x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / mips / math-emu / cp1emu.c
blobefe008846ed056759dd2e66c83a54cfe2d4d789c
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/fpu.h>
49 #include <asm/uaccess.h>
50 #include <asm/branch.h>
52 #include "ieee754.h"
54 /* Strap kernel emulator for full MIPS IV emulation */
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
61 /* Function which emulates a floating point instruction. */
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 mips_instruction);
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 struct mips_fpu_struct *, mips_instruction, void *__user *);
69 #endif
71 /* Further private data for which no space exists in mips_fpu_struct */
73 #ifdef CONFIG_DEBUG_FS
74 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
75 #endif
77 /* Control registers */
79 #define FPCREG_RID 0 /* $0 = revision id */
80 #define FPCREG_CSR 31 /* $31 = csr */
82 /* Determine rounding mode from the RM bits of the FCSR */
83 #define modeindex(v) ((v) & FPU_CSR_RM)
85 /* microMIPS bitfields */
86 #define MM_POOL32A_MINOR_MASK 0x3f
87 #define MM_POOL32A_MINOR_SHIFT 0x6
88 #define MM_MIPS32_COND_FC 0x30
90 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
91 static const unsigned char ieee_rm[4] = {
92 [FPU_CSR_RN] = IEEE754_RN,
93 [FPU_CSR_RZ] = IEEE754_RZ,
94 [FPU_CSR_RU] = IEEE754_RU,
95 [FPU_CSR_RD] = IEEE754_RD,
97 /* Convert IEEE library modes to Mips rounding mode (0..3). */
98 static const unsigned char mips_rm[4] = {
99 [IEEE754_RN] = FPU_CSR_RN,
100 [IEEE754_RZ] = FPU_CSR_RZ,
101 [IEEE754_RD] = FPU_CSR_RD,
102 [IEEE754_RU] = FPU_CSR_RU,
105 #if __mips >= 4
106 /* convert condition code register number to csr bit */
107 static const unsigned int fpucondbit[8] = {
108 FPU_CSR_COND0,
109 FPU_CSR_COND1,
110 FPU_CSR_COND2,
111 FPU_CSR_COND3,
112 FPU_CSR_COND4,
113 FPU_CSR_COND5,
114 FPU_CSR_COND6,
115 FPU_CSR_COND7
117 #endif
119 /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120 static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
122 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
124 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
125 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
126 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
133 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
135 union mips_instruction insn = *insn_ptr;
136 union mips_instruction mips32_insn = insn;
137 int func, fmt, op;
139 switch (insn.mm_i_format.opcode) {
140 case mm_ldc132_op:
141 mips32_insn.mm_i_format.opcode = ldc1_op;
142 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
143 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
144 break;
145 case mm_lwc132_op:
146 mips32_insn.mm_i_format.opcode = lwc1_op;
147 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
148 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
149 break;
150 case mm_sdc132_op:
151 mips32_insn.mm_i_format.opcode = sdc1_op;
152 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
153 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
154 break;
155 case mm_swc132_op:
156 mips32_insn.mm_i_format.opcode = swc1_op;
157 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
158 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
159 break;
160 case mm_pool32i_op:
161 /* NOTE: offset is << by 1 if in microMIPS mode. */
162 if ((insn.mm_i_format.rt == mm_bc1f_op) ||
163 (insn.mm_i_format.rt == mm_bc1t_op)) {
164 mips32_insn.fb_format.opcode = cop1_op;
165 mips32_insn.fb_format.bc = bc_op;
166 mips32_insn.fb_format.flag =
167 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
168 } else
169 return SIGILL;
170 break;
171 case mm_pool32f_op:
172 switch (insn.mm_fp0_format.func) {
173 case mm_32f_01_op:
174 case mm_32f_11_op:
175 case mm_32f_02_op:
176 case mm_32f_12_op:
177 case mm_32f_41_op:
178 case mm_32f_51_op:
179 case mm_32f_42_op:
180 case mm_32f_52_op:
181 op = insn.mm_fp0_format.func;
182 if (op == mm_32f_01_op)
183 func = madd_s_op;
184 else if (op == mm_32f_11_op)
185 func = madd_d_op;
186 else if (op == mm_32f_02_op)
187 func = nmadd_s_op;
188 else if (op == mm_32f_12_op)
189 func = nmadd_d_op;
190 else if (op == mm_32f_41_op)
191 func = msub_s_op;
192 else if (op == mm_32f_51_op)
193 func = msub_d_op;
194 else if (op == mm_32f_42_op)
195 func = nmsub_s_op;
196 else
197 func = nmsub_d_op;
198 mips32_insn.fp6_format.opcode = cop1x_op;
199 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
200 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
201 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
202 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
203 mips32_insn.fp6_format.func = func;
204 break;
205 case mm_32f_10_op:
206 func = -1; /* Invalid */
207 op = insn.mm_fp5_format.op & 0x7;
208 if (op == mm_ldxc1_op)
209 func = ldxc1_op;
210 else if (op == mm_sdxc1_op)
211 func = sdxc1_op;
212 else if (op == mm_lwxc1_op)
213 func = lwxc1_op;
214 else if (op == mm_swxc1_op)
215 func = swxc1_op;
217 if (func != -1) {
218 mips32_insn.r_format.opcode = cop1x_op;
219 mips32_insn.r_format.rs =
220 insn.mm_fp5_format.base;
221 mips32_insn.r_format.rt =
222 insn.mm_fp5_format.index;
223 mips32_insn.r_format.rd = 0;
224 mips32_insn.r_format.re = insn.mm_fp5_format.fd;
225 mips32_insn.r_format.func = func;
226 } else
227 return SIGILL;
228 break;
229 case mm_32f_40_op:
230 op = -1; /* Invalid */
231 if (insn.mm_fp2_format.op == mm_fmovt_op)
232 op = 1;
233 else if (insn.mm_fp2_format.op == mm_fmovf_op)
234 op = 0;
235 if (op != -1) {
236 mips32_insn.fp0_format.opcode = cop1_op;
237 mips32_insn.fp0_format.fmt =
238 sdps_format[insn.mm_fp2_format.fmt];
239 mips32_insn.fp0_format.ft =
240 (insn.mm_fp2_format.cc<<2) + op;
241 mips32_insn.fp0_format.fs =
242 insn.mm_fp2_format.fs;
243 mips32_insn.fp0_format.fd =
244 insn.mm_fp2_format.fd;
245 mips32_insn.fp0_format.func = fmovc_op;
246 } else
247 return SIGILL;
248 break;
249 case mm_32f_60_op:
250 func = -1; /* Invalid */
251 if (insn.mm_fp0_format.op == mm_fadd_op)
252 func = fadd_op;
253 else if (insn.mm_fp0_format.op == mm_fsub_op)
254 func = fsub_op;
255 else if (insn.mm_fp0_format.op == mm_fmul_op)
256 func = fmul_op;
257 else if (insn.mm_fp0_format.op == mm_fdiv_op)
258 func = fdiv_op;
259 if (func != -1) {
260 mips32_insn.fp0_format.opcode = cop1_op;
261 mips32_insn.fp0_format.fmt =
262 sdps_format[insn.mm_fp0_format.fmt];
263 mips32_insn.fp0_format.ft =
264 insn.mm_fp0_format.ft;
265 mips32_insn.fp0_format.fs =
266 insn.mm_fp0_format.fs;
267 mips32_insn.fp0_format.fd =
268 insn.mm_fp0_format.fd;
269 mips32_insn.fp0_format.func = func;
270 } else
271 return SIGILL;
272 break;
273 case mm_32f_70_op:
274 func = -1; /* Invalid */
275 if (insn.mm_fp0_format.op == mm_fmovn_op)
276 func = fmovn_op;
277 else if (insn.mm_fp0_format.op == mm_fmovz_op)
278 func = fmovz_op;
279 if (func != -1) {
280 mips32_insn.fp0_format.opcode = cop1_op;
281 mips32_insn.fp0_format.fmt =
282 sdps_format[insn.mm_fp0_format.fmt];
283 mips32_insn.fp0_format.ft =
284 insn.mm_fp0_format.ft;
285 mips32_insn.fp0_format.fs =
286 insn.mm_fp0_format.fs;
287 mips32_insn.fp0_format.fd =
288 insn.mm_fp0_format.fd;
289 mips32_insn.fp0_format.func = func;
290 } else
291 return SIGILL;
292 break;
293 case mm_32f_73_op: /* POOL32FXF */
294 switch (insn.mm_fp1_format.op) {
295 case mm_movf0_op:
296 case mm_movf1_op:
297 case mm_movt0_op:
298 case mm_movt1_op:
299 if ((insn.mm_fp1_format.op & 0x7f) ==
300 mm_movf0_op)
301 op = 0;
302 else
303 op = 1;
304 mips32_insn.r_format.opcode = spec_op;
305 mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
306 mips32_insn.r_format.rt =
307 (insn.mm_fp4_format.cc << 2) + op;
308 mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
309 mips32_insn.r_format.re = 0;
310 mips32_insn.r_format.func = movc_op;
311 break;
312 case mm_fcvtd0_op:
313 case mm_fcvtd1_op:
314 case mm_fcvts0_op:
315 case mm_fcvts1_op:
316 if ((insn.mm_fp1_format.op & 0x7f) ==
317 mm_fcvtd0_op) {
318 func = fcvtd_op;
319 fmt = swl_format[insn.mm_fp3_format.fmt];
320 } else {
321 func = fcvts_op;
322 fmt = dwl_format[insn.mm_fp3_format.fmt];
324 mips32_insn.fp0_format.opcode = cop1_op;
325 mips32_insn.fp0_format.fmt = fmt;
326 mips32_insn.fp0_format.ft = 0;
327 mips32_insn.fp0_format.fs =
328 insn.mm_fp3_format.fs;
329 mips32_insn.fp0_format.fd =
330 insn.mm_fp3_format.rt;
331 mips32_insn.fp0_format.func = func;
332 break;
333 case mm_fmov0_op:
334 case mm_fmov1_op:
335 case mm_fabs0_op:
336 case mm_fabs1_op:
337 case mm_fneg0_op:
338 case mm_fneg1_op:
339 if ((insn.mm_fp1_format.op & 0x7f) ==
340 mm_fmov0_op)
341 func = fmov_op;
342 else if ((insn.mm_fp1_format.op & 0x7f) ==
343 mm_fabs0_op)
344 func = fabs_op;
345 else
346 func = fneg_op;
347 mips32_insn.fp0_format.opcode = cop1_op;
348 mips32_insn.fp0_format.fmt =
349 sdps_format[insn.mm_fp3_format.fmt];
350 mips32_insn.fp0_format.ft = 0;
351 mips32_insn.fp0_format.fs =
352 insn.mm_fp3_format.fs;
353 mips32_insn.fp0_format.fd =
354 insn.mm_fp3_format.rt;
355 mips32_insn.fp0_format.func = func;
356 break;
357 case mm_ffloorl_op:
358 case mm_ffloorw_op:
359 case mm_fceill_op:
360 case mm_fceilw_op:
361 case mm_ftruncl_op:
362 case mm_ftruncw_op:
363 case mm_froundl_op:
364 case mm_froundw_op:
365 case mm_fcvtl_op:
366 case mm_fcvtw_op:
367 if (insn.mm_fp1_format.op == mm_ffloorl_op)
368 func = ffloorl_op;
369 else if (insn.mm_fp1_format.op == mm_ffloorw_op)
370 func = ffloor_op;
371 else if (insn.mm_fp1_format.op == mm_fceill_op)
372 func = fceill_op;
373 else if (insn.mm_fp1_format.op == mm_fceilw_op)
374 func = fceil_op;
375 else if (insn.mm_fp1_format.op == mm_ftruncl_op)
376 func = ftruncl_op;
377 else if (insn.mm_fp1_format.op == mm_ftruncw_op)
378 func = ftrunc_op;
379 else if (insn.mm_fp1_format.op == mm_froundl_op)
380 func = froundl_op;
381 else if (insn.mm_fp1_format.op == mm_froundw_op)
382 func = fround_op;
383 else if (insn.mm_fp1_format.op == mm_fcvtl_op)
384 func = fcvtl_op;
385 else
386 func = fcvtw_op;
387 mips32_insn.fp0_format.opcode = cop1_op;
388 mips32_insn.fp0_format.fmt =
389 sd_format[insn.mm_fp1_format.fmt];
390 mips32_insn.fp0_format.ft = 0;
391 mips32_insn.fp0_format.fs =
392 insn.mm_fp1_format.fs;
393 mips32_insn.fp0_format.fd =
394 insn.mm_fp1_format.rt;
395 mips32_insn.fp0_format.func = func;
396 break;
397 case mm_frsqrt_op:
398 case mm_fsqrt_op:
399 case mm_frecip_op:
400 if (insn.mm_fp1_format.op == mm_frsqrt_op)
401 func = frsqrt_op;
402 else if (insn.mm_fp1_format.op == mm_fsqrt_op)
403 func = fsqrt_op;
404 else
405 func = frecip_op;
406 mips32_insn.fp0_format.opcode = cop1_op;
407 mips32_insn.fp0_format.fmt =
408 sdps_format[insn.mm_fp1_format.fmt];
409 mips32_insn.fp0_format.ft = 0;
410 mips32_insn.fp0_format.fs =
411 insn.mm_fp1_format.fs;
412 mips32_insn.fp0_format.fd =
413 insn.mm_fp1_format.rt;
414 mips32_insn.fp0_format.func = func;
415 break;
416 case mm_mfc1_op:
417 case mm_mtc1_op:
418 case mm_cfc1_op:
419 case mm_ctc1_op:
420 if (insn.mm_fp1_format.op == mm_mfc1_op)
421 op = mfc_op;
422 else if (insn.mm_fp1_format.op == mm_mtc1_op)
423 op = mtc_op;
424 else if (insn.mm_fp1_format.op == mm_cfc1_op)
425 op = cfc_op;
426 else
427 op = ctc_op;
428 mips32_insn.fp1_format.opcode = cop1_op;
429 mips32_insn.fp1_format.op = op;
430 mips32_insn.fp1_format.rt =
431 insn.mm_fp1_format.rt;
432 mips32_insn.fp1_format.fs =
433 insn.mm_fp1_format.fs;
434 mips32_insn.fp1_format.fd = 0;
435 mips32_insn.fp1_format.func = 0;
436 break;
437 default:
438 return SIGILL;
440 break;
441 case mm_32f_74_op: /* c.cond.fmt */
442 mips32_insn.fp0_format.opcode = cop1_op;
443 mips32_insn.fp0_format.fmt =
444 sdps_format[insn.mm_fp4_format.fmt];
445 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
446 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
447 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
448 mips32_insn.fp0_format.func =
449 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
450 break;
451 default:
452 return SIGILL;
454 break;
455 default:
456 return SIGILL;
459 *insn_ptr = mips32_insn;
460 return 0;
463 int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
464 unsigned long *contpc)
466 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
467 int bc_false = 0;
468 unsigned int fcr31;
469 unsigned int bit;
471 if (!cpu_has_mmips)
472 return 0;
474 switch (insn.mm_i_format.opcode) {
475 case mm_pool32a_op:
476 if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
477 mm_pool32axf_op) {
478 switch (insn.mm_i_format.simmediate >>
479 MM_POOL32A_MINOR_SHIFT) {
480 case mm_jalr_op:
481 case mm_jalrhb_op:
482 case mm_jalrs_op:
483 case mm_jalrshb_op:
484 if (insn.mm_i_format.rt != 0) /* Not mm_jr */
485 regs->regs[insn.mm_i_format.rt] =
486 regs->cp0_epc +
487 dec_insn.pc_inc +
488 dec_insn.next_pc_inc;
489 *contpc = regs->regs[insn.mm_i_format.rs];
490 return 1;
493 break;
494 case mm_pool32i_op:
495 switch (insn.mm_i_format.rt) {
496 case mm_bltzals_op:
497 case mm_bltzal_op:
498 regs->regs[31] = regs->cp0_epc +
499 dec_insn.pc_inc +
500 dec_insn.next_pc_inc;
501 /* Fall through */
502 case mm_bltz_op:
503 if ((long)regs->regs[insn.mm_i_format.rs] < 0)
504 *contpc = regs->cp0_epc +
505 dec_insn.pc_inc +
506 (insn.mm_i_format.simmediate << 1);
507 else
508 *contpc = regs->cp0_epc +
509 dec_insn.pc_inc +
510 dec_insn.next_pc_inc;
511 return 1;
512 case mm_bgezals_op:
513 case mm_bgezal_op:
514 regs->regs[31] = regs->cp0_epc +
515 dec_insn.pc_inc +
516 dec_insn.next_pc_inc;
517 /* Fall through */
518 case mm_bgez_op:
519 if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
520 *contpc = regs->cp0_epc +
521 dec_insn.pc_inc +
522 (insn.mm_i_format.simmediate << 1);
523 else
524 *contpc = regs->cp0_epc +
525 dec_insn.pc_inc +
526 dec_insn.next_pc_inc;
527 return 1;
528 case mm_blez_op:
529 if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
530 *contpc = regs->cp0_epc +
531 dec_insn.pc_inc +
532 (insn.mm_i_format.simmediate << 1);
533 else
534 *contpc = regs->cp0_epc +
535 dec_insn.pc_inc +
536 dec_insn.next_pc_inc;
537 return 1;
538 case mm_bgtz_op:
539 if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
540 *contpc = regs->cp0_epc +
541 dec_insn.pc_inc +
542 (insn.mm_i_format.simmediate << 1);
543 else
544 *contpc = regs->cp0_epc +
545 dec_insn.pc_inc +
546 dec_insn.next_pc_inc;
547 return 1;
548 case mm_bc2f_op:
549 case mm_bc1f_op:
550 bc_false = 1;
551 /* Fall through */
552 case mm_bc2t_op:
553 case mm_bc1t_op:
554 preempt_disable();
555 if (is_fpu_owner())
556 asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
557 else
558 fcr31 = current->thread.fpu.fcr31;
559 preempt_enable();
561 if (bc_false)
562 fcr31 = ~fcr31;
564 bit = (insn.mm_i_format.rs >> 2);
565 bit += (bit != 0);
566 bit += 23;
567 if (fcr31 & (1 << bit))
568 *contpc = regs->cp0_epc +
569 dec_insn.pc_inc +
570 (insn.mm_i_format.simmediate << 1);
571 else
572 *contpc = regs->cp0_epc +
573 dec_insn.pc_inc + dec_insn.next_pc_inc;
574 return 1;
576 break;
577 case mm_pool16c_op:
578 switch (insn.mm_i_format.rt) {
579 case mm_jalr16_op:
580 case mm_jalrs16_op:
581 regs->regs[31] = regs->cp0_epc +
582 dec_insn.pc_inc + dec_insn.next_pc_inc;
583 /* Fall through */
584 case mm_jr16_op:
585 *contpc = regs->regs[insn.mm_i_format.rs];
586 return 1;
588 break;
589 case mm_beqz16_op:
590 if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
591 *contpc = regs->cp0_epc +
592 dec_insn.pc_inc +
593 (insn.mm_b1_format.simmediate << 1);
594 else
595 *contpc = regs->cp0_epc +
596 dec_insn.pc_inc + dec_insn.next_pc_inc;
597 return 1;
598 case mm_bnez16_op:
599 if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
600 *contpc = regs->cp0_epc +
601 dec_insn.pc_inc +
602 (insn.mm_b1_format.simmediate << 1);
603 else
604 *contpc = regs->cp0_epc +
605 dec_insn.pc_inc + dec_insn.next_pc_inc;
606 return 1;
607 case mm_b16_op:
608 *contpc = regs->cp0_epc + dec_insn.pc_inc +
609 (insn.mm_b0_format.simmediate << 1);
610 return 1;
611 case mm_beq32_op:
612 if (regs->regs[insn.mm_i_format.rs] ==
613 regs->regs[insn.mm_i_format.rt])
614 *contpc = regs->cp0_epc +
615 dec_insn.pc_inc +
616 (insn.mm_i_format.simmediate << 1);
617 else
618 *contpc = regs->cp0_epc +
619 dec_insn.pc_inc +
620 dec_insn.next_pc_inc;
621 return 1;
622 case mm_bne32_op:
623 if (regs->regs[insn.mm_i_format.rs] !=
624 regs->regs[insn.mm_i_format.rt])
625 *contpc = regs->cp0_epc +
626 dec_insn.pc_inc +
627 (insn.mm_i_format.simmediate << 1);
628 else
629 *contpc = regs->cp0_epc +
630 dec_insn.pc_inc + dec_insn.next_pc_inc;
631 return 1;
632 case mm_jalx32_op:
633 regs->regs[31] = regs->cp0_epc +
634 dec_insn.pc_inc + dec_insn.next_pc_inc;
635 *contpc = regs->cp0_epc + dec_insn.pc_inc;
636 *contpc >>= 28;
637 *contpc <<= 28;
638 *contpc |= (insn.j_format.target << 2);
639 return 1;
640 case mm_jals32_op:
641 case mm_jal32_op:
642 regs->regs[31] = regs->cp0_epc +
643 dec_insn.pc_inc + dec_insn.next_pc_inc;
644 /* Fall through */
645 case mm_j32_op:
646 *contpc = regs->cp0_epc + dec_insn.pc_inc;
647 *contpc >>= 27;
648 *contpc <<= 27;
649 *contpc |= (insn.j_format.target << 1);
650 set_isa16_mode(*contpc);
651 return 1;
653 return 0;
657 * Redundant with logic already in kernel/branch.c,
658 * embedded in compute_return_epc. At some point,
659 * a single subroutine should be used across both
660 * modules.
662 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
663 unsigned long *contpc)
665 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
666 unsigned int fcr31;
667 unsigned int bit = 0;
669 switch (insn.i_format.opcode) {
670 case spec_op:
671 switch (insn.r_format.func) {
672 case jalr_op:
673 regs->regs[insn.r_format.rd] =
674 regs->cp0_epc + dec_insn.pc_inc +
675 dec_insn.next_pc_inc;
676 /* Fall through */
677 case jr_op:
678 *contpc = regs->regs[insn.r_format.rs];
679 return 1;
681 break;
682 case bcond_op:
683 switch (insn.i_format.rt) {
684 case bltzal_op:
685 case bltzall_op:
686 regs->regs[31] = regs->cp0_epc +
687 dec_insn.pc_inc +
688 dec_insn.next_pc_inc;
689 /* Fall through */
690 case bltz_op:
691 case bltzl_op:
692 if ((long)regs->regs[insn.i_format.rs] < 0)
693 *contpc = regs->cp0_epc +
694 dec_insn.pc_inc +
695 (insn.i_format.simmediate << 2);
696 else
697 *contpc = regs->cp0_epc +
698 dec_insn.pc_inc +
699 dec_insn.next_pc_inc;
700 return 1;
701 case bgezal_op:
702 case bgezall_op:
703 regs->regs[31] = regs->cp0_epc +
704 dec_insn.pc_inc +
705 dec_insn.next_pc_inc;
706 /* Fall through */
707 case bgez_op:
708 case bgezl_op:
709 if ((long)regs->regs[insn.i_format.rs] >= 0)
710 *contpc = regs->cp0_epc +
711 dec_insn.pc_inc +
712 (insn.i_format.simmediate << 2);
713 else
714 *contpc = regs->cp0_epc +
715 dec_insn.pc_inc +
716 dec_insn.next_pc_inc;
717 return 1;
719 break;
720 case jalx_op:
721 set_isa16_mode(bit);
722 case jal_op:
723 regs->regs[31] = regs->cp0_epc +
724 dec_insn.pc_inc +
725 dec_insn.next_pc_inc;
726 /* Fall through */
727 case j_op:
728 *contpc = regs->cp0_epc + dec_insn.pc_inc;
729 *contpc >>= 28;
730 *contpc <<= 28;
731 *contpc |= (insn.j_format.target << 2);
732 /* Set microMIPS mode bit: XOR for jalx. */
733 *contpc ^= bit;
734 return 1;
735 case beq_op:
736 case beql_op:
737 if (regs->regs[insn.i_format.rs] ==
738 regs->regs[insn.i_format.rt])
739 *contpc = regs->cp0_epc +
740 dec_insn.pc_inc +
741 (insn.i_format.simmediate << 2);
742 else
743 *contpc = regs->cp0_epc +
744 dec_insn.pc_inc +
745 dec_insn.next_pc_inc;
746 return 1;
747 case bne_op:
748 case bnel_op:
749 if (regs->regs[insn.i_format.rs] !=
750 regs->regs[insn.i_format.rt])
751 *contpc = regs->cp0_epc +
752 dec_insn.pc_inc +
753 (insn.i_format.simmediate << 2);
754 else
755 *contpc = regs->cp0_epc +
756 dec_insn.pc_inc +
757 dec_insn.next_pc_inc;
758 return 1;
759 case blez_op:
760 case blezl_op:
761 if ((long)regs->regs[insn.i_format.rs] <= 0)
762 *contpc = regs->cp0_epc +
763 dec_insn.pc_inc +
764 (insn.i_format.simmediate << 2);
765 else
766 *contpc = regs->cp0_epc +
767 dec_insn.pc_inc +
768 dec_insn.next_pc_inc;
769 return 1;
770 case bgtz_op:
771 case bgtzl_op:
772 if ((long)regs->regs[insn.i_format.rs] > 0)
773 *contpc = regs->cp0_epc +
774 dec_insn.pc_inc +
775 (insn.i_format.simmediate << 2);
776 else
777 *contpc = regs->cp0_epc +
778 dec_insn.pc_inc +
779 dec_insn.next_pc_inc;
780 return 1;
781 #ifdef CONFIG_CPU_CAVIUM_OCTEON
782 case lwc2_op: /* This is bbit0 on Octeon */
783 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
784 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
785 else
786 *contpc = regs->cp0_epc + 8;
787 return 1;
788 case ldc2_op: /* This is bbit032 on Octeon */
789 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
790 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
791 else
792 *contpc = regs->cp0_epc + 8;
793 return 1;
794 case swc2_op: /* This is bbit1 on Octeon */
795 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
796 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
797 else
798 *contpc = regs->cp0_epc + 8;
799 return 1;
800 case sdc2_op: /* This is bbit132 on Octeon */
801 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
802 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
803 else
804 *contpc = regs->cp0_epc + 8;
805 return 1;
806 #endif
807 case cop0_op:
808 case cop1_op:
809 case cop2_op:
810 case cop1x_op:
811 if (insn.i_format.rs == bc_op) {
812 preempt_disable();
813 if (is_fpu_owner())
814 asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
815 else
816 fcr31 = current->thread.fpu.fcr31;
817 preempt_enable();
819 bit = (insn.i_format.rt >> 2);
820 bit += (bit != 0);
821 bit += 23;
822 switch (insn.i_format.rt & 3) {
823 case 0: /* bc1f */
824 case 2: /* bc1fl */
825 if (~fcr31 & (1 << bit))
826 *contpc = regs->cp0_epc +
827 dec_insn.pc_inc +
828 (insn.i_format.simmediate << 2);
829 else
830 *contpc = regs->cp0_epc +
831 dec_insn.pc_inc +
832 dec_insn.next_pc_inc;
833 return 1;
834 case 1: /* bc1t */
835 case 3: /* bc1tl */
836 if (fcr31 & (1 << bit))
837 *contpc = regs->cp0_epc +
838 dec_insn.pc_inc +
839 (insn.i_format.simmediate << 2);
840 else
841 *contpc = regs->cp0_epc +
842 dec_insn.pc_inc +
843 dec_insn.next_pc_inc;
844 return 1;
847 break;
849 return 0;
853 * In the Linux kernel, we support selection of FPR format on the
854 * basis of the Status.FR bit. If an FPU is not present, the FR bit
855 * is hardwired to zero, which would imply a 32-bit FPU even for
856 * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
857 * FPU emu is slow and bulky and optimizing this function offers fairly
858 * sizeable benefits so we try to be clever and make this function return
859 * a constant whenever possible, that is on 64-bit kernels without O32
860 * compatibility enabled and on 32-bit kernels.
862 static inline int cop1_64bit(struct pt_regs *xcp)
864 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
865 return 1;
866 #elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
867 return !test_thread_flag(TIF_32BIT_REGS);
868 #else
869 return 0;
870 #endif
873 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
874 (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
876 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
877 cop1_64bit(xcp) || !(x & 1) ? \
878 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
879 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
881 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
882 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
884 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
885 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
886 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
887 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
890 * Emulate the single floating point instruction pointed at by EPC.
891 * Two instructions if the instruction is in a branch delay slot.
894 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
895 struct mm_decoded_insn dec_insn, void *__user *fault_addr)
897 mips_instruction ir;
898 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
899 unsigned int cond;
900 int pc_inc;
902 /* XXX NEC Vr54xx bug workaround */
903 if (xcp->cp0_cause & CAUSEF_BD) {
904 if (dec_insn.micro_mips_mode) {
905 if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
906 xcp->cp0_cause &= ~CAUSEF_BD;
907 } else {
908 if (!isBranchInstr(xcp, dec_insn, &contpc))
909 xcp->cp0_cause &= ~CAUSEF_BD;
913 if (xcp->cp0_cause & CAUSEF_BD) {
915 * The instruction to be emulated is in a branch delay slot
916 * which means that we have to emulate the branch instruction
917 * BEFORE we do the cop1 instruction.
919 * This branch could be a COP1 branch, but in that case we
920 * would have had a trap for that instruction, and would not
921 * come through this route.
923 * Linux MIPS branch emulator operates on context, updating the
924 * cp0_epc.
926 ir = dec_insn.next_insn; /* process delay slot instr */
927 pc_inc = dec_insn.next_pc_inc;
928 } else {
929 ir = dec_insn.insn; /* process current instr */
930 pc_inc = dec_insn.pc_inc;
934 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
935 * instructions, we want to convert microMIPS FPU instructions
936 * into MIPS32 instructions so that we could reuse all of the
937 * FPU emulation code.
939 * NOTE: We cannot do this for branch instructions since they
940 * are not a subset. Example: Cannot emulate a 16-bit
941 * aligned target address with a MIPS32 instruction.
943 if (dec_insn.micro_mips_mode) {
945 * If next instruction is a 16-bit instruction, then it
946 * it cannot be a FPU instruction. This could happen
947 * since we can be called for non-FPU instructions.
949 if ((pc_inc == 2) ||
950 (microMIPS32_to_MIPS32((union mips_instruction *)&ir)
951 == SIGILL))
952 return SIGILL;
955 emul:
956 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
957 MIPS_FPU_EMU_INC_STATS(emulated);
958 switch (MIPSInst_OPCODE(ir)) {
959 case ldc1_op:{
960 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
961 MIPSInst_SIMM(ir));
962 u64 val;
964 MIPS_FPU_EMU_INC_STATS(loads);
966 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
967 MIPS_FPU_EMU_INC_STATS(errors);
968 *fault_addr = va;
969 return SIGBUS;
971 if (__get_user(val, va)) {
972 MIPS_FPU_EMU_INC_STATS(errors);
973 *fault_addr = va;
974 return SIGSEGV;
976 DITOREG(val, MIPSInst_RT(ir));
977 break;
980 case sdc1_op:{
981 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
982 MIPSInst_SIMM(ir));
983 u64 val;
985 MIPS_FPU_EMU_INC_STATS(stores);
986 DIFROMREG(val, MIPSInst_RT(ir));
987 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
988 MIPS_FPU_EMU_INC_STATS(errors);
989 *fault_addr = va;
990 return SIGBUS;
992 if (__put_user(val, va)) {
993 MIPS_FPU_EMU_INC_STATS(errors);
994 *fault_addr = va;
995 return SIGSEGV;
997 break;
1000 case lwc1_op:{
1001 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1002 MIPSInst_SIMM(ir));
1003 u32 val;
1005 MIPS_FPU_EMU_INC_STATS(loads);
1006 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1007 MIPS_FPU_EMU_INC_STATS(errors);
1008 *fault_addr = va;
1009 return SIGBUS;
1011 if (__get_user(val, va)) {
1012 MIPS_FPU_EMU_INC_STATS(errors);
1013 *fault_addr = va;
1014 return SIGSEGV;
1016 SITOREG(val, MIPSInst_RT(ir));
1017 break;
1020 case swc1_op:{
1021 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1022 MIPSInst_SIMM(ir));
1023 u32 val;
1025 MIPS_FPU_EMU_INC_STATS(stores);
1026 SIFROMREG(val, MIPSInst_RT(ir));
1027 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1028 MIPS_FPU_EMU_INC_STATS(errors);
1029 *fault_addr = va;
1030 return SIGBUS;
1032 if (__put_user(val, va)) {
1033 MIPS_FPU_EMU_INC_STATS(errors);
1034 *fault_addr = va;
1035 return SIGSEGV;
1037 break;
1040 case cop1_op:
1041 switch (MIPSInst_RS(ir)) {
1043 #if defined(__mips64)
1044 case dmfc_op:
1045 /* copregister fs -> gpr[rt] */
1046 if (MIPSInst_RT(ir) != 0) {
1047 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1048 MIPSInst_RD(ir));
1050 break;
1052 case dmtc_op:
1053 /* copregister fs <- rt */
1054 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1055 break;
1056 #endif
1058 case mfc_op:
1059 /* copregister rd -> gpr[rt] */
1060 if (MIPSInst_RT(ir) != 0) {
1061 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1062 MIPSInst_RD(ir));
1064 break;
1066 case mtc_op:
1067 /* copregister rd <- rt */
1068 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1069 break;
1071 case cfc_op:{
1072 /* cop control register rd -> gpr[rt] */
1073 u32 value;
1075 if (MIPSInst_RD(ir) == FPCREG_CSR) {
1076 value = ctx->fcr31;
1077 value = (value & ~FPU_CSR_RM) |
1078 mips_rm[modeindex(value)];
1079 #ifdef CSRTRACE
1080 printk("%p gpr[%d]<-csr=%08x\n",
1081 (void *) (xcp->cp0_epc),
1082 MIPSInst_RT(ir), value);
1083 #endif
1085 else if (MIPSInst_RD(ir) == FPCREG_RID)
1086 value = 0;
1087 else
1088 value = 0;
1089 if (MIPSInst_RT(ir))
1090 xcp->regs[MIPSInst_RT(ir)] = value;
1091 break;
1094 case ctc_op:{
1095 /* copregister rd <- rt */
1096 u32 value;
1098 if (MIPSInst_RT(ir) == 0)
1099 value = 0;
1100 else
1101 value = xcp->regs[MIPSInst_RT(ir)];
1103 /* we only have one writable control reg
1105 if (MIPSInst_RD(ir) == FPCREG_CSR) {
1106 #ifdef CSRTRACE
1107 printk("%p gpr[%d]->csr=%08x\n",
1108 (void *) (xcp->cp0_epc),
1109 MIPSInst_RT(ir), value);
1110 #endif
1113 * Don't write reserved bits,
1114 * and convert to ieee library modes
1116 ctx->fcr31 = (value &
1117 ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1118 ieee_rm[modeindex(value)];
1120 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1121 return SIGFPE;
1123 break;
1126 case bc_op:{
1127 int likely = 0;
1129 if (xcp->cp0_cause & CAUSEF_BD)
1130 return SIGILL;
1132 #if __mips >= 4
1133 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1134 #else
1135 cond = ctx->fcr31 & FPU_CSR_COND;
1136 #endif
1137 switch (MIPSInst_RT(ir) & 3) {
1138 case bcfl_op:
1139 likely = 1;
1140 case bcf_op:
1141 cond = !cond;
1142 break;
1143 case bctl_op:
1144 likely = 1;
1145 case bct_op:
1146 break;
1147 default:
1148 /* thats an illegal instruction */
1149 return SIGILL;
1152 xcp->cp0_cause |= CAUSEF_BD;
1153 if (cond) {
1154 /* branch taken: emulate dslot
1155 * instruction
1157 xcp->cp0_epc += dec_insn.pc_inc;
1159 contpc = MIPSInst_SIMM(ir);
1160 ir = dec_insn.next_insn;
1161 if (dec_insn.micro_mips_mode) {
1162 contpc = (xcp->cp0_epc + (contpc << 1));
1164 /* If 16-bit instruction, not FPU. */
1165 if ((dec_insn.next_pc_inc == 2) ||
1166 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1169 * Since this instruction will
1170 * be put on the stack with
1171 * 32-bit words, get around
1172 * this problem by putting a
1173 * NOP16 as the second one.
1175 if (dec_insn.next_pc_inc == 2)
1176 ir = (ir & (~0xffff)) | MM_NOP16;
1179 * Single step the non-CP1
1180 * instruction in the dslot.
1182 return mips_dsemul(xcp, ir, contpc);
1184 } else
1185 contpc = (xcp->cp0_epc + (contpc << 2));
1187 switch (MIPSInst_OPCODE(ir)) {
1188 case lwc1_op:
1189 case swc1_op:
1190 #if (__mips >= 2 || defined(__mips64))
1191 case ldc1_op:
1192 case sdc1_op:
1193 #endif
1194 case cop1_op:
1195 #if __mips >= 4 && __mips != 32
1196 case cop1x_op:
1197 #endif
1198 /* its one of ours */
1199 goto emul;
1200 #if __mips >= 4
1201 case spec_op:
1202 if (MIPSInst_FUNC(ir) == movc_op)
1203 goto emul;
1204 break;
1205 #endif
1209 * Single step the non-cp1
1210 * instruction in the dslot
1212 return mips_dsemul(xcp, ir, contpc);
1214 else {
1215 /* branch not taken */
1216 if (likely) {
1218 * branch likely nullifies
1219 * dslot if not taken
1221 xcp->cp0_epc += dec_insn.pc_inc;
1222 contpc += dec_insn.pc_inc;
1224 * else continue & execute
1225 * dslot as normal insn
1229 break;
1232 default:
1233 if (!(MIPSInst_RS(ir) & 0x10))
1234 return SIGILL;
1236 int sig;
1238 /* a real fpu computation instruction */
1239 if ((sig = fpu_emu(xcp, ctx, ir)))
1240 return sig;
1243 break;
1245 #if __mips >= 4 && __mips != 32
1246 case cop1x_op:{
1247 int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1248 if (sig)
1249 return sig;
1250 break;
1252 #endif
1254 #if __mips >= 4
1255 case spec_op:
1256 if (MIPSInst_FUNC(ir) != movc_op)
1257 return SIGILL;
1258 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1259 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1260 xcp->regs[MIPSInst_RD(ir)] =
1261 xcp->regs[MIPSInst_RS(ir)];
1262 break;
1263 #endif
1265 default:
1266 return SIGILL;
1269 /* we did it !! */
1270 xcp->cp0_epc = contpc;
1271 xcp->cp0_cause &= ~CAUSEF_BD;
1273 return 0;
1277 * Conversion table from MIPS compare ops 48-63
1278 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1280 static const unsigned char cmptab[8] = {
1281 0, /* cmp_0 (sig) cmp_sf */
1282 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
1283 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
1284 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
1285 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
1286 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
1287 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
1288 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
1292 #if __mips >= 4 && __mips != 32
1295 * Additional MIPS4 instructions
1298 #define DEF3OP(name, p, f1, f2, f3) \
1299 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1300 ieee754##p t) \
1302 struct _ieee754_csr ieee754_csr_save; \
1303 s = f1(s, t); \
1304 ieee754_csr_save = ieee754_csr; \
1305 s = f2(s, r); \
1306 ieee754_csr_save.cx |= ieee754_csr.cx; \
1307 ieee754_csr_save.sx |= ieee754_csr.sx; \
1308 s = f3(s); \
1309 ieee754_csr.cx |= ieee754_csr_save.cx; \
1310 ieee754_csr.sx |= ieee754_csr_save.sx; \
1311 return s; \
1314 static ieee754dp fpemu_dp_recip(ieee754dp d)
1316 return ieee754dp_div(ieee754dp_one(0), d);
1319 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
1321 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1324 static ieee754sp fpemu_sp_recip(ieee754sp s)
1326 return ieee754sp_div(ieee754sp_one(0), s);
1329 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
1331 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1334 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1335 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1336 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1337 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1338 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1339 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1340 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1341 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1343 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1344 mips_instruction ir, void *__user *fault_addr)
1346 unsigned rcsr = 0; /* resulting csr */
1348 MIPS_FPU_EMU_INC_STATS(cp1xops);
1350 switch (MIPSInst_FMA_FFMT(ir)) {
1351 case s_fmt:{ /* 0 */
1353 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
1354 ieee754sp fd, fr, fs, ft;
1355 u32 __user *va;
1356 u32 val;
1358 switch (MIPSInst_FUNC(ir)) {
1359 case lwxc1_op:
1360 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1361 xcp->regs[MIPSInst_FT(ir)]);
1363 MIPS_FPU_EMU_INC_STATS(loads);
1364 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1365 MIPS_FPU_EMU_INC_STATS(errors);
1366 *fault_addr = va;
1367 return SIGBUS;
1369 if (__get_user(val, va)) {
1370 MIPS_FPU_EMU_INC_STATS(errors);
1371 *fault_addr = va;
1372 return SIGSEGV;
1374 SITOREG(val, MIPSInst_FD(ir));
1375 break;
1377 case swxc1_op:
1378 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1379 xcp->regs[MIPSInst_FT(ir)]);
1381 MIPS_FPU_EMU_INC_STATS(stores);
1383 SIFROMREG(val, MIPSInst_FS(ir));
1384 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1385 MIPS_FPU_EMU_INC_STATS(errors);
1386 *fault_addr = va;
1387 return SIGBUS;
1389 if (put_user(val, va)) {
1390 MIPS_FPU_EMU_INC_STATS(errors);
1391 *fault_addr = va;
1392 return SIGSEGV;
1394 break;
1396 case madd_s_op:
1397 handler = fpemu_sp_madd;
1398 goto scoptop;
1399 case msub_s_op:
1400 handler = fpemu_sp_msub;
1401 goto scoptop;
1402 case nmadd_s_op:
1403 handler = fpemu_sp_nmadd;
1404 goto scoptop;
1405 case nmsub_s_op:
1406 handler = fpemu_sp_nmsub;
1407 goto scoptop;
1409 scoptop:
1410 SPFROMREG(fr, MIPSInst_FR(ir));
1411 SPFROMREG(fs, MIPSInst_FS(ir));
1412 SPFROMREG(ft, MIPSInst_FT(ir));
1413 fd = (*handler) (fr, fs, ft);
1414 SPTOREG(fd, MIPSInst_FD(ir));
1416 copcsr:
1417 if (ieee754_cxtest(IEEE754_INEXACT))
1418 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1419 if (ieee754_cxtest(IEEE754_UNDERFLOW))
1420 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1421 if (ieee754_cxtest(IEEE754_OVERFLOW))
1422 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1423 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1424 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1426 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1427 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1428 /*printk ("SIGFPE: fpu csr = %08x\n",
1429 ctx->fcr31); */
1430 return SIGFPE;
1433 break;
1435 default:
1436 return SIGILL;
1438 break;
1441 case d_fmt:{ /* 1 */
1442 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
1443 ieee754dp fd, fr, fs, ft;
1444 u64 __user *va;
1445 u64 val;
1447 switch (MIPSInst_FUNC(ir)) {
1448 case ldxc1_op:
1449 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1450 xcp->regs[MIPSInst_FT(ir)]);
1452 MIPS_FPU_EMU_INC_STATS(loads);
1453 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1454 MIPS_FPU_EMU_INC_STATS(errors);
1455 *fault_addr = va;
1456 return SIGBUS;
1458 if (__get_user(val, va)) {
1459 MIPS_FPU_EMU_INC_STATS(errors);
1460 *fault_addr = va;
1461 return SIGSEGV;
1463 DITOREG(val, MIPSInst_FD(ir));
1464 break;
1466 case sdxc1_op:
1467 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1468 xcp->regs[MIPSInst_FT(ir)]);
1470 MIPS_FPU_EMU_INC_STATS(stores);
1471 DIFROMREG(val, MIPSInst_FS(ir));
1472 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1473 MIPS_FPU_EMU_INC_STATS(errors);
1474 *fault_addr = va;
1475 return SIGBUS;
1477 if (__put_user(val, va)) {
1478 MIPS_FPU_EMU_INC_STATS(errors);
1479 *fault_addr = va;
1480 return SIGSEGV;
1482 break;
1484 case madd_d_op:
1485 handler = fpemu_dp_madd;
1486 goto dcoptop;
1487 case msub_d_op:
1488 handler = fpemu_dp_msub;
1489 goto dcoptop;
1490 case nmadd_d_op:
1491 handler = fpemu_dp_nmadd;
1492 goto dcoptop;
1493 case nmsub_d_op:
1494 handler = fpemu_dp_nmsub;
1495 goto dcoptop;
1497 dcoptop:
1498 DPFROMREG(fr, MIPSInst_FR(ir));
1499 DPFROMREG(fs, MIPSInst_FS(ir));
1500 DPFROMREG(ft, MIPSInst_FT(ir));
1501 fd = (*handler) (fr, fs, ft);
1502 DPTOREG(fd, MIPSInst_FD(ir));
1503 goto copcsr;
1505 default:
1506 return SIGILL;
1508 break;
1511 case 0x7: /* 7 */
1512 if (MIPSInst_FUNC(ir) != pfetch_op) {
1513 return SIGILL;
1515 /* ignore prefx operation */
1516 break;
1518 default:
1519 return SIGILL;
1522 return 0;
1524 #endif
1529 * Emulate a single COP1 arithmetic instruction.
1531 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1532 mips_instruction ir)
1534 int rfmt; /* resulting format */
1535 unsigned rcsr = 0; /* resulting csr */
1536 unsigned cond;
1537 union {
1538 ieee754dp d;
1539 ieee754sp s;
1540 int w;
1541 #ifdef __mips64
1542 s64 l;
1543 #endif
1544 } rv; /* resulting value */
1546 MIPS_FPU_EMU_INC_STATS(cp1ops);
1547 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1548 case s_fmt:{ /* 0 */
1549 union {
1550 ieee754sp(*b) (ieee754sp, ieee754sp);
1551 ieee754sp(*u) (ieee754sp);
1552 } handler;
1554 switch (MIPSInst_FUNC(ir)) {
1555 /* binary ops */
1556 case fadd_op:
1557 handler.b = ieee754sp_add;
1558 goto scopbop;
1559 case fsub_op:
1560 handler.b = ieee754sp_sub;
1561 goto scopbop;
1562 case fmul_op:
1563 handler.b = ieee754sp_mul;
1564 goto scopbop;
1565 case fdiv_op:
1566 handler.b = ieee754sp_div;
1567 goto scopbop;
1569 /* unary ops */
1570 #if __mips >= 2 || defined(__mips64)
1571 case fsqrt_op:
1572 handler.u = ieee754sp_sqrt;
1573 goto scopuop;
1574 #endif
1575 #if __mips >= 4 && __mips != 32
1576 case frsqrt_op:
1577 handler.u = fpemu_sp_rsqrt;
1578 goto scopuop;
1579 case frecip_op:
1580 handler.u = fpemu_sp_recip;
1581 goto scopuop;
1582 #endif
1583 #if __mips >= 4
1584 case fmovc_op:
1585 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1586 if (((ctx->fcr31 & cond) != 0) !=
1587 ((MIPSInst_FT(ir) & 1) != 0))
1588 return 0;
1589 SPFROMREG(rv.s, MIPSInst_FS(ir));
1590 break;
1591 case fmovz_op:
1592 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1593 return 0;
1594 SPFROMREG(rv.s, MIPSInst_FS(ir));
1595 break;
1596 case fmovn_op:
1597 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1598 return 0;
1599 SPFROMREG(rv.s, MIPSInst_FS(ir));
1600 break;
1601 #endif
1602 case fabs_op:
1603 handler.u = ieee754sp_abs;
1604 goto scopuop;
1605 case fneg_op:
1606 handler.u = ieee754sp_neg;
1607 goto scopuop;
1608 case fmov_op:
1609 /* an easy one */
1610 SPFROMREG(rv.s, MIPSInst_FS(ir));
1611 goto copcsr;
1613 /* binary op on handler */
1614 scopbop:
1616 ieee754sp fs, ft;
1618 SPFROMREG(fs, MIPSInst_FS(ir));
1619 SPFROMREG(ft, MIPSInst_FT(ir));
1621 rv.s = (*handler.b) (fs, ft);
1622 goto copcsr;
1624 scopuop:
1626 ieee754sp fs;
1628 SPFROMREG(fs, MIPSInst_FS(ir));
1629 rv.s = (*handler.u) (fs);
1630 goto copcsr;
1632 copcsr:
1633 if (ieee754_cxtest(IEEE754_INEXACT))
1634 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1635 if (ieee754_cxtest(IEEE754_UNDERFLOW))
1636 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1637 if (ieee754_cxtest(IEEE754_OVERFLOW))
1638 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1639 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1640 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1641 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1642 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1643 break;
1645 /* unary conv ops */
1646 case fcvts_op:
1647 return SIGILL; /* not defined */
1648 case fcvtd_op:{
1649 ieee754sp fs;
1651 SPFROMREG(fs, MIPSInst_FS(ir));
1652 rv.d = ieee754dp_fsp(fs);
1653 rfmt = d_fmt;
1654 goto copcsr;
1656 case fcvtw_op:{
1657 ieee754sp fs;
1659 SPFROMREG(fs, MIPSInst_FS(ir));
1660 rv.w = ieee754sp_tint(fs);
1661 rfmt = w_fmt;
1662 goto copcsr;
1665 #if __mips >= 2 || defined(__mips64)
1666 case fround_op:
1667 case ftrunc_op:
1668 case fceil_op:
1669 case ffloor_op:{
1670 unsigned int oldrm = ieee754_csr.rm;
1671 ieee754sp fs;
1673 SPFROMREG(fs, MIPSInst_FS(ir));
1674 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1675 rv.w = ieee754sp_tint(fs);
1676 ieee754_csr.rm = oldrm;
1677 rfmt = w_fmt;
1678 goto copcsr;
1680 #endif /* __mips >= 2 */
1682 #if defined(__mips64)
1683 case fcvtl_op:{
1684 ieee754sp fs;
1686 SPFROMREG(fs, MIPSInst_FS(ir));
1687 rv.l = ieee754sp_tlong(fs);
1688 rfmt = l_fmt;
1689 goto copcsr;
1692 case froundl_op:
1693 case ftruncl_op:
1694 case fceill_op:
1695 case ffloorl_op:{
1696 unsigned int oldrm = ieee754_csr.rm;
1697 ieee754sp fs;
1699 SPFROMREG(fs, MIPSInst_FS(ir));
1700 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1701 rv.l = ieee754sp_tlong(fs);
1702 ieee754_csr.rm = oldrm;
1703 rfmt = l_fmt;
1704 goto copcsr;
1706 #endif /* defined(__mips64) */
1708 default:
1709 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1710 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1711 ieee754sp fs, ft;
1713 SPFROMREG(fs, MIPSInst_FS(ir));
1714 SPFROMREG(ft, MIPSInst_FT(ir));
1715 rv.w = ieee754sp_cmp(fs, ft,
1716 cmptab[cmpop & 0x7], cmpop & 0x8);
1717 rfmt = -1;
1718 if ((cmpop & 0x8) && ieee754_cxtest
1719 (IEEE754_INVALID_OPERATION))
1720 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1721 else
1722 goto copcsr;
1725 else {
1726 return SIGILL;
1728 break;
1730 break;
1733 case d_fmt:{
1734 union {
1735 ieee754dp(*b) (ieee754dp, ieee754dp);
1736 ieee754dp(*u) (ieee754dp);
1737 } handler;
1739 switch (MIPSInst_FUNC(ir)) {
1740 /* binary ops */
1741 case fadd_op:
1742 handler.b = ieee754dp_add;
1743 goto dcopbop;
1744 case fsub_op:
1745 handler.b = ieee754dp_sub;
1746 goto dcopbop;
1747 case fmul_op:
1748 handler.b = ieee754dp_mul;
1749 goto dcopbop;
1750 case fdiv_op:
1751 handler.b = ieee754dp_div;
1752 goto dcopbop;
1754 /* unary ops */
1755 #if __mips >= 2 || defined(__mips64)
1756 case fsqrt_op:
1757 handler.u = ieee754dp_sqrt;
1758 goto dcopuop;
1759 #endif
1760 #if __mips >= 4 && __mips != 32
1761 case frsqrt_op:
1762 handler.u = fpemu_dp_rsqrt;
1763 goto dcopuop;
1764 case frecip_op:
1765 handler.u = fpemu_dp_recip;
1766 goto dcopuop;
1767 #endif
1768 #if __mips >= 4
1769 case fmovc_op:
1770 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1771 if (((ctx->fcr31 & cond) != 0) !=
1772 ((MIPSInst_FT(ir) & 1) != 0))
1773 return 0;
1774 DPFROMREG(rv.d, MIPSInst_FS(ir));
1775 break;
1776 case fmovz_op:
1777 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1778 return 0;
1779 DPFROMREG(rv.d, MIPSInst_FS(ir));
1780 break;
1781 case fmovn_op:
1782 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1783 return 0;
1784 DPFROMREG(rv.d, MIPSInst_FS(ir));
1785 break;
1786 #endif
1787 case fabs_op:
1788 handler.u = ieee754dp_abs;
1789 goto dcopuop;
1791 case fneg_op:
1792 handler.u = ieee754dp_neg;
1793 goto dcopuop;
1795 case fmov_op:
1796 /* an easy one */
1797 DPFROMREG(rv.d, MIPSInst_FS(ir));
1798 goto copcsr;
1800 /* binary op on handler */
1801 dcopbop:{
1802 ieee754dp fs, ft;
1804 DPFROMREG(fs, MIPSInst_FS(ir));
1805 DPFROMREG(ft, MIPSInst_FT(ir));
1807 rv.d = (*handler.b) (fs, ft);
1808 goto copcsr;
1810 dcopuop:{
1811 ieee754dp fs;
1813 DPFROMREG(fs, MIPSInst_FS(ir));
1814 rv.d = (*handler.u) (fs);
1815 goto copcsr;
1818 /* unary conv ops */
1819 case fcvts_op:{
1820 ieee754dp fs;
1822 DPFROMREG(fs, MIPSInst_FS(ir));
1823 rv.s = ieee754sp_fdp(fs);
1824 rfmt = s_fmt;
1825 goto copcsr;
1827 case fcvtd_op:
1828 return SIGILL; /* not defined */
1830 case fcvtw_op:{
1831 ieee754dp fs;
1833 DPFROMREG(fs, MIPSInst_FS(ir));
1834 rv.w = ieee754dp_tint(fs); /* wrong */
1835 rfmt = w_fmt;
1836 goto copcsr;
1839 #if __mips >= 2 || defined(__mips64)
1840 case fround_op:
1841 case ftrunc_op:
1842 case fceil_op:
1843 case ffloor_op:{
1844 unsigned int oldrm = ieee754_csr.rm;
1845 ieee754dp fs;
1847 DPFROMREG(fs, MIPSInst_FS(ir));
1848 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1849 rv.w = ieee754dp_tint(fs);
1850 ieee754_csr.rm = oldrm;
1851 rfmt = w_fmt;
1852 goto copcsr;
1854 #endif
1856 #if defined(__mips64)
1857 case fcvtl_op:{
1858 ieee754dp fs;
1860 DPFROMREG(fs, MIPSInst_FS(ir));
1861 rv.l = ieee754dp_tlong(fs);
1862 rfmt = l_fmt;
1863 goto copcsr;
1866 case froundl_op:
1867 case ftruncl_op:
1868 case fceill_op:
1869 case ffloorl_op:{
1870 unsigned int oldrm = ieee754_csr.rm;
1871 ieee754dp fs;
1873 DPFROMREG(fs, MIPSInst_FS(ir));
1874 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1875 rv.l = ieee754dp_tlong(fs);
1876 ieee754_csr.rm = oldrm;
1877 rfmt = l_fmt;
1878 goto copcsr;
1880 #endif /* __mips >= 3 */
1882 default:
1883 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1884 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1885 ieee754dp fs, ft;
1887 DPFROMREG(fs, MIPSInst_FS(ir));
1888 DPFROMREG(ft, MIPSInst_FT(ir));
1889 rv.w = ieee754dp_cmp(fs, ft,
1890 cmptab[cmpop & 0x7], cmpop & 0x8);
1891 rfmt = -1;
1892 if ((cmpop & 0x8)
1894 ieee754_cxtest
1895 (IEEE754_INVALID_OPERATION))
1896 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1897 else
1898 goto copcsr;
1901 else {
1902 return SIGILL;
1904 break;
1906 break;
1909 case w_fmt:{
1910 ieee754sp fs;
1912 switch (MIPSInst_FUNC(ir)) {
1913 case fcvts_op:
1914 /* convert word to single precision real */
1915 SPFROMREG(fs, MIPSInst_FS(ir));
1916 rv.s = ieee754sp_fint(fs.bits);
1917 rfmt = s_fmt;
1918 goto copcsr;
1919 case fcvtd_op:
1920 /* convert word to double precision real */
1921 SPFROMREG(fs, MIPSInst_FS(ir));
1922 rv.d = ieee754dp_fint(fs.bits);
1923 rfmt = d_fmt;
1924 goto copcsr;
1925 default:
1926 return SIGILL;
1928 break;
1931 #if defined(__mips64)
1932 case l_fmt:{
1933 switch (MIPSInst_FUNC(ir)) {
1934 case fcvts_op:
1935 /* convert long to single precision real */
1936 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1937 rfmt = s_fmt;
1938 goto copcsr;
1939 case fcvtd_op:
1940 /* convert long to double precision real */
1941 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1942 rfmt = d_fmt;
1943 goto copcsr;
1944 default:
1945 return SIGILL;
1947 break;
1949 #endif
1951 default:
1952 return SIGILL;
1956 * Update the fpu CSR register for this operation.
1957 * If an exception is required, generate a tidy SIGFPE exception,
1958 * without updating the result register.
1959 * Note: cause exception bits do not accumulate, they are rewritten
1960 * for each op; only the flag/sticky bits accumulate.
1962 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1963 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1964 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1965 return SIGFPE;
1969 * Now we can safely write the result back to the register file.
1971 switch (rfmt) {
1972 case -1:{
1973 #if __mips >= 4
1974 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1975 #else
1976 cond = FPU_CSR_COND;
1977 #endif
1978 if (rv.w)
1979 ctx->fcr31 |= cond;
1980 else
1981 ctx->fcr31 &= ~cond;
1982 break;
1984 case d_fmt:
1985 DPTOREG(rv.d, MIPSInst_FD(ir));
1986 break;
1987 case s_fmt:
1988 SPTOREG(rv.s, MIPSInst_FD(ir));
1989 break;
1990 case w_fmt:
1991 SITOREG(rv.w, MIPSInst_FD(ir));
1992 break;
1993 #if defined(__mips64)
1994 case l_fmt:
1995 DITOREG(rv.l, MIPSInst_FD(ir));
1996 break;
1997 #endif
1998 default:
1999 return SIGILL;
2002 return 0;
2005 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2006 int has_fpu, void *__user *fault_addr)
2008 unsigned long oldepc, prevepc;
2009 struct mm_decoded_insn dec_insn;
2010 u16 instr[4];
2011 u16 *instr_ptr;
2012 int sig = 0;
2014 oldepc = xcp->cp0_epc;
2015 do {
2016 prevepc = xcp->cp0_epc;
2018 if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2020 * Get next 2 microMIPS instructions and convert them
2021 * into 32-bit instructions.
2023 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2024 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2025 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2026 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2027 MIPS_FPU_EMU_INC_STATS(errors);
2028 return SIGBUS;
2030 instr_ptr = instr;
2032 /* Get first instruction. */
2033 if (mm_insn_16bit(*instr_ptr)) {
2034 /* Duplicate the half-word. */
2035 dec_insn.insn = (*instr_ptr << 16) |
2036 (*instr_ptr);
2037 /* 16-bit instruction. */
2038 dec_insn.pc_inc = 2;
2039 instr_ptr += 1;
2040 } else {
2041 dec_insn.insn = (*instr_ptr << 16) |
2042 *(instr_ptr+1);
2043 /* 32-bit instruction. */
2044 dec_insn.pc_inc = 4;
2045 instr_ptr += 2;
2047 /* Get second instruction. */
2048 if (mm_insn_16bit(*instr_ptr)) {
2049 /* Duplicate the half-word. */
2050 dec_insn.next_insn = (*instr_ptr << 16) |
2051 (*instr_ptr);
2052 /* 16-bit instruction. */
2053 dec_insn.next_pc_inc = 2;
2054 } else {
2055 dec_insn.next_insn = (*instr_ptr << 16) |
2056 *(instr_ptr+1);
2057 /* 32-bit instruction. */
2058 dec_insn.next_pc_inc = 4;
2060 dec_insn.micro_mips_mode = 1;
2061 } else {
2062 if ((get_user(dec_insn.insn,
2063 (mips_instruction __user *) xcp->cp0_epc)) ||
2064 (get_user(dec_insn.next_insn,
2065 (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2066 MIPS_FPU_EMU_INC_STATS(errors);
2067 return SIGBUS;
2069 dec_insn.pc_inc = 4;
2070 dec_insn.next_pc_inc = 4;
2071 dec_insn.micro_mips_mode = 0;
2074 if ((dec_insn.insn == 0) ||
2075 ((dec_insn.pc_inc == 2) &&
2076 ((dec_insn.insn & 0xffff) == MM_NOP16)))
2077 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */
2078 else {
2080 * The 'ieee754_csr' is an alias of
2081 * ctx->fcr31. No need to copy ctx->fcr31 to
2082 * ieee754_csr. But ieee754_csr.rm is ieee
2083 * library modes. (not mips rounding mode)
2085 /* convert to ieee library modes */
2086 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2087 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2088 /* revert to mips rounding mode */
2089 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2092 if (has_fpu)
2093 break;
2094 if (sig)
2095 break;
2097 cond_resched();
2098 } while (xcp->cp0_epc > prevepc);
2100 /* SIGILL indicates a non-fpu instruction */
2101 if (sig == SIGILL && xcp->cp0_epc != oldepc)
2102 /* but if epc has advanced, then ignore it */
2103 sig = 0;
2105 return sig;
2108 #ifdef CONFIG_DEBUG_FS
2110 static int fpuemu_stat_get(void *data, u64 *val)
2112 int cpu;
2113 unsigned long sum = 0;
2114 for_each_online_cpu(cpu) {
2115 struct mips_fpu_emulator_stats *ps;
2116 local_t *pv;
2117 ps = &per_cpu(fpuemustats, cpu);
2118 pv = (void *)ps + (unsigned long)data;
2119 sum += local_read(pv);
2121 *val = sum;
2122 return 0;
2124 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2126 extern struct dentry *mips_debugfs_dir;
2127 static int __init debugfs_fpuemu(void)
2129 struct dentry *d, *dir;
2131 if (!mips_debugfs_dir)
2132 return -ENODEV;
2133 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2134 if (!dir)
2135 return -ENOMEM;
2137 #define FPU_STAT_CREATE(M) \
2138 do { \
2139 d = debugfs_create_file(#M , S_IRUGO, dir, \
2140 (void *)offsetof(struct mips_fpu_emulator_stats, M), \
2141 &fops_fpuemu_stat); \
2142 if (!d) \
2143 return -ENOMEM; \
2144 } while (0)
2146 FPU_STAT_CREATE(emulated);
2147 FPU_STAT_CREATE(loads);
2148 FPU_STAT_CREATE(stores);
2149 FPU_STAT_CREATE(cp1ops);
2150 FPU_STAT_CREATE(cp1xops);
2151 FPU_STAT_CREATE(errors);
2153 return 0;
2155 __initcall(debugfs_fpuemu);
2156 #endif