x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / tile / kernel / pci.c
blobb7180e6e900da624e14758138037fd103009881f
1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/irq.h>
24 #include <linux/io.h>
25 #include <linux/uaccess.h>
26 #include <linux/export.h>
28 #include <asm/processor.h>
29 #include <asm/sections.h>
30 #include <asm/byteorder.h>
31 #include <asm/hv_driver.h>
32 #include <hv/drv_pcie_rc_intf.h>
36 * Initialization flow and process
37 * -------------------------------
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
42 * There are two entry points here:
43 * 1) tile_pci_init
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
47 * 2) pcibios_init
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
54 static int pci_probe = 1;
57 * This flag tells if the platform is TILEmpower that needs
58 * special configuration for the PLX switch chip.
60 int __write_once tile_plx_gen1;
62 static struct pci_controller controllers[TILE_NUM_PCIE];
63 static int num_controllers;
64 static int pci_scan_flags[TILE_NUM_PCIE];
66 static struct pci_ops tile_cfg_ops;
70 * We don't need to worry about the alignment of resources.
72 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
73 resource_size_t size, resource_size_t align)
75 return res->start;
77 EXPORT_SYMBOL(pcibios_align_resource);
80 * Open a FD to the hypervisor PCI device.
82 * controller_id is the controller number, config type is 0 or 1 for
83 * config0 or config1 operations.
85 static int tile_pcie_open(int controller_id, int config_type)
87 char filename[32];
88 int fd;
90 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
92 fd = hv_dev_open((HV_VirtAddr)filename, 0);
94 return fd;
99 * Get the IRQ numbers from the HV and set up the handlers for them.
101 static int tile_init_irqs(int controller_id, struct pci_controller *controller)
103 char filename[32];
104 int fd;
105 int ret;
106 int x;
107 struct pcie_rc_config rc_config;
109 sprintf(filename, "pcie/%d/ctl", controller_id);
110 fd = hv_dev_open((HV_VirtAddr)filename, 0);
111 if (fd < 0) {
112 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
113 return -1;
115 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
117 hv_dev_close(fd);
118 if (ret != sizeof(rc_config)) {
119 pr_err("PCI: wanted %zd bytes, got %d\n",
120 sizeof(rc_config), ret);
121 return -1;
123 /* Record irq_base so that we can map INTx to IRQ # later. */
124 controller->irq_base = rc_config.intr;
126 for (x = 0; x < 4; x++)
127 tile_irq_activate(rc_config.intr + x,
128 TILE_IRQ_HW_CLEAR);
130 if (rc_config.plx_gen1)
131 controller->plx_gen1 = 1;
133 return 0;
137 * First initialization entry point, called from setup_arch().
139 * Find valid controllers and fill in pci_controller structs for each
140 * of them.
142 * Returns the number of controllers discovered.
144 int __init tile_pci_init(void)
146 int i;
148 if (!pci_probe) {
149 pr_info("PCI: disabled by boot argument\n");
150 return 0;
153 pr_info("PCI: Searching for controllers...\n");
155 /* Re-init number of PCIe controllers to support hot-plug feature. */
156 num_controllers = 0;
158 /* Do any configuration we need before using the PCIe */
160 for (i = 0; i < TILE_NUM_PCIE; i++) {
162 * To see whether we need a real config op based on
163 * the results of pcibios_init(), to support PCIe hot-plug.
165 if (pci_scan_flags[i] == 0) {
166 int hv_cfg_fd0 = -1;
167 int hv_cfg_fd1 = -1;
168 int hv_mem_fd = -1;
169 char name[32];
170 struct pci_controller *controller;
173 * Open the fd to the HV. If it fails then this
174 * device doesn't exist.
176 hv_cfg_fd0 = tile_pcie_open(i, 0);
177 if (hv_cfg_fd0 < 0)
178 continue;
179 hv_cfg_fd1 = tile_pcie_open(i, 1);
180 if (hv_cfg_fd1 < 0) {
181 pr_err("PCI: Couldn't open config fd to HV "
182 "for controller %d\n", i);
183 goto err_cont;
186 sprintf(name, "pcie/%d/mem", i);
187 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
188 if (hv_mem_fd < 0) {
189 pr_err("PCI: Could not open mem fd to HV!\n");
190 goto err_cont;
193 pr_info("PCI: Found PCI controller #%d\n", i);
195 controller = &controllers[i];
197 controller->index = i;
198 controller->hv_cfg_fd[0] = hv_cfg_fd0;
199 controller->hv_cfg_fd[1] = hv_cfg_fd1;
200 controller->hv_mem_fd = hv_mem_fd;
201 controller->last_busno = 0xff;
202 controller->ops = &tile_cfg_ops;
204 num_controllers++;
205 continue;
207 err_cont:
208 if (hv_cfg_fd0 >= 0)
209 hv_dev_close(hv_cfg_fd0);
210 if (hv_cfg_fd1 >= 0)
211 hv_dev_close(hv_cfg_fd1);
212 if (hv_mem_fd >= 0)
213 hv_dev_close(hv_mem_fd);
214 continue;
219 * Before using the PCIe, see if we need to do any platform-specific
220 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
222 for (i = 0; i < num_controllers; i++) {
223 struct pci_controller *controller = &controllers[i];
225 if (controller->plx_gen1)
226 tile_plx_gen1 = 1;
229 return num_controllers;
233 * (pin - 1) converts from the PCI standard's [1:4] convention to
234 * a normal [0:3] range.
236 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
238 struct pci_controller *controller =
239 (struct pci_controller *)dev->sysdata;
240 return (pin - 1) + controller->irq_base;
244 static void fixup_read_and_payload_sizes(void)
246 struct pci_dev *dev = NULL;
247 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
248 int max_read_size = 0x2; /* Limit to 512 byte reads. */
249 u16 new_values;
251 /* Scan for the smallest maximum payload size. */
252 for_each_pci_dev(dev) {
253 u32 devcap;
254 int max_payload;
256 if (!pci_is_pcie(dev))
257 continue;
259 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &devcap);
260 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
261 if (max_payload < smallest_max_payload)
262 smallest_max_payload = max_payload;
265 /* Now, set the max_payload_size for all devices to that value. */
266 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
267 for_each_pci_dev(dev)
268 pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
269 PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
270 new_values);
275 * Second PCI initialization entry point, called by subsys_initcall.
277 * The controllers have been set up by the time we get here, by a call to
278 * tile_pci_init.
280 int __init pcibios_init(void)
282 int i;
284 pr_info("PCI: Probing PCI hardware\n");
287 * Delay a bit in case devices aren't ready. Some devices are
288 * known to require at least 20ms here, but we use a more
289 * conservative value.
291 msleep(250);
293 /* Scan all of the recorded PCI controllers. */
294 for (i = 0; i < TILE_NUM_PCIE; i++) {
296 * Do real pcibios init ops if the controller is initialized
297 * by tile_pci_init() successfully and not initialized by
298 * pcibios_init() yet to support PCIe hot-plug.
300 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
301 struct pci_controller *controller = &controllers[i];
302 struct pci_bus *bus;
303 LIST_HEAD(resources);
305 if (tile_init_irqs(i, controller)) {
306 pr_err("PCI: Could not initialize IRQs\n");
307 continue;
310 pr_info("PCI: initializing controller #%d\n", i);
312 pci_add_resource(&resources, &ioport_resource);
313 pci_add_resource(&resources, &iomem_resource);
314 bus = pci_scan_root_bus(NULL, 0, controller->ops,
315 controller, &resources);
316 controller->root_bus = bus;
317 controller->last_busno = bus->busn_res.end;
321 /* Do machine dependent PCI interrupt routing */
322 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
325 * This comes from the generic Linux PCI driver.
327 * It allocates all of the resources (I/O memory, etc)
328 * associated with the devices read in above.
330 pci_assign_unassigned_resources();
332 /* Configure the max_read_size and max_payload_size values. */
333 fixup_read_and_payload_sizes();
335 /* Record the I/O resources in the PCI controller structure. */
336 for (i = 0; i < TILE_NUM_PCIE; i++) {
338 * Do real pcibios init ops if the controller is initialized
339 * by tile_pci_init() successfully and not initialized by
340 * pcibios_init() yet to support PCIe hot-plug.
342 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
343 struct pci_bus *root_bus = controllers[i].root_bus;
344 struct pci_bus *next_bus;
345 struct pci_dev *dev;
347 list_for_each_entry(dev, &root_bus->devices, bus_list) {
349 * Find the PCI host controller, ie. the 1st
350 * bridge.
352 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
353 (PCI_SLOT(dev->devfn) == 0)) {
354 next_bus = dev->subordinate;
355 controllers[i].mem_resources[0] =
356 *next_bus->resource[0];
357 controllers[i].mem_resources[1] =
358 *next_bus->resource[1];
359 controllers[i].mem_resources[2] =
360 *next_bus->resource[2];
362 /* Setup flags. */
363 pci_scan_flags[i] = 1;
365 break;
371 return 0;
373 subsys_initcall(pcibios_init);
376 * No bus fixups needed.
378 void pcibios_fixup_bus(struct pci_bus *bus)
380 /* Nothing needs to be done. */
383 void pcibios_set_master(struct pci_dev *dev)
385 /* No special bus mastering setup handling. */
388 /* Process any "pci=" kernel boot arguments. */
389 char *__init pcibios_setup(char *str)
391 if (!strcmp(str, "off")) {
392 pci_probe = 0;
393 return NULL;
395 return str;
399 * Enable memory and/or address decoding, as appropriate, for the
400 * device described by the 'dev' struct.
402 * This is called from the generic PCI layer, and can be called
403 * for bridges or endpoints.
405 int pcibios_enable_device(struct pci_dev *dev, int mask)
407 u16 cmd, old_cmd;
408 u8 header_type;
409 int i;
410 struct resource *r;
412 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
414 pci_read_config_word(dev, PCI_COMMAND, &cmd);
415 old_cmd = cmd;
416 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
418 * For bridges, we enable both memory and I/O decoding
419 * in call cases.
421 cmd |= PCI_COMMAND_IO;
422 cmd |= PCI_COMMAND_MEMORY;
423 } else {
425 * For endpoints, we enable memory and/or I/O decoding
426 * only if they have a memory resource of that type.
428 for (i = 0; i < 6; i++) {
429 r = &dev->resource[i];
430 if (r->flags & IORESOURCE_UNSET) {
431 pr_err("PCI: Device %s not available "
432 "because of resource collisions\n",
433 pci_name(dev));
434 return -EINVAL;
436 if (r->flags & IORESOURCE_IO)
437 cmd |= PCI_COMMAND_IO;
438 if (r->flags & IORESOURCE_MEM)
439 cmd |= PCI_COMMAND_MEMORY;
444 * We only write the command if it changed.
446 if (cmd != old_cmd)
447 pci_write_config_word(dev, PCI_COMMAND, cmd);
448 return 0;
451 /****************************************************************
453 * Tile PCI config space read/write routines
455 ****************************************************************/
458 * These are the normal read and write ops
459 * These are expanded with macros from pci_bus_read_config_byte() etc.
461 * devfn is the combined PCI slot & function.
463 * offset is in bytes, from the start of config space for the
464 * specified bus & slot.
467 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
468 int size, u32 *val)
470 struct pci_controller *controller = bus->sysdata;
471 int busnum = bus->number & 0xff;
472 int slot = (devfn >> 3) & 0x1f;
473 int function = devfn & 0x7;
474 u32 addr;
475 int config_mode = 1;
478 * There is no bridge between the Tile and bus 0, so we
479 * use config0 to talk to bus 0.
481 * If we're talking to a bus other than zero then we
482 * must have found a bridge.
484 if (busnum == 0) {
486 * We fake an empty slot for (busnum == 0) && (slot > 0),
487 * since there is only one slot on bus 0.
489 if (slot) {
490 *val = 0xFFFFFFFF;
491 return 0;
493 config_mode = 0;
496 addr = busnum << 20; /* Bus in 27:20 */
497 addr |= slot << 15; /* Slot (device) in 19:15 */
498 addr |= function << 12; /* Function is in 14:12 */
499 addr |= (offset & 0xFFF); /* byte address in 0:11 */
501 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
502 (HV_VirtAddr)(val), size, addr);
507 * See tile_cfg_read() for relevant comments.
508 * Note that "val" is the value to write, not a pointer to that value.
510 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
511 int size, u32 val)
513 struct pci_controller *controller = bus->sysdata;
514 int busnum = bus->number & 0xff;
515 int slot = (devfn >> 3) & 0x1f;
516 int function = devfn & 0x7;
517 u32 addr;
518 int config_mode = 1;
519 HV_VirtAddr valp = (HV_VirtAddr)&val;
522 * For bus 0 slot 0 we use config 0 accesses.
524 if (busnum == 0) {
526 * We fake an empty slot for (busnum == 0) && (slot > 0),
527 * since there is only one slot on bus 0.
529 if (slot)
530 return 0;
531 config_mode = 0;
534 addr = busnum << 20; /* Bus in 27:20 */
535 addr |= slot << 15; /* Slot (device) in 19:15 */
536 addr |= function << 12; /* Function is in 14:12 */
537 addr |= (offset & 0xFFF); /* byte address in 0:11 */
539 #ifdef __BIG_ENDIAN
540 /* Point to the correct part of the 32-bit "val". */
541 valp += 4 - size;
542 #endif
544 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
545 valp, size, addr);
549 static struct pci_ops tile_cfg_ops = {
550 .read = tile_cfg_read,
551 .write = tile_cfg_write,
556 * In the following, each PCI controller's mem_resources[1]
557 * represents its (non-prefetchable) PCI memory resource.
558 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
559 * prefetchable PCI memory resources, respectively.
560 * For more details, see pci_setup_bridge() in setup-bus.c.
561 * By comparing the target PCI memory address against the
562 * end address of controller 0, we can determine the controller
563 * that should accept the PCI memory access.
565 #define TILE_READ(size, type) \
566 type _tile_read##size(unsigned long addr) \
568 type val; \
569 int idx = 0; \
570 if (addr > controllers[0].mem_resources[1].end && \
571 addr > controllers[0].mem_resources[2].end) \
572 idx = 1; \
573 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
574 (HV_VirtAddr)(&val), sizeof(type), addr)) \
575 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
576 sizeof(type), addr); \
577 return val; \
579 EXPORT_SYMBOL(_tile_read##size)
581 TILE_READ(b, u8);
582 TILE_READ(w, u16);
583 TILE_READ(l, u32);
584 TILE_READ(q, u64);
586 #define TILE_WRITE(size, type) \
587 void _tile_write##size(type val, unsigned long addr) \
589 int idx = 0; \
590 if (addr > controllers[0].mem_resources[1].end && \
591 addr > controllers[0].mem_resources[2].end) \
592 idx = 1; \
593 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
594 (HV_VirtAddr)(&val), sizeof(type), addr)) \
595 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
596 sizeof(type), addr); \
598 EXPORT_SYMBOL(_tile_write##size)
600 TILE_WRITE(b, u8);
601 TILE_WRITE(w, u16);
602 TILE_WRITE(l, u32);
603 TILE_WRITE(q, u64);