
3628 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3629 andl #0x000000ff,%d7
3630 /* ASSERT: a0 = contents of Lconsole_font */
3631 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3632 addl %d7,%a1 /* a1 = points to char image */
3635 * At this point we make a shift in register usage
3636 * d0 = pixel coordinate, x
3637 * d1 = pixel coordinate, y
3638 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3639 * d3 = font scan line data (8 pixels)
3640 * d6 = count down for the font's pixel width (8)
3641 * d7 = count down for the font's pixel count in height
3643 /* ASSERT: a0 = contents of Lconsole_font */
3644 mulul %a0@(FONT_DESC_WIDTH),%d0
3645 mulul %a0@(FONT_DESC_HEIGHT),%d1
3646 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3648 L(console_read_char_scanline):
3651 /* ASSERT: a0 = contents of Lconsole_font */
3652 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3655 L(console_do_font_scanline):
3657 scsb %d2 /* convert 1 bit into a byte */
3658 console_plot_pixel %d0,%d1,%d2
3660 dbra %d6,L(console_do_font_scanline)
3662 /* ASSERT: a0 = contents of Lconsole_font */
3663 subl %a0@(FONT_DESC_WIDTH),%d0
3665 dbra %d7,L(console_read_char_scanline)
3668 func_return console_putc
3674 * d2 = (bit 0) 1/0 for white/black (!)
3675 * All registers are preserved
3677 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3679 movel %pc@(L(mac_videobase)),%a1
3680 movel %pc@(L(mac_videodepth)),%d3
3683 mulul %pc@(L(mac_rowbytes)),%d1
3688 * d0 = x coord becomes byte offset into frame buffer
3690 * d2 = black or white (0/1)
3692 * d4 = temp of x (d0) for many bit depths
3697 movel %d0,%d4 /* we need the low order 3 bits! */
3702 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3706 jbra L(console_plot_pixel_exit)
3709 jbra L(console_plot_pixel_exit)
3714 movel %d0,%d4 /* we need the low order 2 bits! */
3719 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3726 jbra L(console_plot_pixel_exit)
3731 jbra L(console_plot_pixel_exit)
3736 movel %d0,%d4 /* we need the low order bit! */
3752 jbra L(console_plot_pixel_exit)
3761 jbra L(console_plot_pixel_exit)
3771 jbra L(console_plot_pixel_exit)
3774 jbra L(console_plot_pixel_exit)
3778 jbne L(console_plot_pixel_exit)
3785 jbra L(console_plot_pixel_exit)
3788 jbra L(console_plot_pixel_exit)
3790 L(console_plot_pixel_exit):
3791 func_return console_plot_pixel
3792 #endif /* CONSOLE */
3796 * This is some old code lying around. I don't believe
3797 * it's used or important anymore. My guess is it contributed
3798 * to getting to this point, but it's done for now.
3799 * It was still in the 2.1.77 head.S, so it's still here.
3800 * (And still not used!)
3803 moveml %a0/%d7,%sp@-
3807 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3816 lea %pc@(L(mmu)),%a0
3817 .long 0xf0106200 | pmove %psr,%a0@
3823 moveml %sp@+,%a0/%d7
3830 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3831 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3837 #if defined(CONSOLE)
3839 .long 0 /* cursor column */
3840 .long 0 /* cursor row */
3841 .long 0 /* max num columns */
3842 .long 0 /* max num rows */
3843 .long 0 /* left edge */
3844 .long 0 /* mac putc */
3846 .long 0 /* pointer to console font (struct font_desc) */
3847 L(console_font_data):
3848 .long 0 /* pointer to console font data */
3849 #endif /* CONSOLE */
3851 #if defined(MMU_PRINT)
3853 .long 0 /* valid flag */
3854 .long 0 /* start logical */
3855 .long 0 /* next logical */
3856 .long 0 /* start physical */
3857 .long 0 /* next physical */
3858 #endif /* MMU_PRINT */
3862 L(mmu_cached_pointer_tables):
3864 L(mmu_num_pointer_tables):
3866 L(phys_kernel_start):
3872 L(kernel_pgdir_ptr):
3877 #if defined (CONFIG_MVME147)
3878 M147_SCC_CTRL_A = 0xfffe3002
3879 M147_SCC_DATA_A = 0xfffe3003
3882 #if defined (CONFIG_MVME16x)
3883 M162_SCC_CTRL_A = 0xfff45005
3884 M167_CYCAR = 0xfff450ee
3885 M167_CYIER = 0xfff45011
3886 M167_CYLICR = 0xfff45026
3887 M167_CYTEOIR = 0xfff45085
3888 M167_CYTDR = 0xfff450f8
3889 M167_PCSCCTICR = 0xfff4201e
3890 M167_PCTPIACKR = 0xfff42025
3893 #if defined (CONFIG_BVME6000)
3894 BVME_SCC_CTRL_A = 0xffb0000b
3895 BVME_SCC_DATA_A = 0xffb0000f
3898 #if defined(CONFIG_MAC)
3913 #endif /* CONFIG_MAC */
3915 #if defined (CONFIG_APOLLO)
3921 #if defined(CONFIG_HP300)
3938 m68k_pgtable_cachemode:
3940 m68k_supervisor_cachemode:
3942 #if defined(CONFIG_MVME16x)
3944 .long 0,0,0,0,0,0,0,0
3946 #if defined(CONFIG_Q40)