2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
49 #include <asm/uaccess.h>
50 #include <asm/branch.h>
54 /* Strap kernel emulator for full MIPS IV emulation */
61 /* Function which emulates a floating point instruction. */
63 static int fpu_emu(struct pt_regs
*, struct mips_fpu_struct
*,
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs
*,
68 struct mips_fpu_struct
*, mips_instruction
, void *__user
*);
71 /* Further private data for which no space exists in mips_fpu_struct */
73 #ifdef CONFIG_DEBUG_FS
74 DEFINE_PER_CPU(struct mips_fpu_emulator_stats
, fpuemustats
);
77 /* Control registers */
79 #define FPCREG_RID 0 /* $0 = revision id */
80 #define FPCREG_CSR 31 /* $31 = csr */
82 /* Determine rounding mode from the RM bits of the FCSR */
83 #define modeindex(v) ((v) & FPU_CSR_RM)
85 /* microMIPS bitfields */
86 #define MM_POOL32A_MINOR_MASK 0x3f
87 #define MM_POOL32A_MINOR_SHIFT 0x6
88 #define MM_MIPS32_COND_FC 0x30
90 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
91 static const unsigned char ieee_rm
[4] = {
92 [FPU_CSR_RN
] = IEEE754_RN
,
93 [FPU_CSR_RZ
] = IEEE754_RZ
,
94 [FPU_CSR_RU
] = IEEE754_RU
,
95 [FPU_CSR_RD
] = IEEE754_RD
,
97 /* Convert IEEE library modes to Mips rounding mode (0..3). */
98 static const unsigned char mips_rm
[4] = {
99 [IEEE754_RN
] = FPU_CSR_RN
,
100 [IEEE754_RZ
] = FPU_CSR_RZ
,
101 [IEEE754_RD
] = FPU_CSR_RD
,
102 [IEEE754_RU
] = FPU_CSR_RU
,
106 /* convert condition code register number to csr bit */
107 static const unsigned int fpucondbit
[8] = {
119 /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120 static const unsigned int reg16to32map
[8] = {16, 17, 2, 3, 4, 5, 6, 7};
122 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123 static const int sd_format
[] = {16, 17, 0, 0, 0, 0, 0, 0};
124 static const int sdps_format
[] = {16, 17, 22, 0, 0, 0, 0, 0};
125 static const int dwl_format
[] = {17, 20, 21, 0, 0, 0, 0, 0};
126 static const int swl_format
[] = {16, 20, 21, 0, 0, 0, 0, 0};
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
133 static int microMIPS32_to_MIPS32(union mips_instruction
*insn_ptr
)
135 union mips_instruction insn
= *insn_ptr
;
136 union mips_instruction mips32_insn
= insn
;
139 switch (insn
.mm_i_format
.opcode
) {
141 mips32_insn
.mm_i_format
.opcode
= ldc1_op
;
142 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
143 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
146 mips32_insn
.mm_i_format
.opcode
= lwc1_op
;
147 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
148 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
151 mips32_insn
.mm_i_format
.opcode
= sdc1_op
;
152 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
153 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
156 mips32_insn
.mm_i_format
.opcode
= swc1_op
;
157 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
158 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
161 /* NOTE: offset is << by 1 if in microMIPS mode. */
162 if ((insn
.mm_i_format
.rt
== mm_bc1f_op
) ||
163 (insn
.mm_i_format
.rt
== mm_bc1t_op
)) {
164 mips32_insn
.fb_format
.opcode
= cop1_op
;
165 mips32_insn
.fb_format
.bc
= bc_op
;
166 mips32_insn
.fb_format
.flag
=
167 (insn
.mm_i_format
.rt
== mm_bc1t_op
) ? 1 : 0;
172 switch (insn
.mm_fp0_format
.func
) {
181 op
= insn
.mm_fp0_format
.func
;
182 if (op
== mm_32f_01_op
)
184 else if (op
== mm_32f_11_op
)
186 else if (op
== mm_32f_02_op
)
188 else if (op
== mm_32f_12_op
)
190 else if (op
== mm_32f_41_op
)
192 else if (op
== mm_32f_51_op
)
194 else if (op
== mm_32f_42_op
)
198 mips32_insn
.fp6_format
.opcode
= cop1x_op
;
199 mips32_insn
.fp6_format
.fr
= insn
.mm_fp6_format
.fr
;
200 mips32_insn
.fp6_format
.ft
= insn
.mm_fp6_format
.ft
;
201 mips32_insn
.fp6_format
.fs
= insn
.mm_fp6_format
.fs
;
202 mips32_insn
.fp6_format
.fd
= insn
.mm_fp6_format
.fd
;
203 mips32_insn
.fp6_format
.func
= func
;
206 func
= -1; /* Invalid */
207 op
= insn
.mm_fp5_format
.op
& 0x7;
208 if (op
== mm_ldxc1_op
)
210 else if (op
== mm_sdxc1_op
)
212 else if (op
== mm_lwxc1_op
)
214 else if (op
== mm_swxc1_op
)
218 mips32_insn
.r_format
.opcode
= cop1x_op
;
219 mips32_insn
.r_format
.rs
=
220 insn
.mm_fp5_format
.base
;
221 mips32_insn
.r_format
.rt
=
222 insn
.mm_fp5_format
.index
;
223 mips32_insn
.r_format
.rd
= 0;
224 mips32_insn
.r_format
.re
= insn
.mm_fp5_format
.fd
;
225 mips32_insn
.r_format
.func
= func
;
230 op
= -1; /* Invalid */
231 if (insn
.mm_fp2_format
.op
== mm_fmovt_op
)
233 else if (insn
.mm_fp2_format
.op
== mm_fmovf_op
)
236 mips32_insn
.fp0_format
.opcode
= cop1_op
;
237 mips32_insn
.fp0_format
.fmt
=
238 sdps_format
[insn
.mm_fp2_format
.fmt
];
239 mips32_insn
.fp0_format
.ft
=
240 (insn
.mm_fp2_format
.cc
<<2) + op
;
241 mips32_insn
.fp0_format
.fs
=
242 insn
.mm_fp2_format
.fs
;
243 mips32_insn
.fp0_format
.fd
=
244 insn
.mm_fp2_format
.fd
;
245 mips32_insn
.fp0_format
.func
= fmovc_op
;
250 func
= -1; /* Invalid */
251 if (insn
.mm_fp0_format
.op
== mm_fadd_op
)
253 else if (insn
.mm_fp0_format
.op
== mm_fsub_op
)
255 else if (insn
.mm_fp0_format
.op
== mm_fmul_op
)
257 else if (insn
.mm_fp0_format
.op
== mm_fdiv_op
)
260 mips32_insn
.fp0_format
.opcode
= cop1_op
;
261 mips32_insn
.fp0_format
.fmt
=
262 sdps_format
[insn
.mm_fp0_format
.fmt
];
263 mips32_insn
.fp0_format
.ft
=
264 insn
.mm_fp0_format
.ft
;
265 mips32_insn
.fp0_format
.fs
=
266 insn
.mm_fp0_format
.fs
;
267 mips32_insn
.fp0_format
.fd
=
268 insn
.mm_fp0_format
.fd
;
269 mips32_insn
.fp0_format
.func
= func
;
274 func
= -1; /* Invalid */
275 if (insn
.mm_fp0_format
.op
== mm_fmovn_op
)
277 else if (insn
.mm_fp0_format
.op
== mm_fmovz_op
)
280 mips32_insn
.fp0_format
.opcode
= cop1_op
;
281 mips32_insn
.fp0_format
.fmt
=
282 sdps_format
[insn
.mm_fp0_format
.fmt
];
283 mips32_insn
.fp0_format
.ft
=
284 insn
.mm_fp0_format
.ft
;
285 mips32_insn
.fp0_format
.fs
=
286 insn
.mm_fp0_format
.fs
;
287 mips32_insn
.fp0_format
.fd
=
288 insn
.mm_fp0_format
.fd
;
289 mips32_insn
.fp0_format
.func
= func
;
293 case mm_32f_73_op
: /* POOL32FXF */
294 switch (insn
.mm_fp1_format
.op
) {
299 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
304 mips32_insn
.r_format
.opcode
= spec_op
;
305 mips32_insn
.r_format
.rs
= insn
.mm_fp4_format
.fs
;
306 mips32_insn
.r_format
.rt
=
307 (insn
.mm_fp4_format
.cc
<< 2) + op
;
308 mips32_insn
.r_format
.rd
= insn
.mm_fp4_format
.rt
;
309 mips32_insn
.r_format
.re
= 0;
310 mips32_insn
.r_format
.func
= movc_op
;
316 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
319 fmt
= swl_format
[insn
.mm_fp3_format
.fmt
];
322 fmt
= dwl_format
[insn
.mm_fp3_format
.fmt
];
324 mips32_insn
.fp0_format
.opcode
= cop1_op
;
325 mips32_insn
.fp0_format
.fmt
= fmt
;
326 mips32_insn
.fp0_format
.ft
= 0;
327 mips32_insn
.fp0_format
.fs
=
328 insn
.mm_fp3_format
.fs
;
329 mips32_insn
.fp0_format
.fd
=
330 insn
.mm_fp3_format
.rt
;
331 mips32_insn
.fp0_format
.func
= func
;
339 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
342 else if ((insn
.mm_fp1_format
.op
& 0x7f) ==
347 mips32_insn
.fp0_format
.opcode
= cop1_op
;
348 mips32_insn
.fp0_format
.fmt
=
349 sdps_format
[insn
.mm_fp3_format
.fmt
];
350 mips32_insn
.fp0_format
.ft
= 0;
351 mips32_insn
.fp0_format
.fs
=
352 insn
.mm_fp3_format
.fs
;
353 mips32_insn
.fp0_format
.fd
=
354 insn
.mm_fp3_format
.rt
;
355 mips32_insn
.fp0_format
.func
= func
;
367 if (insn
.mm_fp1_format
.op
== mm_ffloorl_op
)
369 else if (insn
.mm_fp1_format
.op
== mm_ffloorw_op
)
371 else if (insn
.mm_fp1_format
.op
== mm_fceill_op
)
373 else if (insn
.mm_fp1_format
.op
== mm_fceilw_op
)
375 else if (insn
.mm_fp1_format
.op
== mm_ftruncl_op
)
377 else if (insn
.mm_fp1_format
.op
== mm_ftruncw_op
)
379 else if (insn
.mm_fp1_format
.op
== mm_froundl_op
)
381 else if (insn
.mm_fp1_format
.op
== mm_froundw_op
)
383 else if (insn
.mm_fp1_format
.op
== mm_fcvtl_op
)
387 mips32_insn
.fp0_format
.opcode
= cop1_op
;
388 mips32_insn
.fp0_format
.fmt
=
389 sd_format
[insn
.mm_fp1_format
.fmt
];
390 mips32_insn
.fp0_format
.ft
= 0;
391 mips32_insn
.fp0_format
.fs
=
392 insn
.mm_fp1_format
.fs
;
393 mips32_insn
.fp0_format
.fd
=
394 insn
.mm_fp1_format
.rt
;
395 mips32_insn
.fp0_format
.func
= func
;
400 if (insn
.mm_fp1_format
.op
== mm_frsqrt_op
)
402 else if (insn
.mm_fp1_format
.op
== mm_fsqrt_op
)
406 mips32_insn
.fp0_format
.opcode
= cop1_op
;
407 mips32_insn
.fp0_format
.fmt
=
408 sdps_format
[insn
.mm_fp1_format
.fmt
];
409 mips32_insn
.fp0_format
.ft
= 0;
410 mips32_insn
.fp0_format
.fs
=
411 insn
.mm_fp1_format
.fs
;
412 mips32_insn
.fp0_format
.fd
=
413 insn
.mm_fp1_format
.rt
;
414 mips32_insn
.fp0_format
.func
= func
;
420 if (insn
.mm_fp1_format
.op
== mm_mfc1_op
)
422 else if (insn
.mm_fp1_format
.op
== mm_mtc1_op
)
424 else if (insn
.mm_fp1_format
.op
== mm_cfc1_op
)
428 mips32_insn
.fp1_format
.opcode
= cop1_op
;
429 mips32_insn
.fp1_format
.op
= op
;
430 mips32_insn
.fp1_format
.rt
=
431 insn
.mm_fp1_format
.rt
;
432 mips32_insn
.fp1_format
.fs
=
433 insn
.mm_fp1_format
.fs
;
434 mips32_insn
.fp1_format
.fd
= 0;
435 mips32_insn
.fp1_format
.func
= 0;
441 case mm_32f_74_op
: /* c.cond.fmt */
442 mips32_insn
.fp0_format
.opcode
= cop1_op
;
443 mips32_insn
.fp0_format
.fmt
=
444 sdps_format
[insn
.mm_fp4_format
.fmt
];
445 mips32_insn
.fp0_format
.ft
= insn
.mm_fp4_format
.rt
;
446 mips32_insn
.fp0_format
.fs
= insn
.mm_fp4_format
.fs
;
447 mips32_insn
.fp0_format
.fd
= insn
.mm_fp4_format
.cc
<< 2;
448 mips32_insn
.fp0_format
.func
=
449 insn
.mm_fp4_format
.cond
| MM_MIPS32_COND_FC
;
459 *insn_ptr
= mips32_insn
;
463 int mm_isBranchInstr(struct pt_regs
*regs
, struct mm_decoded_insn dec_insn
,
464 unsigned long *contpc
)
466 union mips_instruction insn
= (union mips_instruction
)dec_insn
.insn
;
474 switch (insn
.mm_i_format
.opcode
) {
476 if ((insn
.mm_i_format
.simmediate
& MM_POOL32A_MINOR_MASK
) ==
478 switch (insn
.mm_i_format
.simmediate
>>
479 MM_POOL32A_MINOR_SHIFT
) {
484 if (insn
.mm_i_format
.rt
!= 0) /* Not mm_jr */
485 regs
->regs
[insn
.mm_i_format
.rt
] =
488 dec_insn
.next_pc_inc
;
489 *contpc
= regs
->regs
[insn
.mm_i_format
.rs
];
495 switch (insn
.mm_i_format
.rt
) {
498 regs
->regs
[31] = regs
->cp0_epc
+
500 dec_insn
.next_pc_inc
;
503 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] < 0)
504 *contpc
= regs
->cp0_epc
+
506 (insn
.mm_i_format
.simmediate
<< 1);
508 *contpc
= regs
->cp0_epc
+
510 dec_insn
.next_pc_inc
;
514 regs
->regs
[31] = regs
->cp0_epc
+
516 dec_insn
.next_pc_inc
;
519 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] >= 0)
520 *contpc
= regs
->cp0_epc
+
522 (insn
.mm_i_format
.simmediate
<< 1);
524 *contpc
= regs
->cp0_epc
+
526 dec_insn
.next_pc_inc
;
529 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] <= 0)
530 *contpc
= regs
->cp0_epc
+
532 (insn
.mm_i_format
.simmediate
<< 1);
534 *contpc
= regs
->cp0_epc
+
536 dec_insn
.next_pc_inc
;
539 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] <= 0)
540 *contpc
= regs
->cp0_epc
+
542 (insn
.mm_i_format
.simmediate
<< 1);
544 *contpc
= regs
->cp0_epc
+
546 dec_insn
.next_pc_inc
;
556 asm volatile("cfc1\t%0,$31" : "=r" (fcr31
));
558 fcr31
= current
->thread
.fpu
.fcr31
;
564 bit
= (insn
.mm_i_format
.rs
>> 2);
567 if (fcr31
& (1 << bit
))
568 *contpc
= regs
->cp0_epc
+
570 (insn
.mm_i_format
.simmediate
<< 1);
572 *contpc
= regs
->cp0_epc
+
573 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
578 switch (insn
.mm_i_format
.rt
) {
581 regs
->regs
[31] = regs
->cp0_epc
+
582 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
585 *contpc
= regs
->regs
[insn
.mm_i_format
.rs
];
590 if ((long)regs
->regs
[reg16to32map
[insn
.mm_b1_format
.rs
]] == 0)
591 *contpc
= regs
->cp0_epc
+
593 (insn
.mm_b1_format
.simmediate
<< 1);
595 *contpc
= regs
->cp0_epc
+
596 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
599 if ((long)regs
->regs
[reg16to32map
[insn
.mm_b1_format
.rs
]] != 0)
600 *contpc
= regs
->cp0_epc
+
602 (insn
.mm_b1_format
.simmediate
<< 1);
604 *contpc
= regs
->cp0_epc
+
605 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
608 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
609 (insn
.mm_b0_format
.simmediate
<< 1);
612 if (regs
->regs
[insn
.mm_i_format
.rs
] ==
613 regs
->regs
[insn
.mm_i_format
.rt
])
614 *contpc
= regs
->cp0_epc
+
616 (insn
.mm_i_format
.simmediate
<< 1);
618 *contpc
= regs
->cp0_epc
+
620 dec_insn
.next_pc_inc
;
623 if (regs
->regs
[insn
.mm_i_format
.rs
] !=
624 regs
->regs
[insn
.mm_i_format
.rt
])
625 *contpc
= regs
->cp0_epc
+
627 (insn
.mm_i_format
.simmediate
<< 1);
629 *contpc
= regs
->cp0_epc
+
630 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
633 regs
->regs
[31] = regs
->cp0_epc
+
634 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
635 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
638 *contpc
|= (insn
.j_format
.target
<< 2);
642 regs
->regs
[31] = regs
->cp0_epc
+
643 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
646 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
649 *contpc
|= (insn
.j_format
.target
<< 1);
650 set_isa16_mode(*contpc
);
657 * Redundant with logic already in kernel/branch.c,
658 * embedded in compute_return_epc. At some point,
659 * a single subroutine should be used across both
662 static int isBranchInstr(struct pt_regs
*regs
, struct mm_decoded_insn dec_insn
,
663 unsigned long *contpc
)
665 union mips_instruction insn
= (union mips_instruction
)dec_insn
.insn
;
667 unsigned int bit
= 0;
669 switch (insn
.i_format
.opcode
) {
671 switch (insn
.r_format
.func
) {
673 regs
->regs
[insn
.r_format
.rd
] =
674 regs
->cp0_epc
+ dec_insn
.pc_inc
+
675 dec_insn
.next_pc_inc
;
678 *contpc
= regs
->regs
[insn
.r_format
.rs
];
683 switch (insn
.i_format
.rt
) {
686 regs
->regs
[31] = regs
->cp0_epc
+
688 dec_insn
.next_pc_inc
;
692 if ((long)regs
->regs
[insn
.i_format
.rs
] < 0)
693 *contpc
= regs
->cp0_epc
+
695 (insn
.i_format
.simmediate
<< 2);
697 *contpc
= regs
->cp0_epc
+
699 dec_insn
.next_pc_inc
;
703 regs
->regs
[31] = regs
->cp0_epc
+
705 dec_insn
.next_pc_inc
;
709 if ((long)regs
->regs
[insn
.i_format
.rs
] >= 0)
710 *contpc
= regs
->cp0_epc
+
712 (insn
.i_format
.simmediate
<< 2);
714 *contpc
= regs
->cp0_epc
+
716 dec_insn
.next_pc_inc
;
723 regs
->regs
[31] = regs
->cp0_epc
+
725 dec_insn
.next_pc_inc
;
728 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
731 *contpc
|= (insn
.j_format
.target
<< 2);
732 /* Set microMIPS mode bit: XOR for jalx. */
737 if (regs
->regs
[insn
.i_format
.rs
] ==
738 regs
->regs
[insn
.i_format
.rt
])
739 *contpc
= regs
->cp0_epc
+
741 (insn
.i_format
.simmediate
<< 2);
743 *contpc
= regs
->cp0_epc
+
745 dec_insn
.next_pc_inc
;
749 if (regs
->regs
[insn
.i_format
.rs
] !=
750 regs
->regs
[insn
.i_format
.rt
])
751 *contpc
= regs
->cp0_epc
+
753 (insn
.i_format
.simmediate
<< 2);
755 *contpc
= regs
->cp0_epc
+
757 dec_insn
.next_pc_inc
;
761 if ((long)regs
->regs
[insn
.i_format
.rs
] <= 0)
762 *contpc
= regs
->cp0_epc
+
764 (insn
.i_format
.simmediate
<< 2);
766 *contpc
= regs
->cp0_epc
+
768 dec_insn
.next_pc_inc
;
772 if ((long)regs
->regs
[insn
.i_format
.rs
] > 0)
773 *contpc
= regs
->cp0_epc
+
775 (insn
.i_format
.simmediate
<< 2);
777 *contpc
= regs
->cp0_epc
+
779 dec_insn
.next_pc_inc
;
781 #ifdef CONFIG_CPU_CAVIUM_OCTEON
782 case lwc2_op
: /* This is bbit0 on Octeon */
783 if ((regs
->regs
[insn
.i_format
.rs
] & (1ull<<insn
.i_format
.rt
)) == 0)
784 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
786 *contpc
= regs
->cp0_epc
+ 8;
788 case ldc2_op
: /* This is bbit032 on Octeon */
789 if ((regs
->regs
[insn
.i_format
.rs
] & (1ull<<(insn
.i_format
.rt
+ 32))) == 0)
790 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
792 *contpc
= regs
->cp0_epc
+ 8;
794 case swc2_op
: /* This is bbit1 on Octeon */
795 if (regs
->regs
[insn
.i_format
.rs
] & (1ull<<insn
.i_format
.rt
))
796 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
798 *contpc
= regs
->cp0_epc
+ 8;
800 case sdc2_op
: /* This is bbit132 on Octeon */
801 if (regs
->regs
[insn
.i_format
.rs
] & (1ull<<(insn
.i_format
.rt
+ 32)))
802 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
804 *contpc
= regs
->cp0_epc
+ 8;
811 if (insn
.i_format
.rs
== bc_op
) {
814 asm volatile("cfc1\t%0,$31" : "=r" (fcr31
));
816 fcr31
= current
->thread
.fpu
.fcr31
;
819 bit
= (insn
.i_format
.rt
>> 2);
822 switch (insn
.i_format
.rt
& 3) {
825 if (~fcr31
& (1 << bit
))
826 *contpc
= regs
->cp0_epc
+
828 (insn
.i_format
.simmediate
<< 2);
830 *contpc
= regs
->cp0_epc
+
832 dec_insn
.next_pc_inc
;
836 if (fcr31
& (1 << bit
))
837 *contpc
= regs
->cp0_epc
+
839 (insn
.i_format
.simmediate
<< 2);
841 *contpc
= regs
->cp0_epc
+
843 dec_insn
.next_pc_inc
;
853 * In the Linux kernel, we support selection of FPR format on the
854 * basis of the Status.FR bit. If an FPU is not present, the FR bit
855 * is hardwired to zero, which would imply a 32-bit FPU even for
856 * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
857 * FPU emu is slow and bulky and optimizing this function offers fairly
858 * sizeable benefits so we try to be clever and make this function return
859 * a constant whenever possible, that is on 64-bit kernels without O32
860 * compatibility enabled and on 32-bit kernels.
862 static inline int cop1_64bit(struct pt_regs
*xcp
)
864 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
866 #elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
867 return !test_thread_flag(TIF_32BIT_REGS
);
873 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
874 (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
876 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
877 cop1_64bit(xcp) || !(x & 1) ? \
878 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
879 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
881 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
882 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
884 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
885 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
886 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
887 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
890 * Emulate the single floating point instruction pointed at by EPC.
891 * Two instructions if the instruction is in a branch delay slot.
894 static int cop1Emulate(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
895 struct mm_decoded_insn dec_insn
, void *__user
*fault_addr
)
898 unsigned long contpc
= xcp
->cp0_epc
+ dec_insn
.pc_inc
;
902 /* XXX NEC Vr54xx bug workaround */
903 if (xcp
->cp0_cause
& CAUSEF_BD
) {
904 if (dec_insn
.micro_mips_mode
) {
905 if (!mm_isBranchInstr(xcp
, dec_insn
, &contpc
))
906 xcp
->cp0_cause
&= ~CAUSEF_BD
;
908 if (!isBranchInstr(xcp
, dec_insn
, &contpc
))
909 xcp
->cp0_cause
&= ~CAUSEF_BD
;
913 if (xcp
->cp0_cause
& CAUSEF_BD
) {
915 * The instruction to be emulated is in a branch delay slot
916 * which means that we have to emulate the branch instruction
917 * BEFORE we do the cop1 instruction.
919 * This branch could be a COP1 branch, but in that case we
920 * would have had a trap for that instruction, and would not
921 * come through this route.
923 * Linux MIPS branch emulator operates on context, updating the
926 ir
= dec_insn
.next_insn
; /* process delay slot instr */
927 pc_inc
= dec_insn
.next_pc_inc
;
929 ir
= dec_insn
.insn
; /* process current instr */
930 pc_inc
= dec_insn
.pc_inc
;
934 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
935 * instructions, we want to convert microMIPS FPU instructions
936 * into MIPS32 instructions so that we could reuse all of the
937 * FPU emulation code.
939 * NOTE: We cannot do this for branch instructions since they
940 * are not a subset. Example: Cannot emulate a 16-bit
941 * aligned target address with a MIPS32 instruction.
943 if (dec_insn
.micro_mips_mode
) {
945 * If next instruction is a 16-bit instruction, then it
946 * it cannot be a FPU instruction. This could happen
947 * since we can be called for non-FPU instructions.
950 (microMIPS32_to_MIPS32((union mips_instruction
*)&ir
)
956 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, xcp
, 0);
957 MIPS_FPU_EMU_INC_STATS(emulated
);
958 switch (MIPSInst_OPCODE(ir
)) {
960 u64 __user
*va
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
964 MIPS_FPU_EMU_INC_STATS(loads
);
966 if (!access_ok(VERIFY_READ
, va
, sizeof(u64
))) {
967 MIPS_FPU_EMU_INC_STATS(errors
);
971 if (__get_user(val
, va
)) {
972 MIPS_FPU_EMU_INC_STATS(errors
);
976 DITOREG(val
, MIPSInst_RT(ir
));
981 u64 __user
*va
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
985 MIPS_FPU_EMU_INC_STATS(stores
);
986 DIFROMREG(val
, MIPSInst_RT(ir
));
987 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u64
))) {
988 MIPS_FPU_EMU_INC_STATS(errors
);
992 if (__put_user(val
, va
)) {
993 MIPS_FPU_EMU_INC_STATS(errors
);
1001 u32 __user
*va
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1005 MIPS_FPU_EMU_INC_STATS(loads
);
1006 if (!access_ok(VERIFY_READ
, va
, sizeof(u32
))) {
1007 MIPS_FPU_EMU_INC_STATS(errors
);
1011 if (__get_user(val
, va
)) {
1012 MIPS_FPU_EMU_INC_STATS(errors
);
1016 SITOREG(val
, MIPSInst_RT(ir
));
1021 u32 __user
*va
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1025 MIPS_FPU_EMU_INC_STATS(stores
);
1026 SIFROMREG(val
, MIPSInst_RT(ir
));
1027 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u32
))) {
1028 MIPS_FPU_EMU_INC_STATS(errors
);
1032 if (__put_user(val
, va
)) {
1033 MIPS_FPU_EMU_INC_STATS(errors
);
1041 switch (MIPSInst_RS(ir
)) {
1043 #if defined(__mips64)
1045 /* copregister fs -> gpr[rt] */
1046 if (MIPSInst_RT(ir
) != 0) {
1047 DIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
1053 /* copregister fs <- rt */
1054 DITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1059 /* copregister rd -> gpr[rt] */
1060 if (MIPSInst_RT(ir
) != 0) {
1061 SIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
1067 /* copregister rd <- rt */
1068 SITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1072 /* cop control register rd -> gpr[rt] */
1075 if (MIPSInst_RD(ir
) == FPCREG_CSR
) {
1077 value
= (value
& ~FPU_CSR_RM
) |
1078 mips_rm
[modeindex(value
)];
1080 printk("%p gpr[%d]<-csr=%08x\n",
1081 (void *) (xcp
->cp0_epc
),
1082 MIPSInst_RT(ir
), value
);
1085 else if (MIPSInst_RD(ir
) == FPCREG_RID
)
1089 if (MIPSInst_RT(ir
))
1090 xcp
->regs
[MIPSInst_RT(ir
)] = value
;
1095 /* copregister rd <- rt */
1098 if (MIPSInst_RT(ir
) == 0)
1101 value
= xcp
->regs
[MIPSInst_RT(ir
)];
1103 /* we only have one writable control reg
1105 if (MIPSInst_RD(ir
) == FPCREG_CSR
) {
1107 printk("%p gpr[%d]->csr=%08x\n",
1108 (void *) (xcp
->cp0_epc
),
1109 MIPSInst_RT(ir
), value
);
1113 * Don't write reserved bits,
1114 * and convert to ieee library modes
1116 ctx
->fcr31
= (value
&
1117 ~(FPU_CSR_RSVD
| FPU_CSR_RM
)) |
1118 ieee_rm
[modeindex(value
)];
1120 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1129 if (xcp
->cp0_cause
& CAUSEF_BD
)
1133 cond
= ctx
->fcr31
& fpucondbit
[MIPSInst_RT(ir
) >> 2];
1135 cond
= ctx
->fcr31
& FPU_CSR_COND
;
1137 switch (MIPSInst_RT(ir
) & 3) {
1148 /* thats an illegal instruction */
1152 xcp
->cp0_cause
|= CAUSEF_BD
;
1154 /* branch taken: emulate dslot
1157 xcp
->cp0_epc
+= dec_insn
.pc_inc
;
1159 contpc
= MIPSInst_SIMM(ir
);
1160 ir
= dec_insn
.next_insn
;
1161 if (dec_insn
.micro_mips_mode
) {
1162 contpc
= (xcp
->cp0_epc
+ (contpc
<< 1));
1164 /* If 16-bit instruction, not FPU. */
1165 if ((dec_insn
.next_pc_inc
== 2) ||
1166 (microMIPS32_to_MIPS32((union mips_instruction
*)&ir
) == SIGILL
)) {
1169 * Since this instruction will
1170 * be put on the stack with
1171 * 32-bit words, get around
1172 * this problem by putting a
1173 * NOP16 as the second one.
1175 if (dec_insn
.next_pc_inc
== 2)
1176 ir
= (ir
& (~0xffff)) | MM_NOP16
;
1179 * Single step the non-CP1
1180 * instruction in the dslot.
1182 return mips_dsemul(xcp
, ir
, contpc
);
1185 contpc
= (xcp
->cp0_epc
+ (contpc
<< 2));
1187 switch (MIPSInst_OPCODE(ir
)) {
1190 #if (__mips >= 2 || defined(__mips64))
1195 #if __mips >= 4 && __mips != 32
1198 /* its one of ours */
1202 if (MIPSInst_FUNC(ir
) == movc_op
)
1209 * Single step the non-cp1
1210 * instruction in the dslot
1212 return mips_dsemul(xcp
, ir
, contpc
);
1215 /* branch not taken */
1218 * branch likely nullifies
1219 * dslot if not taken
1221 xcp
->cp0_epc
+= dec_insn
.pc_inc
;
1222 contpc
+= dec_insn
.pc_inc
;
1224 * else continue & execute
1225 * dslot as normal insn
1233 if (!(MIPSInst_RS(ir
) & 0x10))
1238 /* a real fpu computation instruction */
1239 if ((sig
= fpu_emu(xcp
, ctx
, ir
)))
1245 #if __mips >= 4 && __mips != 32
1247 int sig
= fpux_emu(xcp
, ctx
, ir
, fault_addr
);
1256 if (MIPSInst_FUNC(ir
) != movc_op
)
1258 cond
= fpucondbit
[MIPSInst_RT(ir
) >> 2];
1259 if (((ctx
->fcr31
& cond
) != 0) == ((MIPSInst_RT(ir
) & 1) != 0))
1260 xcp
->regs
[MIPSInst_RD(ir
)] =
1261 xcp
->regs
[MIPSInst_RS(ir
)];
1270 xcp
->cp0_epc
= contpc
;
1271 xcp
->cp0_cause
&= ~CAUSEF_BD
;
1277 * Conversion table from MIPS compare ops 48-63
1278 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1280 static const unsigned char cmptab
[8] = {
1281 0, /* cmp_0 (sig) cmp_sf */
1282 IEEE754_CUN
, /* cmp_un (sig) cmp_ngle */
1283 IEEE754_CEQ
, /* cmp_eq (sig) cmp_seq */
1284 IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ueq (sig) cmp_ngl */
1285 IEEE754_CLT
, /* cmp_olt (sig) cmp_lt */
1286 IEEE754_CLT
| IEEE754_CUN
, /* cmp_ult (sig) cmp_nge */
1287 IEEE754_CLT
| IEEE754_CEQ
, /* cmp_ole (sig) cmp_le */
1288 IEEE754_CLT
| IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ule (sig) cmp_ngt */
1292 #if __mips >= 4 && __mips != 32
1295 * Additional MIPS4 instructions
1298 #define DEF3OP(name, p, f1, f2, f3) \
1299 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1302 struct _ieee754_csr ieee754_csr_save; \
1304 ieee754_csr_save = ieee754_csr; \
1306 ieee754_csr_save.cx |= ieee754_csr.cx; \
1307 ieee754_csr_save.sx |= ieee754_csr.sx; \
1309 ieee754_csr.cx |= ieee754_csr_save.cx; \
1310 ieee754_csr.sx |= ieee754_csr_save.sx; \
1314 static ieee754dp
fpemu_dp_recip(ieee754dp d
)
1316 return ieee754dp_div(ieee754dp_one(0), d
);
1319 static ieee754dp
fpemu_dp_rsqrt(ieee754dp d
)
1321 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d
));
1324 static ieee754sp
fpemu_sp_recip(ieee754sp s
)
1326 return ieee754sp_div(ieee754sp_one(0), s
);
1329 static ieee754sp
fpemu_sp_rsqrt(ieee754sp s
)
1331 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s
));
1334 DEF3OP(madd
, sp
, ieee754sp_mul
, ieee754sp_add
, );
1335 DEF3OP(msub
, sp
, ieee754sp_mul
, ieee754sp_sub
, );
1336 DEF3OP(nmadd
, sp
, ieee754sp_mul
, ieee754sp_add
, ieee754sp_neg
);
1337 DEF3OP(nmsub
, sp
, ieee754sp_mul
, ieee754sp_sub
, ieee754sp_neg
);
1338 DEF3OP(madd
, dp
, ieee754dp_mul
, ieee754dp_add
, );
1339 DEF3OP(msub
, dp
, ieee754dp_mul
, ieee754dp_sub
, );
1340 DEF3OP(nmadd
, dp
, ieee754dp_mul
, ieee754dp_add
, ieee754dp_neg
);
1341 DEF3OP(nmsub
, dp
, ieee754dp_mul
, ieee754dp_sub
, ieee754dp_neg
);
1343 static int fpux_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1344 mips_instruction ir
, void *__user
*fault_addr
)
1346 unsigned rcsr
= 0; /* resulting csr */
1348 MIPS_FPU_EMU_INC_STATS(cp1xops
);
1350 switch (MIPSInst_FMA_FFMT(ir
)) {
1351 case s_fmt
:{ /* 0 */
1353 ieee754sp(*handler
) (ieee754sp
, ieee754sp
, ieee754sp
);
1354 ieee754sp fd
, fr
, fs
, ft
;
1358 switch (MIPSInst_FUNC(ir
)) {
1360 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1361 xcp
->regs
[MIPSInst_FT(ir
)]);
1363 MIPS_FPU_EMU_INC_STATS(loads
);
1364 if (!access_ok(VERIFY_READ
, va
, sizeof(u32
))) {
1365 MIPS_FPU_EMU_INC_STATS(errors
);
1369 if (__get_user(val
, va
)) {
1370 MIPS_FPU_EMU_INC_STATS(errors
);
1374 SITOREG(val
, MIPSInst_FD(ir
));
1378 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1379 xcp
->regs
[MIPSInst_FT(ir
)]);
1381 MIPS_FPU_EMU_INC_STATS(stores
);
1383 SIFROMREG(val
, MIPSInst_FS(ir
));
1384 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u32
))) {
1385 MIPS_FPU_EMU_INC_STATS(errors
);
1389 if (put_user(val
, va
)) {
1390 MIPS_FPU_EMU_INC_STATS(errors
);
1397 handler
= fpemu_sp_madd
;
1400 handler
= fpemu_sp_msub
;
1403 handler
= fpemu_sp_nmadd
;
1406 handler
= fpemu_sp_nmsub
;
1410 SPFROMREG(fr
, MIPSInst_FR(ir
));
1411 SPFROMREG(fs
, MIPSInst_FS(ir
));
1412 SPFROMREG(ft
, MIPSInst_FT(ir
));
1413 fd
= (*handler
) (fr
, fs
, ft
);
1414 SPTOREG(fd
, MIPSInst_FD(ir
));
1417 if (ieee754_cxtest(IEEE754_INEXACT
))
1418 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
1419 if (ieee754_cxtest(IEEE754_UNDERFLOW
))
1420 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
1421 if (ieee754_cxtest(IEEE754_OVERFLOW
))
1422 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
1423 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
))
1424 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1426 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
1427 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1428 /*printk ("SIGFPE: fpu csr = %08x\n",
1441 case d_fmt
:{ /* 1 */
1442 ieee754dp(*handler
) (ieee754dp
, ieee754dp
, ieee754dp
);
1443 ieee754dp fd
, fr
, fs
, ft
;
1447 switch (MIPSInst_FUNC(ir
)) {
1449 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1450 xcp
->regs
[MIPSInst_FT(ir
)]);
1452 MIPS_FPU_EMU_INC_STATS(loads
);
1453 if (!access_ok(VERIFY_READ
, va
, sizeof(u64
))) {
1454 MIPS_FPU_EMU_INC_STATS(errors
);
1458 if (__get_user(val
, va
)) {
1459 MIPS_FPU_EMU_INC_STATS(errors
);
1463 DITOREG(val
, MIPSInst_FD(ir
));
1467 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1468 xcp
->regs
[MIPSInst_FT(ir
)]);
1470 MIPS_FPU_EMU_INC_STATS(stores
);
1471 DIFROMREG(val
, MIPSInst_FS(ir
));
1472 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u64
))) {
1473 MIPS_FPU_EMU_INC_STATS(errors
);
1477 if (__put_user(val
, va
)) {
1478 MIPS_FPU_EMU_INC_STATS(errors
);
1485 handler
= fpemu_dp_madd
;
1488 handler
= fpemu_dp_msub
;
1491 handler
= fpemu_dp_nmadd
;
1494 handler
= fpemu_dp_nmsub
;
1498 DPFROMREG(fr
, MIPSInst_FR(ir
));
1499 DPFROMREG(fs
, MIPSInst_FS(ir
));
1500 DPFROMREG(ft
, MIPSInst_FT(ir
));
1501 fd
= (*handler
) (fr
, fs
, ft
);
1502 DPTOREG(fd
, MIPSInst_FD(ir
));
1512 if (MIPSInst_FUNC(ir
) != pfetch_op
) {
1515 /* ignore prefx operation */
1529 * Emulate a single COP1 arithmetic instruction.
1531 static int fpu_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1532 mips_instruction ir
)
1534 int rfmt
; /* resulting format */
1535 unsigned rcsr
= 0; /* resulting csr */
1544 } rv
; /* resulting value */
1546 MIPS_FPU_EMU_INC_STATS(cp1ops
);
1547 switch (rfmt
= (MIPSInst_FFMT(ir
) & 0xf)) {
1548 case s_fmt
:{ /* 0 */
1550 ieee754sp(*b
) (ieee754sp
, ieee754sp
);
1551 ieee754sp(*u
) (ieee754sp
);
1554 switch (MIPSInst_FUNC(ir
)) {
1557 handler
.b
= ieee754sp_add
;
1560 handler
.b
= ieee754sp_sub
;
1563 handler
.b
= ieee754sp_mul
;
1566 handler
.b
= ieee754sp_div
;
1570 #if __mips >= 2 || defined(__mips64)
1572 handler
.u
= ieee754sp_sqrt
;
1575 #if __mips >= 4 && __mips != 32
1577 handler
.u
= fpemu_sp_rsqrt
;
1580 handler
.u
= fpemu_sp_recip
;
1585 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
1586 if (((ctx
->fcr31
& cond
) != 0) !=
1587 ((MIPSInst_FT(ir
) & 1) != 0))
1589 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1592 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
1594 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1597 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
1599 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1603 handler
.u
= ieee754sp_abs
;
1606 handler
.u
= ieee754sp_neg
;
1610 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1613 /* binary op on handler */
1618 SPFROMREG(fs
, MIPSInst_FS(ir
));
1619 SPFROMREG(ft
, MIPSInst_FT(ir
));
1621 rv
.s
= (*handler
.b
) (fs
, ft
);
1628 SPFROMREG(fs
, MIPSInst_FS(ir
));
1629 rv
.s
= (*handler
.u
) (fs
);
1633 if (ieee754_cxtest(IEEE754_INEXACT
))
1634 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
1635 if (ieee754_cxtest(IEEE754_UNDERFLOW
))
1636 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
1637 if (ieee754_cxtest(IEEE754_OVERFLOW
))
1638 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
1639 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE
))
1640 rcsr
|= FPU_CSR_DIV_X
| FPU_CSR_DIV_S
;
1641 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
))
1642 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1645 /* unary conv ops */
1647 return SIGILL
; /* not defined */
1651 SPFROMREG(fs
, MIPSInst_FS(ir
));
1652 rv
.d
= ieee754dp_fsp(fs
);
1659 SPFROMREG(fs
, MIPSInst_FS(ir
));
1660 rv
.w
= ieee754sp_tint(fs
);
1665 #if __mips >= 2 || defined(__mips64)
1670 unsigned int oldrm
= ieee754_csr
.rm
;
1673 SPFROMREG(fs
, MIPSInst_FS(ir
));
1674 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1675 rv
.w
= ieee754sp_tint(fs
);
1676 ieee754_csr
.rm
= oldrm
;
1680 #endif /* __mips >= 2 */
1682 #if defined(__mips64)
1686 SPFROMREG(fs
, MIPSInst_FS(ir
));
1687 rv
.l
= ieee754sp_tlong(fs
);
1696 unsigned int oldrm
= ieee754_csr
.rm
;
1699 SPFROMREG(fs
, MIPSInst_FS(ir
));
1700 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1701 rv
.l
= ieee754sp_tlong(fs
);
1702 ieee754_csr
.rm
= oldrm
;
1706 #endif /* defined(__mips64) */
1709 if (MIPSInst_FUNC(ir
) >= fcmp_op
) {
1710 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
1713 SPFROMREG(fs
, MIPSInst_FS(ir
));
1714 SPFROMREG(ft
, MIPSInst_FT(ir
));
1715 rv
.w
= ieee754sp_cmp(fs
, ft
,
1716 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
1718 if ((cmpop
& 0x8) && ieee754_cxtest
1719 (IEEE754_INVALID_OPERATION
))
1720 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1735 ieee754dp(*b
) (ieee754dp
, ieee754dp
);
1736 ieee754dp(*u
) (ieee754dp
);
1739 switch (MIPSInst_FUNC(ir
)) {
1742 handler
.b
= ieee754dp_add
;
1745 handler
.b
= ieee754dp_sub
;
1748 handler
.b
= ieee754dp_mul
;
1751 handler
.b
= ieee754dp_div
;
1755 #if __mips >= 2 || defined(__mips64)
1757 handler
.u
= ieee754dp_sqrt
;
1760 #if __mips >= 4 && __mips != 32
1762 handler
.u
= fpemu_dp_rsqrt
;
1765 handler
.u
= fpemu_dp_recip
;
1770 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
1771 if (((ctx
->fcr31
& cond
) != 0) !=
1772 ((MIPSInst_FT(ir
) & 1) != 0))
1774 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1777 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
1779 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1782 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
1784 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1788 handler
.u
= ieee754dp_abs
;
1792 handler
.u
= ieee754dp_neg
;
1797 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1800 /* binary op on handler */
1804 DPFROMREG(fs
, MIPSInst_FS(ir
));
1805 DPFROMREG(ft
, MIPSInst_FT(ir
));
1807 rv
.d
= (*handler
.b
) (fs
, ft
);
1813 DPFROMREG(fs
, MIPSInst_FS(ir
));
1814 rv
.d
= (*handler
.u
) (fs
);
1818 /* unary conv ops */
1822 DPFROMREG(fs
, MIPSInst_FS(ir
));
1823 rv
.s
= ieee754sp_fdp(fs
);
1828 return SIGILL
; /* not defined */
1833 DPFROMREG(fs
, MIPSInst_FS(ir
));
1834 rv
.w
= ieee754dp_tint(fs
); /* wrong */
1839 #if __mips >= 2 || defined(__mips64)
1844 unsigned int oldrm
= ieee754_csr
.rm
;
1847 DPFROMREG(fs
, MIPSInst_FS(ir
));
1848 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1849 rv
.w
= ieee754dp_tint(fs
);
1850 ieee754_csr
.rm
= oldrm
;
1856 #if defined(__mips64)
1860 DPFROMREG(fs
, MIPSInst_FS(ir
));
1861 rv
.l
= ieee754dp_tlong(fs
);
1870 unsigned int oldrm
= ieee754_csr
.rm
;
1873 DPFROMREG(fs
, MIPSInst_FS(ir
));
1874 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1875 rv
.l
= ieee754dp_tlong(fs
);
1876 ieee754_csr
.rm
= oldrm
;
1880 #endif /* __mips >= 3 */
1883 if (MIPSInst_FUNC(ir
) >= fcmp_op
) {
1884 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
1887 DPFROMREG(fs
, MIPSInst_FS(ir
));
1888 DPFROMREG(ft
, MIPSInst_FT(ir
));
1889 rv
.w
= ieee754dp_cmp(fs
, ft
,
1890 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
1895 (IEEE754_INVALID_OPERATION
))
1896 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1912 switch (MIPSInst_FUNC(ir
)) {
1914 /* convert word to single precision real */
1915 SPFROMREG(fs
, MIPSInst_FS(ir
));
1916 rv
.s
= ieee754sp_fint(fs
.bits
);
1920 /* convert word to double precision real */
1921 SPFROMREG(fs
, MIPSInst_FS(ir
));
1922 rv
.d
= ieee754dp_fint(fs
.bits
);
1931 #if defined(__mips64)
1933 switch (MIPSInst_FUNC(ir
)) {
1935 /* convert long to single precision real */
1936 rv
.s
= ieee754sp_flong(ctx
->fpr
[MIPSInst_FS(ir
)]);
1940 /* convert long to double precision real */
1941 rv
.d
= ieee754dp_flong(ctx
->fpr
[MIPSInst_FS(ir
)]);
1956 * Update the fpu CSR register for this operation.
1957 * If an exception is required, generate a tidy SIGFPE exception,
1958 * without updating the result register.
1959 * Note: cause exception bits do not accumulate, they are rewritten
1960 * for each op; only the flag/sticky bits accumulate.
1962 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
1963 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1964 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1969 * Now we can safely write the result back to the register file.
1974 cond
= fpucondbit
[MIPSInst_FD(ir
) >> 2];
1976 cond
= FPU_CSR_COND
;
1981 ctx
->fcr31
&= ~cond
;
1985 DPTOREG(rv
.d
, MIPSInst_FD(ir
));
1988 SPTOREG(rv
.s
, MIPSInst_FD(ir
));
1991 SITOREG(rv
.w
, MIPSInst_FD(ir
));
1993 #if defined(__mips64)
1995 DITOREG(rv
.l
, MIPSInst_FD(ir
));
2005 int fpu_emulator_cop1Handler(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
2006 int has_fpu
, void *__user
*fault_addr
)
2008 unsigned long oldepc
, prevepc
;
2009 struct mm_decoded_insn dec_insn
;
2014 oldepc
= xcp
->cp0_epc
;
2016 prevepc
= xcp
->cp0_epc
;
2018 if (get_isa16_mode(prevepc
) && cpu_has_mmips
) {
2020 * Get next 2 microMIPS instructions and convert them
2021 * into 32-bit instructions.
2023 if ((get_user(instr
[0], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
))) ||
2024 (get_user(instr
[1], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 2))) ||
2025 (get_user(instr
[2], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 4))) ||
2026 (get_user(instr
[3], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 6)))) {
2027 MIPS_FPU_EMU_INC_STATS(errors
);
2032 /* Get first instruction. */
2033 if (mm_insn_16bit(*instr_ptr
)) {
2034 /* Duplicate the half-word. */
2035 dec_insn
.insn
= (*instr_ptr
<< 16) |
2037 /* 16-bit instruction. */
2038 dec_insn
.pc_inc
= 2;
2041 dec_insn
.insn
= (*instr_ptr
<< 16) |
2043 /* 32-bit instruction. */
2044 dec_insn
.pc_inc
= 4;
2047 /* Get second instruction. */
2048 if (mm_insn_16bit(*instr_ptr
)) {
2049 /* Duplicate the half-word. */
2050 dec_insn
.next_insn
= (*instr_ptr
<< 16) |
2052 /* 16-bit instruction. */
2053 dec_insn
.next_pc_inc
= 2;
2055 dec_insn
.next_insn
= (*instr_ptr
<< 16) |
2057 /* 32-bit instruction. */
2058 dec_insn
.next_pc_inc
= 4;
2060 dec_insn
.micro_mips_mode
= 1;
2062 if ((get_user(dec_insn
.insn
,
2063 (mips_instruction __user
*) xcp
->cp0_epc
)) ||
2064 (get_user(dec_insn
.next_insn
,
2065 (mips_instruction __user
*)(xcp
->cp0_epc
+4)))) {
2066 MIPS_FPU_EMU_INC_STATS(errors
);
2069 dec_insn
.pc_inc
= 4;
2070 dec_insn
.next_pc_inc
= 4;
2071 dec_insn
.micro_mips_mode
= 0;
2074 if ((dec_insn
.insn
== 0) ||
2075 ((dec_insn
.pc_inc
== 2) &&
2076 ((dec_insn
.insn
& 0xffff) == MM_NOP16
)))
2077 xcp
->cp0_epc
+= dec_insn
.pc_inc
; /* Skip NOPs */
2080 * The 'ieee754_csr' is an alias of
2081 * ctx->fcr31. No need to copy ctx->fcr31 to
2082 * ieee754_csr. But ieee754_csr.rm is ieee
2083 * library modes. (not mips rounding mode)
2085 /* convert to ieee library modes */
2086 ieee754_csr
.rm
= ieee_rm
[ieee754_csr
.rm
];
2087 sig
= cop1Emulate(xcp
, ctx
, dec_insn
, fault_addr
);
2088 /* revert to mips rounding mode */
2089 ieee754_csr
.rm
= mips_rm
[ieee754_csr
.rm
];
2098 } while (xcp
->cp0_epc
> prevepc
);
2100 /* SIGILL indicates a non-fpu instruction */
2101 if (sig
== SIGILL
&& xcp
->cp0_epc
!= oldepc
)
2102 /* but if epc has advanced, then ignore it */
2108 #ifdef CONFIG_DEBUG_FS
2110 static int fpuemu_stat_get(void *data
, u64
*val
)
2113 unsigned long sum
= 0;
2114 for_each_online_cpu(cpu
) {
2115 struct mips_fpu_emulator_stats
*ps
;
2117 ps
= &per_cpu(fpuemustats
, cpu
);
2118 pv
= (void *)ps
+ (unsigned long)data
;
2119 sum
+= local_read(pv
);
2124 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat
, fpuemu_stat_get
, NULL
, "%llu\n");
2126 extern struct dentry
*mips_debugfs_dir
;
2127 static int __init
debugfs_fpuemu(void)
2129 struct dentry
*d
, *dir
;
2131 if (!mips_debugfs_dir
)
2133 dir
= debugfs_create_dir("fpuemustats", mips_debugfs_dir
);
2137 #define FPU_STAT_CREATE(M) \
2139 d = debugfs_create_file(#M , S_IRUGO, dir, \
2140 (void *)offsetof(struct mips_fpu_emulator_stats, M), \
2141 &fops_fpuemu_stat); \
2146 FPU_STAT_CREATE(emulated
);
2147 FPU_STAT_CREATE(loads
);
2148 FPU_STAT_CREATE(stores
);
2149 FPU_STAT_CREATE(cp1ops
);
2150 FPU_STAT_CREATE(cp1xops
);
2151 FPU_STAT_CREATE(errors
);
2155 __initcall(debugfs_fpuemu
);