x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh.c
blobc766cf5755202bf3046f1bae2a871581806ecbbc
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rbtree.h>
31 #include <linux/seq_file.h>
32 #include <linux/spinlock.h>
33 #include <linux/export.h>
34 #include <linux/of.h>
36 #include <linux/atomic.h>
37 #include <asm/eeh.h>
38 #include <asm/eeh_event.h>
39 #include <asm/io.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/rtas.h>
45 /** Overview:
46 * EEH, or "Extended Error Handling" is a PCI bridge technology for
47 * dealing with PCI bus errors that can't be dealt with within the
48 * usual PCI framework, except by check-stopping the CPU. Systems
49 * that are designed for high-availability/reliability cannot afford
50 * to crash due to a "mere" PCI error, thus the need for EEH.
51 * An EEH-capable bridge operates by converting a detected error
52 * into a "slot freeze", taking the PCI adapter off-line, making
53 * the slot behave, from the OS'es point of view, as if the slot
54 * were "empty": all reads return 0xff's and all writes are silently
55 * ignored. EEH slot isolation events can be triggered by parity
56 * errors on the address or data busses (e.g. during posted writes),
57 * which in turn might be caused by low voltage on the bus, dust,
58 * vibration, humidity, radioactivity or plain-old failed hardware.
60 * Note, however, that one of the leading causes of EEH slot
61 * freeze events are buggy device drivers, buggy device microcode,
62 * or buggy device hardware. This is because any attempt by the
63 * device to bus-master data to a memory address that is not
64 * assigned to the device will trigger a slot freeze. (The idea
65 * is to prevent devices-gone-wild from corrupting system memory).
66 * Buggy hardware/drivers will have a miserable time co-existing
67 * with EEH.
69 * Ideally, a PCI device driver, when suspecting that an isolation
70 * event has occurred (e.g. by reading 0xff's), will then ask EEH
71 * whether this is the case, and then take appropriate steps to
72 * reset the PCI slot, the PCI device, and then resume operations.
73 * However, until that day, the checking is done here, with the
74 * eeh_check_failure() routine embedded in the MMIO macros. If
75 * the slot is found to be isolated, an "EEH Event" is synthesized
76 * and sent out for processing.
79 /* If a device driver keeps reading an MMIO register in an interrupt
80 * handler after a slot isolation event, it might be broken.
81 * This sets the threshold for how many read attempts we allow
82 * before printing an error message.
84 #define EEH_MAX_FAILS 2100000
86 /* Time to wait for a PCI slot to report status, in milliseconds */
87 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
89 /* Platform dependent EEH operations */
90 struct eeh_ops *eeh_ops = NULL;
92 int eeh_subsystem_enabled;
93 EXPORT_SYMBOL(eeh_subsystem_enabled);
96 * EEH probe mode support. The intention is to support multiple
97 * platforms for EEH. Some platforms like pSeries do PCI emunation
98 * based on device tree. However, other platforms like powernv probe
99 * PCI devices from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for particular
101 * OF node or PCI device so that the corresponding PE would be created
102 * there.
104 int eeh_probe_mode;
106 /* Lock to avoid races due to multiple reports of an error */
107 DEFINE_RAW_SPINLOCK(confirm_error_lock);
109 /* Buffer for reporting pci register dumps. Its here in BSS, and
110 * not dynamically alloced, so that it ends up in RMO where RTAS
111 * can access it.
113 #define EEH_PCI_REGS_LOG_LEN 4096
114 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
117 * The struct is used to maintain the EEH global statistic
118 * information. Besides, the EEH global statistics will be
119 * exported to user space through procfs
121 struct eeh_stats {
122 u64 no_device; /* PCI device not found */
123 u64 no_dn; /* OF node not found */
124 u64 no_cfg_addr; /* Config address not found */
125 u64 ignored_check; /* EEH check skipped */
126 u64 total_mmio_ffs; /* Total EEH checks */
127 u64 false_positives; /* Unnecessary EEH checks */
128 u64 slot_resets; /* PE reset */
131 static struct eeh_stats eeh_stats;
133 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
136 * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
137 * @edev: device to report data for
138 * @buf: point to buffer in which to log
139 * @len: amount of room in buffer
141 * This routine captures assorted PCI configuration space data,
142 * and puts them into a buffer for RTAS error logging.
144 static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
146 struct device_node *dn = eeh_dev_to_of_node(edev);
147 struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
148 u32 cfg;
149 int cap, i;
150 int n = 0;
152 n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
153 printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
155 eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
156 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
157 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
159 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
160 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
161 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
163 if (!dev) {
164 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
165 return n;
168 /* Gather bridge-specific registers */
169 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
170 eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
171 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
172 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
174 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
175 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
176 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
179 /* Dump out the PCI-X command and status regs */
180 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
181 if (cap) {
182 eeh_ops->read_config(dn, cap, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
184 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
186 eeh_ops->read_config(dn, cap+4, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
188 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
191 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
192 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
193 if (cap) {
194 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
195 printk(KERN_WARNING
196 "EEH: PCI-E capabilities and status follow:\n");
198 for (i=0; i<=8; i++) {
199 eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
200 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
201 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
204 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
205 if (cap) {
206 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
207 printk(KERN_WARNING
208 "EEH: PCI-E AER capability register set follows:\n");
210 for (i=0; i<14; i++) {
211 eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
212 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
213 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
218 return n;
222 * eeh_slot_error_detail - Generate combined log including driver log and error log
223 * @pe: EEH PE
224 * @severity: temporary or permanent error log
226 * This routine should be called to generate the combined log, which
227 * is comprised of driver log and error log. The driver log is figured
228 * out from the config space of the corresponding PCI device, while
229 * the error log is fetched through platform dependent function call.
231 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
233 size_t loglen = 0;
234 struct eeh_dev *edev, *tmp;
235 bool valid_cfg_log = true;
238 * When the PHB is fenced or dead, it's pointless to collect
239 * the data from PCI config space because it should return
240 * 0xFF's. For ER, we still retrieve the data from the PCI
241 * config space.
243 if (eeh_probe_mode_dev() &&
244 (pe->type & EEH_PE_PHB) &&
245 (pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)))
246 valid_cfg_log = false;
248 if (valid_cfg_log) {
249 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
250 eeh_ops->configure_bridge(pe);
251 eeh_pe_restore_bars(pe);
253 pci_regs_buf[0] = 0;
254 eeh_pe_for_each_dev(pe, edev, tmp) {
255 loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
256 EEH_PCI_REGS_LOG_LEN - loglen);
260 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
264 * eeh_token_to_phys - Convert EEH address token to phys address
265 * @token: I/O token, should be address in the form 0xA....
267 * This routine should be called to convert virtual I/O address
268 * to physical one.
270 static inline unsigned long eeh_token_to_phys(unsigned long token)
272 pte_t *ptep;
273 unsigned long pa;
274 int hugepage_shift;
277 * We won't find hugepages here, iomem
279 ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
280 if (!ptep)
281 return token;
282 WARN_ON(hugepage_shift);
283 pa = pte_pfn(*ptep) << PAGE_SHIFT;
285 return pa | (token & (PAGE_SIZE-1));
289 * On PowerNV platform, we might already have fenced PHB there.
290 * For that case, it's meaningless to recover frozen PE. Intead,
291 * We have to handle fenced PHB firstly.
293 static int eeh_phb_check_failure(struct eeh_pe *pe)
295 struct eeh_pe *phb_pe;
296 unsigned long flags;
297 int ret;
299 if (!eeh_probe_mode_dev())
300 return -EPERM;
302 /* Find the PHB PE */
303 phb_pe = eeh_phb_pe_get(pe->phb);
304 if (!phb_pe) {
305 pr_warning("%s Can't find PE for PHB#%d\n",
306 __func__, pe->phb->global_number);
307 return -EEXIST;
310 /* If the PHB has been in problematic state */
311 eeh_serialize_lock(&flags);
312 if (phb_pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)) {
313 ret = 0;
314 goto out;
317 /* Check PHB state */
318 ret = eeh_ops->get_state(phb_pe, NULL);
319 if ((ret < 0) ||
320 (ret == EEH_STATE_NOT_SUPPORT) ||
321 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
322 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
323 ret = 0;
324 goto out;
327 /* Isolate the PHB and send event */
328 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
329 eeh_serialize_unlock(flags);
330 eeh_send_failure_event(phb_pe);
332 pr_err("EEH: PHB#%x failure detected\n",
333 phb_pe->phb->global_number);
334 dump_stack();
336 return 1;
337 out:
338 eeh_serialize_unlock(flags);
339 return ret;
343 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
344 * @edev: eeh device
346 * Check for an EEH failure for the given device node. Call this
347 * routine if the result of a read was all 0xff's and you want to
348 * find out if this is due to an EEH slot freeze. This routine
349 * will query firmware for the EEH status.
351 * Returns 0 if there has not been an EEH error; otherwise returns
352 * a non-zero value and queues up a slot isolation event notification.
354 * It is safe to call this routine in an interrupt context.
356 int eeh_dev_check_failure(struct eeh_dev *edev)
358 int ret;
359 unsigned long flags;
360 struct device_node *dn;
361 struct pci_dev *dev;
362 struct eeh_pe *pe;
363 int rc = 0;
364 const char *location;
366 eeh_stats.total_mmio_ffs++;
368 if (!eeh_subsystem_enabled)
369 return 0;
371 if (!edev) {
372 eeh_stats.no_dn++;
373 return 0;
375 dn = eeh_dev_to_of_node(edev);
376 dev = eeh_dev_to_pci_dev(edev);
377 pe = edev->pe;
379 /* Access to IO BARs might get this far and still not want checking. */
380 if (!pe) {
381 eeh_stats.ignored_check++;
382 pr_debug("EEH: Ignored check for %s %s\n",
383 eeh_pci_name(dev), dn->full_name);
384 return 0;
387 if (!pe->addr && !pe->config_addr) {
388 eeh_stats.no_cfg_addr++;
389 return 0;
393 * On PowerNV platform, we might already have fenced PHB
394 * there and we need take care of that firstly.
396 ret = eeh_phb_check_failure(pe);
397 if (ret > 0)
398 return ret;
400 /* If we already have a pending isolation event for this
401 * slot, we know it's bad already, we don't need to check.
402 * Do this checking under a lock; as multiple PCI devices
403 * in one slot might report errors simultaneously, and we
404 * only want one error recovery routine running.
406 eeh_serialize_lock(&flags);
407 rc = 1;
408 if (pe->state & EEH_PE_ISOLATED) {
409 pe->check_count++;
410 if (pe->check_count % EEH_MAX_FAILS == 0) {
411 location = of_get_property(dn, "ibm,loc-code", NULL);
412 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
413 "location=%s driver=%s pci addr=%s\n",
414 pe->check_count, location,
415 eeh_driver_name(dev), eeh_pci_name(dev));
416 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
417 eeh_driver_name(dev));
418 dump_stack();
420 goto dn_unlock;
424 * Now test for an EEH failure. This is VERY expensive.
425 * Note that the eeh_config_addr may be a parent device
426 * in the case of a device behind a bridge, or it may be
427 * function zero of a multi-function device.
428 * In any case they must share a common PHB.
430 ret = eeh_ops->get_state(pe, NULL);
432 /* Note that config-io to empty slots may fail;
433 * they are empty when they don't have children.
434 * We will punt with the following conditions: Failure to get
435 * PE's state, EEH not support and Permanently unavailable
436 * state, PE is in good state.
438 if ((ret < 0) ||
439 (ret == EEH_STATE_NOT_SUPPORT) ||
440 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
441 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
442 eeh_stats.false_positives++;
443 pe->false_positives++;
444 rc = 0;
445 goto dn_unlock;
448 eeh_stats.slot_resets++;
450 /* Avoid repeated reports of this failure, including problems
451 * with other functions on this device, and functions under
452 * bridges.
454 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
455 eeh_serialize_unlock(flags);
457 eeh_send_failure_event(pe);
459 /* Most EEH events are due to device driver bugs. Having
460 * a stack trace will help the device-driver authors figure
461 * out what happened. So print that out.
463 pr_err("EEH: Frozen PE#%x detected on PHB#%x\n",
464 pe->addr, pe->phb->global_number);
465 dump_stack();
467 return 1;
469 dn_unlock:
470 eeh_serialize_unlock(flags);
471 return rc;
474 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
477 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
478 * @token: I/O token, should be address in the form 0xA....
479 * @val: value, should be all 1's (XXX why do we need this arg??)
481 * Check for an EEH failure at the given token address. Call this
482 * routine if the result of a read was all 0xff's and you want to
483 * find out if this is due to an EEH slot freeze event. This routine
484 * will query firmware for the EEH status.
486 * Note this routine is safe to call in an interrupt context.
488 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
490 unsigned long addr;
491 struct eeh_dev *edev;
493 /* Finding the phys addr + pci device; this is pretty quick. */
494 addr = eeh_token_to_phys((unsigned long __force) token);
495 edev = eeh_addr_cache_get_dev(addr);
496 if (!edev) {
497 eeh_stats.no_device++;
498 return val;
501 eeh_dev_check_failure(edev);
502 return val;
505 EXPORT_SYMBOL(eeh_check_failure);
509 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
510 * @pe: EEH PE
512 * This routine should be called to reenable frozen MMIO or DMA
513 * so that it would work correctly again. It's useful while doing
514 * recovery or log collection on the indicated device.
516 int eeh_pci_enable(struct eeh_pe *pe, int function)
518 int rc;
520 rc = eeh_ops->set_option(pe, function);
521 if (rc)
522 pr_warning("%s: Unexpected state change %d on PHB#%d-PE#%x, err=%d\n",
523 __func__, function, pe->phb->global_number, pe->addr, rc);
525 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
526 if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
527 (function == EEH_OPT_THAW_MMIO))
528 return 0;
530 return rc;
534 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
535 * @dev: pci device struct
536 * @state: reset state to enter
538 * Return value:
539 * 0 if success
541 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
543 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
544 struct eeh_pe *pe = edev->pe;
546 if (!pe) {
547 pr_err("%s: No PE found on PCI device %s\n",
548 __func__, pci_name(dev));
549 return -EINVAL;
552 switch (state) {
553 case pcie_deassert_reset:
554 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
555 break;
556 case pcie_hot_reset:
557 eeh_ops->reset(pe, EEH_RESET_HOT);
558 break;
559 case pcie_warm_reset:
560 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
561 break;
562 default:
563 return -EINVAL;
566 return 0;
570 * eeh_set_pe_freset - Check the required reset for the indicated device
571 * @data: EEH device
572 * @flag: return value
574 * Each device might have its preferred reset type: fundamental or
575 * hot reset. The routine is used to collected the information for
576 * the indicated device and its children so that the bunch of the
577 * devices could be reset properly.
579 static void *eeh_set_dev_freset(void *data, void *flag)
581 struct pci_dev *dev;
582 unsigned int *freset = (unsigned int *)flag;
583 struct eeh_dev *edev = (struct eeh_dev *)data;
585 dev = eeh_dev_to_pci_dev(edev);
586 if (dev)
587 *freset |= dev->needs_freset;
589 return NULL;
593 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
594 * @pe: EEH PE
596 * Assert the PCI #RST line for 1/4 second.
598 static void eeh_reset_pe_once(struct eeh_pe *pe)
600 unsigned int freset = 0;
602 /* Determine type of EEH reset required for
603 * Partitionable Endpoint, a hot-reset (1)
604 * or a fundamental reset (3).
605 * A fundamental reset required by any device under
606 * Partitionable Endpoint trumps hot-reset.
608 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
610 if (freset)
611 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
612 else
613 eeh_ops->reset(pe, EEH_RESET_HOT);
615 /* The PCI bus requires that the reset be held high for at least
616 * a 100 milliseconds. We wait a bit longer 'just in case'.
618 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
619 msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
621 /* We might get hit with another EEH freeze as soon as the
622 * pci slot reset line is dropped. Make sure we don't miss
623 * these, and clear the flag now.
625 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
627 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
629 /* After a PCI slot has been reset, the PCI Express spec requires
630 * a 1.5 second idle time for the bus to stabilize, before starting
631 * up traffic.
633 #define PCI_BUS_SETTLE_TIME_MSEC 1800
634 msleep(PCI_BUS_SETTLE_TIME_MSEC);
638 * eeh_reset_pe - Reset the indicated PE
639 * @pe: EEH PE
641 * This routine should be called to reset indicated device, including
642 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
643 * might be involved as well.
645 int eeh_reset_pe(struct eeh_pe *pe)
647 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
648 int i, rc;
650 /* Take three shots at resetting the bus */
651 for (i=0; i<3; i++) {
652 eeh_reset_pe_once(pe);
654 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
655 if ((rc & flags) == flags)
656 return 0;
658 if (rc < 0) {
659 pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
660 __func__, pe->phb->global_number, pe->addr);
661 return -1;
663 pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
664 i+1, pe->phb->global_number, pe->addr, rc);
667 return -1;
671 * eeh_save_bars - Save device bars
672 * @edev: PCI device associated EEH device
674 * Save the values of the device bars. Unlike the restore
675 * routine, this routine is *not* recursive. This is because
676 * PCI devices are added individually; but, for the restore,
677 * an entire slot is reset at a time.
679 void eeh_save_bars(struct eeh_dev *edev)
681 int i;
682 struct device_node *dn;
684 if (!edev)
685 return;
686 dn = eeh_dev_to_of_node(edev);
688 for (i = 0; i < 16; i++)
689 eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
692 * For PCI bridges including root port, we need enable bus
693 * master explicitly. Otherwise, it can't fetch IODA table
694 * entries correctly. So we cache the bit in advance so that
695 * we can restore it after reset, either PHB range or PE range.
697 if (edev->mode & EEH_DEV_BRIDGE)
698 edev->config_space[1] |= PCI_COMMAND_MASTER;
702 * eeh_ops_register - Register platform dependent EEH operations
703 * @ops: platform dependent EEH operations
705 * Register the platform dependent EEH operation callback
706 * functions. The platform should call this function before
707 * any other EEH operations.
709 int __init eeh_ops_register(struct eeh_ops *ops)
711 if (!ops->name) {
712 pr_warning("%s: Invalid EEH ops name for %p\n",
713 __func__, ops);
714 return -EINVAL;
717 if (eeh_ops && eeh_ops != ops) {
718 pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
719 __func__, eeh_ops->name, ops->name);
720 return -EEXIST;
723 eeh_ops = ops;
725 return 0;
729 * eeh_ops_unregister - Unreigster platform dependent EEH operations
730 * @name: name of EEH platform operations
732 * Unregister the platform dependent EEH operation callback
733 * functions.
735 int __exit eeh_ops_unregister(const char *name)
737 if (!name || !strlen(name)) {
738 pr_warning("%s: Invalid EEH ops name\n",
739 __func__);
740 return -EINVAL;
743 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
744 eeh_ops = NULL;
745 return 0;
748 return -EEXIST;
752 * eeh_init - EEH initialization
754 * Initialize EEH by trying to enable it for all of the adapters in the system.
755 * As a side effect we can determine here if eeh is supported at all.
756 * Note that we leave EEH on so failed config cycles won't cause a machine
757 * check. If a user turns off EEH for a particular adapter they are really
758 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
759 * grant access to a slot if EEH isn't enabled, and so we always enable
760 * EEH for all slots/all devices.
762 * The eeh-force-off option disables EEH checking globally, for all slots.
763 * Even if force-off is set, the EEH hardware is still enabled, so that
764 * newer systems can boot.
766 int eeh_init(void)
768 struct pci_controller *hose, *tmp;
769 struct device_node *phb;
770 static int cnt = 0;
771 int ret = 0;
774 * We have to delay the initialization on PowerNV after
775 * the PCI hierarchy tree has been built because the PEs
776 * are figured out based on PCI devices instead of device
777 * tree nodes
779 if (machine_is(powernv) && cnt++ <= 0)
780 return ret;
782 /* call platform initialization function */
783 if (!eeh_ops) {
784 pr_warning("%s: Platform EEH operation not found\n",
785 __func__);
786 return -EEXIST;
787 } else if ((ret = eeh_ops->init())) {
788 pr_warning("%s: Failed to call platform init function (%d)\n",
789 __func__, ret);
790 return ret;
793 /* Initialize EEH event */
794 ret = eeh_event_init();
795 if (ret)
796 return ret;
798 /* Enable EEH for all adapters */
799 if (eeh_probe_mode_devtree()) {
800 list_for_each_entry_safe(hose, tmp,
801 &hose_list, list_node) {
802 phb = hose->dn;
803 traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
805 } else if (eeh_probe_mode_dev()) {
806 list_for_each_entry_safe(hose, tmp,
807 &hose_list, list_node)
808 pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
809 } else {
810 pr_warning("%s: Invalid probe mode %d\n",
811 __func__, eeh_probe_mode);
812 return -EINVAL;
816 * Call platform post-initialization. Actually, It's good chance
817 * to inform platform that EEH is ready to supply service if the
818 * I/O cache stuff has been built up.
820 if (eeh_ops->post_init) {
821 ret = eeh_ops->post_init();
822 if (ret)
823 return ret;
826 if (eeh_subsystem_enabled)
827 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
828 else
829 pr_warning("EEH: No capable adapters found\n");
831 return ret;
834 core_initcall_sync(eeh_init);
837 * eeh_add_device_early - Enable EEH for the indicated device_node
838 * @dn: device node for which to set up EEH
840 * This routine must be used to perform EEH initialization for PCI
841 * devices that were added after system boot (e.g. hotplug, dlpar).
842 * This routine must be called before any i/o is performed to the
843 * adapter (inluding any config-space i/o).
844 * Whether this actually enables EEH or not for this device depends
845 * on the CEC architecture, type of the device, on earlier boot
846 * command-line arguments & etc.
848 void eeh_add_device_early(struct device_node *dn)
850 struct pci_controller *phb;
853 * If we're doing EEH probe based on PCI device, we
854 * would delay the probe until late stage because
855 * the PCI device isn't available this moment.
857 if (!eeh_probe_mode_devtree())
858 return;
860 if (!of_node_to_eeh_dev(dn))
861 return;
862 phb = of_node_to_eeh_dev(dn)->phb;
864 /* USB Bus children of PCI devices will not have BUID's */
865 if (NULL == phb || 0 == phb->buid)
866 return;
868 eeh_ops->of_probe(dn, NULL);
872 * eeh_add_device_tree_early - Enable EEH for the indicated device
873 * @dn: device node
875 * This routine must be used to perform EEH initialization for the
876 * indicated PCI device that was added after system boot (e.g.
877 * hotplug, dlpar).
879 void eeh_add_device_tree_early(struct device_node *dn)
881 struct device_node *sib;
883 for_each_child_of_node(dn, sib)
884 eeh_add_device_tree_early(sib);
885 eeh_add_device_early(dn);
887 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
890 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
891 * @dev: pci device for which to set up EEH
893 * This routine must be used to complete EEH initialization for PCI
894 * devices that were added after system boot (e.g. hotplug, dlpar).
896 void eeh_add_device_late(struct pci_dev *dev)
898 struct device_node *dn;
899 struct eeh_dev *edev;
901 if (!dev || !eeh_subsystem_enabled)
902 return;
904 pr_debug("EEH: Adding device %s\n", pci_name(dev));
906 dn = pci_device_to_OF_node(dev);
907 edev = of_node_to_eeh_dev(dn);
908 if (edev->pdev == dev) {
909 pr_debug("EEH: Already referenced !\n");
910 return;
914 * The EEH cache might not be removed correctly because of
915 * unbalanced kref to the device during unplug time, which
916 * relies on pcibios_release_device(). So we have to remove
917 * that here explicitly.
919 if (edev->pdev) {
920 eeh_rmv_from_parent_pe(edev);
921 eeh_addr_cache_rmv_dev(edev->pdev);
922 eeh_sysfs_remove_device(edev->pdev);
923 edev->mode &= ~EEH_DEV_SYSFS;
925 edev->pdev = NULL;
926 dev->dev.archdata.edev = NULL;
929 edev->pdev = dev;
930 dev->dev.archdata.edev = edev;
933 * We have to do the EEH probe here because the PCI device
934 * hasn't been created yet in the early stage.
936 if (eeh_probe_mode_dev())
937 eeh_ops->dev_probe(dev, NULL);
939 eeh_addr_cache_insert_dev(dev);
943 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
944 * @bus: PCI bus
946 * This routine must be used to perform EEH initialization for PCI
947 * devices which are attached to the indicated PCI bus. The PCI bus
948 * is added after system boot through hotplug or dlpar.
950 void eeh_add_device_tree_late(struct pci_bus *bus)
952 struct pci_dev *dev;
954 list_for_each_entry(dev, &bus->devices, bus_list) {
955 eeh_add_device_late(dev);
956 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
957 struct pci_bus *subbus = dev->subordinate;
958 if (subbus)
959 eeh_add_device_tree_late(subbus);
963 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
966 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
967 * @bus: PCI bus
969 * This routine must be used to add EEH sysfs files for PCI
970 * devices which are attached to the indicated PCI bus. The PCI bus
971 * is added after system boot through hotplug or dlpar.
973 void eeh_add_sysfs_files(struct pci_bus *bus)
975 struct pci_dev *dev;
977 list_for_each_entry(dev, &bus->devices, bus_list) {
978 eeh_sysfs_add_device(dev);
979 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
980 struct pci_bus *subbus = dev->subordinate;
981 if (subbus)
982 eeh_add_sysfs_files(subbus);
986 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
989 * eeh_remove_device - Undo EEH setup for the indicated pci device
990 * @dev: pci device to be removed
992 * This routine should be called when a device is removed from
993 * a running system (e.g. by hotplug or dlpar). It unregisters
994 * the PCI device from the EEH subsystem. I/O errors affecting
995 * this device will no longer be detected after this call; thus,
996 * i/o errors affecting this slot may leave this device unusable.
998 void eeh_remove_device(struct pci_dev *dev)
1000 struct eeh_dev *edev;
1002 if (!dev || !eeh_subsystem_enabled)
1003 return;
1004 edev = pci_dev_to_eeh_dev(dev);
1006 /* Unregister the device with the EEH/PCI address search system */
1007 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1009 if (!edev || !edev->pdev || !edev->pe) {
1010 pr_debug("EEH: Not referenced !\n");
1011 return;
1015 * During the hotplug for EEH error recovery, we need the EEH
1016 * device attached to the parent PE in order for BAR restore
1017 * a bit later. So we keep it for BAR restore and remove it
1018 * from the parent PE during the BAR resotre.
1020 edev->pdev = NULL;
1021 dev->dev.archdata.edev = NULL;
1022 if (!(edev->pe->state & EEH_PE_KEEP))
1023 eeh_rmv_from_parent_pe(edev);
1024 else
1025 edev->mode |= EEH_DEV_DISCONNECTED;
1027 eeh_addr_cache_rmv_dev(dev);
1028 eeh_sysfs_remove_device(dev);
1029 edev->mode &= ~EEH_DEV_SYSFS;
1032 static int proc_eeh_show(struct seq_file *m, void *v)
1034 if (0 == eeh_subsystem_enabled) {
1035 seq_printf(m, "EEH Subsystem is globally disabled\n");
1036 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1037 } else {
1038 seq_printf(m, "EEH Subsystem is enabled\n");
1039 seq_printf(m,
1040 "no device=%llu\n"
1041 "no device node=%llu\n"
1042 "no config address=%llu\n"
1043 "check not wanted=%llu\n"
1044 "eeh_total_mmio_ffs=%llu\n"
1045 "eeh_false_positives=%llu\n"
1046 "eeh_slot_resets=%llu\n",
1047 eeh_stats.no_device,
1048 eeh_stats.no_dn,
1049 eeh_stats.no_cfg_addr,
1050 eeh_stats.ignored_check,
1051 eeh_stats.total_mmio_ffs,
1052 eeh_stats.false_positives,
1053 eeh_stats.slot_resets);
1056 return 0;
1059 static int proc_eeh_open(struct inode *inode, struct file *file)
1061 return single_open(file, proc_eeh_show, NULL);
1064 static const struct file_operations proc_eeh_operations = {
1065 .open = proc_eeh_open,
1066 .read = seq_read,
1067 .llseek = seq_lseek,
1068 .release = single_release,
1071 static int __init eeh_init_proc(void)
1073 if (machine_is(pseries) || machine_is(powernv))
1074 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1075 return 0;
1077 __initcall(eeh_init_proc);