x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / sparc / kernel / process_64.c
blobb9cc9763faf4aa9ef7570867d788c191f9494ec7
1 /* arch/sparc64/kernel/process.c
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
53 #include "kstack.h"
55 /* Idle loop support on sparc64. */
56 void arch_cpu_idle(void)
58 if (tlb_type != hypervisor) {
59 touch_nmi_watchdog();
60 local_irq_enable();
61 } else {
62 unsigned long pstate;
64 local_irq_enable();
66 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
67 * the cpu sleep hypervisor call.
69 __asm__ __volatile__(
70 "rdpr %%pstate, %0\n\t"
71 "andn %0, %1, %0\n\t"
72 "wrpr %0, %%g0, %%pstate"
73 : "=&r" (pstate)
74 : "i" (PSTATE_IE));
76 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
77 sun4v_cpu_yield();
79 /* Re-enable interrupts. */
80 __asm__ __volatile__(
81 "rdpr %%pstate, %0\n\t"
82 "or %0, %1, %0\n\t"
83 "wrpr %0, %%g0, %%pstate"
84 : "=&r" (pstate)
85 : "i" (PSTATE_IE));
89 #ifdef CONFIG_HOTPLUG_CPU
90 void arch_cpu_idle_dead()
92 sched_preempt_enable_no_resched();
93 cpu_play_dead();
95 #endif
97 #ifdef CONFIG_COMPAT
98 static void show_regwindow32(struct pt_regs *regs)
100 struct reg_window32 __user *rw;
101 struct reg_window32 r_w;
102 mm_segment_t old_fs;
104 __asm__ __volatile__ ("flushw");
105 rw = compat_ptr((unsigned)regs->u_regs[14]);
106 old_fs = get_fs();
107 set_fs (USER_DS);
108 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
109 set_fs (old_fs);
110 return;
113 set_fs (old_fs);
114 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
115 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
116 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
117 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
118 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
119 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
120 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
121 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
123 #else
124 #define show_regwindow32(regs) do { } while (0)
125 #endif
127 static void show_regwindow(struct pt_regs *regs)
129 struct reg_window __user *rw;
130 struct reg_window *rwk;
131 struct reg_window r_w;
132 mm_segment_t old_fs;
134 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
135 __asm__ __volatile__ ("flushw");
136 rw = (struct reg_window __user *)
137 (regs->u_regs[14] + STACK_BIAS);
138 rwk = (struct reg_window *)
139 (regs->u_regs[14] + STACK_BIAS);
140 if (!(regs->tstate & TSTATE_PRIV)) {
141 old_fs = get_fs();
142 set_fs (USER_DS);
143 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
144 set_fs (old_fs);
145 return;
147 rwk = &r_w;
148 set_fs (old_fs);
150 } else {
151 show_regwindow32(regs);
152 return;
154 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
155 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
156 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
157 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
158 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
159 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
160 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
161 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
162 if (regs->tstate & TSTATE_PRIV)
163 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
166 void show_regs(struct pt_regs *regs)
168 show_regs_print_info(KERN_DEFAULT);
170 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
171 regs->tpc, regs->tnpc, regs->y, print_tainted());
172 printk("TPC: <%pS>\n", (void *) regs->tpc);
173 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
174 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
175 regs->u_regs[3]);
176 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
177 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
178 regs->u_regs[7]);
179 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
180 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
181 regs->u_regs[11]);
182 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
183 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
184 regs->u_regs[15]);
185 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
186 show_regwindow(regs);
187 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
190 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
191 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
193 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
194 int this_cpu)
196 struct global_reg_snapshot *rp;
198 flushw_all();
200 rp = &global_cpu_snapshot[this_cpu].reg;
202 rp->tstate = regs->tstate;
203 rp->tpc = regs->tpc;
204 rp->tnpc = regs->tnpc;
205 rp->o7 = regs->u_regs[UREG_I7];
207 if (regs->tstate & TSTATE_PRIV) {
208 struct reg_window *rw;
210 rw = (struct reg_window *)
211 (regs->u_regs[UREG_FP] + STACK_BIAS);
212 if (kstack_valid(tp, (unsigned long) rw)) {
213 rp->i7 = rw->ins[7];
214 rw = (struct reg_window *)
215 (rw->ins[6] + STACK_BIAS);
216 if (kstack_valid(tp, (unsigned long) rw))
217 rp->rpc = rw->ins[7];
219 } else {
220 rp->i7 = 0;
221 rp->rpc = 0;
223 rp->thread = tp;
226 /* In order to avoid hangs we do not try to synchronize with the
227 * global register dump client cpus. The last store they make is to
228 * the thread pointer, so do a short poll waiting for that to become
229 * non-NULL.
231 static void __global_reg_poll(struct global_reg_snapshot *gp)
233 int limit = 0;
235 while (!gp->thread && ++limit < 100) {
236 barrier();
237 udelay(1);
241 void arch_trigger_all_cpu_backtrace(void)
243 struct thread_info *tp = current_thread_info();
244 struct pt_regs *regs = get_irq_regs();
245 unsigned long flags;
246 int this_cpu, cpu;
248 if (!regs)
249 regs = tp->kregs;
251 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
253 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
255 this_cpu = raw_smp_processor_id();
257 __global_reg_self(tp, regs, this_cpu);
259 smp_fetch_global_regs();
261 for_each_online_cpu(cpu) {
262 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
264 __global_reg_poll(gp);
266 tp = gp->thread;
267 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
268 (cpu == this_cpu ? '*' : ' '), cpu,
269 gp->tstate, gp->tpc, gp->tnpc,
270 ((tp && tp->task) ? tp->task->comm : "NULL"),
271 ((tp && tp->task) ? tp->task->pid : -1));
273 if (gp->tstate & TSTATE_PRIV) {
274 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
275 (void *) gp->tpc,
276 (void *) gp->o7,
277 (void *) gp->i7,
278 (void *) gp->rpc);
279 } else {
280 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
281 gp->tpc, gp->o7, gp->i7, gp->rpc);
285 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
287 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
290 #ifdef CONFIG_MAGIC_SYSRQ
292 static void sysrq_handle_globreg(int key)
294 arch_trigger_all_cpu_backtrace();
297 static struct sysrq_key_op sparc_globalreg_op = {
298 .handler = sysrq_handle_globreg,
299 .help_msg = "global-regs(y)",
300 .action_msg = "Show Global CPU Regs",
303 static void __global_pmu_self(int this_cpu)
305 struct global_pmu_snapshot *pp;
306 int i, num;
308 pp = &global_cpu_snapshot[this_cpu].pmu;
310 num = 1;
311 if (tlb_type == hypervisor &&
312 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
313 num = 4;
315 for (i = 0; i < num; i++) {
316 pp->pcr[i] = pcr_ops->read_pcr(i);
317 pp->pic[i] = pcr_ops->read_pic(i);
321 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
323 int limit = 0;
325 while (!pp->pcr[0] && ++limit < 100) {
326 barrier();
327 udelay(1);
331 static void pmu_snapshot_all_cpus(void)
333 unsigned long flags;
334 int this_cpu, cpu;
336 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
338 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
340 this_cpu = raw_smp_processor_id();
342 __global_pmu_self(this_cpu);
344 smp_fetch_global_pmu();
346 for_each_online_cpu(cpu) {
347 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
349 __global_pmu_poll(pp);
351 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
352 (cpu == this_cpu ? '*' : ' '), cpu,
353 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
354 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
357 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
359 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
362 static void sysrq_handle_globpmu(int key)
364 pmu_snapshot_all_cpus();
367 static struct sysrq_key_op sparc_globalpmu_op = {
368 .handler = sysrq_handle_globpmu,
369 .help_msg = "global-pmu(x)",
370 .action_msg = "Show Global PMU Regs",
373 static int __init sparc_sysrq_init(void)
375 int ret = register_sysrq_key('y', &sparc_globalreg_op);
377 if (!ret)
378 ret = register_sysrq_key('x', &sparc_globalpmu_op);
379 return ret;
382 core_initcall(sparc_sysrq_init);
384 #endif
386 unsigned long thread_saved_pc(struct task_struct *tsk)
388 struct thread_info *ti = task_thread_info(tsk);
389 unsigned long ret = 0xdeadbeefUL;
391 if (ti && ti->ksp) {
392 unsigned long *sp;
393 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
394 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
395 sp[14]) {
396 unsigned long *fp;
397 fp = (unsigned long *)(sp[14] + STACK_BIAS);
398 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
399 ret = fp[15];
402 return ret;
405 /* Free current thread data structures etc.. */
406 void exit_thread(void)
408 struct thread_info *t = current_thread_info();
410 if (t->utraps) {
411 if (t->utraps[0] < 2)
412 kfree (t->utraps);
413 else
414 t->utraps[0]--;
418 void flush_thread(void)
420 struct thread_info *t = current_thread_info();
421 struct mm_struct *mm;
423 mm = t->task->mm;
424 if (mm)
425 tsb_context_switch(mm);
427 set_thread_wsaved(0);
429 /* Clear FPU register state. */
430 t->fpsaved[0] = 0;
433 /* It's a bit more tricky when 64-bit tasks are involved... */
434 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
436 bool stack_64bit = test_thread_64bit_stack(psp);
437 unsigned long fp, distance, rval;
439 if (stack_64bit) {
440 csp += STACK_BIAS;
441 psp += STACK_BIAS;
442 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
443 fp += STACK_BIAS;
444 if (test_thread_flag(TIF_32BIT))
445 fp &= 0xffffffff;
446 } else
447 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
449 /* Now align the stack as this is mandatory in the Sparc ABI
450 * due to how register windows work. This hides the
451 * restriction from thread libraries etc.
453 csp &= ~15UL;
455 distance = fp - psp;
456 rval = (csp - distance);
457 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
458 rval = 0;
459 else if (!stack_64bit) {
460 if (put_user(((u32)csp),
461 &(((struct reg_window32 __user *)rval)->ins[6])))
462 rval = 0;
463 } else {
464 if (put_user(((u64)csp - STACK_BIAS),
465 &(((struct reg_window __user *)rval)->ins[6])))
466 rval = 0;
467 else
468 rval = rval - STACK_BIAS;
471 return rval;
474 /* Standard stuff. */
475 static inline void shift_window_buffer(int first_win, int last_win,
476 struct thread_info *t)
478 int i;
480 for (i = first_win; i < last_win; i++) {
481 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
482 memcpy(&t->reg_window[i], &t->reg_window[i+1],
483 sizeof(struct reg_window));
487 void synchronize_user_stack(void)
489 struct thread_info *t = current_thread_info();
490 unsigned long window;
492 flush_user_windows();
493 if ((window = get_thread_wsaved()) != 0) {
494 window -= 1;
495 do {
496 struct reg_window *rwin = &t->reg_window[window];
497 int winsize = sizeof(struct reg_window);
498 unsigned long sp;
500 sp = t->rwbuf_stkptrs[window];
502 if (test_thread_64bit_stack(sp))
503 sp += STACK_BIAS;
504 else
505 winsize = sizeof(struct reg_window32);
507 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
508 shift_window_buffer(window, get_thread_wsaved() - 1, t);
509 set_thread_wsaved(get_thread_wsaved() - 1);
511 } while (window--);
515 static void stack_unaligned(unsigned long sp)
517 siginfo_t info;
519 info.si_signo = SIGBUS;
520 info.si_errno = 0;
521 info.si_code = BUS_ADRALN;
522 info.si_addr = (void __user *) sp;
523 info.si_trapno = 0;
524 force_sig_info(SIGBUS, &info, current);
527 void fault_in_user_windows(void)
529 struct thread_info *t = current_thread_info();
530 unsigned long window;
532 flush_user_windows();
533 window = get_thread_wsaved();
535 if (likely(window != 0)) {
536 window -= 1;
537 do {
538 struct reg_window *rwin = &t->reg_window[window];
539 int winsize = sizeof(struct reg_window);
540 unsigned long sp;
542 sp = t->rwbuf_stkptrs[window];
544 if (test_thread_64bit_stack(sp))
545 sp += STACK_BIAS;
546 else
547 winsize = sizeof(struct reg_window32);
549 if (unlikely(sp & 0x7UL))
550 stack_unaligned(sp);
552 if (unlikely(copy_to_user((char __user *)sp,
553 rwin, winsize)))
554 goto barf;
555 } while (window--);
557 set_thread_wsaved(0);
558 return;
560 barf:
561 set_thread_wsaved(window + 1);
562 do_exit(SIGILL);
565 asmlinkage long sparc_do_fork(unsigned long clone_flags,
566 unsigned long stack_start,
567 struct pt_regs *regs,
568 unsigned long stack_size)
570 int __user *parent_tid_ptr, *child_tid_ptr;
571 unsigned long orig_i1 = regs->u_regs[UREG_I1];
572 long ret;
574 #ifdef CONFIG_COMPAT
575 if (test_thread_flag(TIF_32BIT)) {
576 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
577 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
578 } else
579 #endif
581 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
582 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
585 ret = do_fork(clone_flags, stack_start, stack_size,
586 parent_tid_ptr, child_tid_ptr);
588 /* If we get an error and potentially restart the system
589 * call, we're screwed because copy_thread() clobbered
590 * the parent's %o1. So detect that case and restore it
591 * here.
593 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
594 regs->u_regs[UREG_I1] = orig_i1;
596 return ret;
599 /* Copy a Sparc thread. The fork() return value conventions
600 * under SunOS are nothing short of bletcherous:
601 * Parent --> %o0 == childs pid, %o1 == 0
602 * Child --> %o0 == parents pid, %o1 == 1
604 int copy_thread(unsigned long clone_flags, unsigned long sp,
605 unsigned long arg, struct task_struct *p)
607 struct thread_info *t = task_thread_info(p);
608 struct pt_regs *regs = current_pt_regs();
609 struct sparc_stackf *parent_sf;
610 unsigned long child_stack_sz;
611 char *child_trap_frame;
613 /* Calculate offset to stack_frame & pt_regs */
614 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
615 child_trap_frame = (task_stack_page(p) +
616 (THREAD_SIZE - child_stack_sz));
618 t->new_child = 1;
619 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
620 t->kregs = (struct pt_regs *) (child_trap_frame +
621 sizeof(struct sparc_stackf));
622 t->fpsaved[0] = 0;
624 if (unlikely(p->flags & PF_KTHREAD)) {
625 memset(child_trap_frame, 0, child_stack_sz);
626 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
627 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
628 t->current_ds = ASI_P;
629 t->kregs->u_regs[UREG_G1] = sp; /* function */
630 t->kregs->u_regs[UREG_G2] = arg;
631 return 0;
634 parent_sf = ((struct sparc_stackf *) regs) - 1;
635 memcpy(child_trap_frame, parent_sf, child_stack_sz);
636 if (t->flags & _TIF_32BIT) {
637 sp &= 0x00000000ffffffffUL;
638 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
640 t->kregs->u_regs[UREG_FP] = sp;
641 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
642 (regs->tstate + 1) & TSTATE_CWP;
643 t->current_ds = ASI_AIUS;
644 if (sp != regs->u_regs[UREG_FP]) {
645 unsigned long csp;
647 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
648 if (!csp)
649 return -EFAULT;
650 t->kregs->u_regs[UREG_FP] = csp;
652 if (t->utraps)
653 t->utraps[0]++;
655 /* Set the return value for the child. */
656 t->kregs->u_regs[UREG_I0] = current->pid;
657 t->kregs->u_regs[UREG_I1] = 1;
659 /* Set the second return value for the parent. */
660 regs->u_regs[UREG_I1] = 0;
662 if (clone_flags & CLONE_SETTLS)
663 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
665 return 0;
668 typedef struct {
669 union {
670 unsigned int pr_regs[32];
671 unsigned long pr_dregs[16];
672 } pr_fr;
673 unsigned int __unused;
674 unsigned int pr_fsr;
675 unsigned char pr_qcnt;
676 unsigned char pr_q_entrysize;
677 unsigned char pr_en;
678 unsigned int pr_q[64];
679 } elf_fpregset_t32;
682 * fill in the fpu structure for a core dump.
684 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
686 unsigned long *kfpregs = current_thread_info()->fpregs;
687 unsigned long fprs = current_thread_info()->fpsaved[0];
689 if (test_thread_flag(TIF_32BIT)) {
690 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
692 if (fprs & FPRS_DL)
693 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
694 sizeof(unsigned int) * 32);
695 else
696 memset(&fpregs32->pr_fr.pr_regs[0], 0,
697 sizeof(unsigned int) * 32);
698 fpregs32->pr_qcnt = 0;
699 fpregs32->pr_q_entrysize = 8;
700 memset(&fpregs32->pr_q[0], 0,
701 (sizeof(unsigned int) * 64));
702 if (fprs & FPRS_FEF) {
703 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
704 fpregs32->pr_en = 1;
705 } else {
706 fpregs32->pr_fsr = 0;
707 fpregs32->pr_en = 0;
709 } else {
710 if(fprs & FPRS_DL)
711 memcpy(&fpregs->pr_regs[0], kfpregs,
712 sizeof(unsigned int) * 32);
713 else
714 memset(&fpregs->pr_regs[0], 0,
715 sizeof(unsigned int) * 32);
716 if(fprs & FPRS_DU)
717 memcpy(&fpregs->pr_regs[16], kfpregs+16,
718 sizeof(unsigned int) * 32);
719 else
720 memset(&fpregs->pr_regs[16], 0,
721 sizeof(unsigned int) * 32);
722 if(fprs & FPRS_FEF) {
723 fpregs->pr_fsr = current_thread_info()->xfsr[0];
724 fpregs->pr_gsr = current_thread_info()->gsr[0];
725 } else {
726 fpregs->pr_fsr = fpregs->pr_gsr = 0;
728 fpregs->pr_fprs = fprs;
730 return 1;
732 EXPORT_SYMBOL(dump_fpu);
734 unsigned long get_wchan(struct task_struct *task)
736 unsigned long pc, fp, bias = 0;
737 struct thread_info *tp;
738 struct reg_window *rw;
739 unsigned long ret = 0;
740 int count = 0;
742 if (!task || task == current ||
743 task->state == TASK_RUNNING)
744 goto out;
746 tp = task_thread_info(task);
747 bias = STACK_BIAS;
748 fp = task_thread_info(task)->ksp + bias;
750 do {
751 if (!kstack_valid(tp, fp))
752 break;
753 rw = (struct reg_window *) fp;
754 pc = rw->ins[7];
755 if (!in_sched_functions(pc)) {
756 ret = pc;
757 goto out;
759 fp = rw->ins[6] + bias;
760 } while (++count < 16);
762 out:
763 return ret;