2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/irq.h>
25 #include <linux/uaccess.h>
26 #include <linux/export.h>
28 #include <asm/processor.h>
29 #include <asm/sections.h>
30 #include <asm/byteorder.h>
31 #include <asm/hv_driver.h>
32 #include <hv/drv_pcie_rc_intf.h>
36 * Initialization flow and process
37 * -------------------------------
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
42 * There are two entry points here:
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
54 static int pci_probe
= 1;
57 * This flag tells if the platform is TILEmpower that needs
58 * special configuration for the PLX switch chip.
60 int __write_once tile_plx_gen1
;
62 static struct pci_controller controllers
[TILE_NUM_PCIE
];
63 static int num_controllers
;
64 static int pci_scan_flags
[TILE_NUM_PCIE
];
66 static struct pci_ops tile_cfg_ops
;
70 * We don't need to worry about the alignment of resources.
72 resource_size_t
pcibios_align_resource(void *data
, const struct resource
*res
,
73 resource_size_t size
, resource_size_t align
)
77 EXPORT_SYMBOL(pcibios_align_resource
);
80 * Open a FD to the hypervisor PCI device.
82 * controller_id is the controller number, config type is 0 or 1 for
83 * config0 or config1 operations.
85 static int tile_pcie_open(int controller_id
, int config_type
)
90 sprintf(filename
, "pcie/%d/config%d", controller_id
, config_type
);
92 fd
= hv_dev_open((HV_VirtAddr
)filename
, 0);
99 * Get the IRQ numbers from the HV and set up the handlers for them.
101 static int tile_init_irqs(int controller_id
, struct pci_controller
*controller
)
107 struct pcie_rc_config rc_config
;
109 sprintf(filename
, "pcie/%d/ctl", controller_id
);
110 fd
= hv_dev_open((HV_VirtAddr
)filename
, 0);
112 pr_err("PCI: hv_dev_open(%s) failed\n", filename
);
115 ret
= hv_dev_pread(fd
, 0, (HV_VirtAddr
)(&rc_config
),
116 sizeof(rc_config
), PCIE_RC_CONFIG_MASK_OFF
);
118 if (ret
!= sizeof(rc_config
)) {
119 pr_err("PCI: wanted %zd bytes, got %d\n",
120 sizeof(rc_config
), ret
);
123 /* Record irq_base so that we can map INTx to IRQ # later. */
124 controller
->irq_base
= rc_config
.intr
;
126 for (x
= 0; x
< 4; x
++)
127 tile_irq_activate(rc_config
.intr
+ x
,
130 if (rc_config
.plx_gen1
)
131 controller
->plx_gen1
= 1;
137 * First initialization entry point, called from setup_arch().
139 * Find valid controllers and fill in pci_controller structs for each
142 * Returns the number of controllers discovered.
144 int __init
tile_pci_init(void)
149 pr_info("PCI: disabled by boot argument\n");
153 pr_info("PCI: Searching for controllers...\n");
155 /* Re-init number of PCIe controllers to support hot-plug feature. */
158 /* Do any configuration we need before using the PCIe */
160 for (i
= 0; i
< TILE_NUM_PCIE
; i
++) {
162 * To see whether we need a real config op based on
163 * the results of pcibios_init(), to support PCIe hot-plug.
165 if (pci_scan_flags
[i
] == 0) {
170 struct pci_controller
*controller
;
173 * Open the fd to the HV. If it fails then this
174 * device doesn't exist.
176 hv_cfg_fd0
= tile_pcie_open(i
, 0);
179 hv_cfg_fd1
= tile_pcie_open(i
, 1);
180 if (hv_cfg_fd1
< 0) {
181 pr_err("PCI: Couldn't open config fd to HV "
182 "for controller %d\n", i
);
186 sprintf(name
, "pcie/%d/mem", i
);
187 hv_mem_fd
= hv_dev_open((HV_VirtAddr
)name
, 0);
189 pr_err("PCI: Could not open mem fd to HV!\n");
193 pr_info("PCI: Found PCI controller #%d\n", i
);
195 controller
= &controllers
[i
];
197 controller
->index
= i
;
198 controller
->hv_cfg_fd
[0] = hv_cfg_fd0
;
199 controller
->hv_cfg_fd
[1] = hv_cfg_fd1
;
200 controller
->hv_mem_fd
= hv_mem_fd
;
201 controller
->last_busno
= 0xff;
202 controller
->ops
= &tile_cfg_ops
;
209 hv_dev_close(hv_cfg_fd0
);
211 hv_dev_close(hv_cfg_fd1
);
213 hv_dev_close(hv_mem_fd
);
219 * Before using the PCIe, see if we need to do any platform-specific
220 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
222 for (i
= 0; i
< num_controllers
; i
++) {
223 struct pci_controller
*controller
= &controllers
[i
];
225 if (controller
->plx_gen1
)
229 return num_controllers
;
233 * (pin - 1) converts from the PCI standard's [1:4] convention to
234 * a normal [0:3] range.
236 static int tile_map_irq(const struct pci_dev
*dev
, u8 slot
, u8 pin
)
238 struct pci_controller
*controller
=
239 (struct pci_controller
*)dev
->sysdata
;
240 return (pin
- 1) + controller
->irq_base
;
244 static void fixup_read_and_payload_sizes(void)
246 struct pci_dev
*dev
= NULL
;
247 int smallest_max_payload
= 0x1; /* Tile maxes out at 256 bytes. */
248 int max_read_size
= 0x2; /* Limit to 512 byte reads. */
251 /* Scan for the smallest maximum payload size. */
252 for_each_pci_dev(dev
) {
256 if (!pci_is_pcie(dev
))
259 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &devcap
);
260 max_payload
= devcap
& PCI_EXP_DEVCAP_PAYLOAD
;
261 if (max_payload
< smallest_max_payload
)
262 smallest_max_payload
= max_payload
;
265 /* Now, set the max_payload_size for all devices to that value. */
266 new_values
= (max_read_size
<< 12) | (smallest_max_payload
<< 5);
267 for_each_pci_dev(dev
)
268 pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
269 PCI_EXP_DEVCTL_PAYLOAD
| PCI_EXP_DEVCTL_READRQ
,
275 * Second PCI initialization entry point, called by subsys_initcall.
277 * The controllers have been set up by the time we get here, by a call to
280 int __init
pcibios_init(void)
284 pr_info("PCI: Probing PCI hardware\n");
287 * Delay a bit in case devices aren't ready. Some devices are
288 * known to require at least 20ms here, but we use a more
289 * conservative value.
293 /* Scan all of the recorded PCI controllers. */
294 for (i
= 0; i
< TILE_NUM_PCIE
; i
++) {
296 * Do real pcibios init ops if the controller is initialized
297 * by tile_pci_init() successfully and not initialized by
298 * pcibios_init() yet to support PCIe hot-plug.
300 if (pci_scan_flags
[i
] == 0 && controllers
[i
].ops
!= NULL
) {
301 struct pci_controller
*controller
= &controllers
[i
];
303 LIST_HEAD(resources
);
305 if (tile_init_irqs(i
, controller
)) {
306 pr_err("PCI: Could not initialize IRQs\n");
310 pr_info("PCI: initializing controller #%d\n", i
);
312 pci_add_resource(&resources
, &ioport_resource
);
313 pci_add_resource(&resources
, &iomem_resource
);
314 bus
= pci_scan_root_bus(NULL
, 0, controller
->ops
,
315 controller
, &resources
);
316 controller
->root_bus
= bus
;
317 controller
->last_busno
= bus
->busn_res
.end
;
321 /* Do machine dependent PCI interrupt routing */
322 pci_fixup_irqs(pci_common_swizzle
, tile_map_irq
);
325 * This comes from the generic Linux PCI driver.
327 * It allocates all of the resources (I/O memory, etc)
328 * associated with the devices read in above.
330 pci_assign_unassigned_resources();
332 /* Configure the max_read_size and max_payload_size values. */
333 fixup_read_and_payload_sizes();
335 /* Record the I/O resources in the PCI controller structure. */
336 for (i
= 0; i
< TILE_NUM_PCIE
; i
++) {
338 * Do real pcibios init ops if the controller is initialized
339 * by tile_pci_init() successfully and not initialized by
340 * pcibios_init() yet to support PCIe hot-plug.
342 if (pci_scan_flags
[i
] == 0 && controllers
[i
].ops
!= NULL
) {
343 struct pci_bus
*root_bus
= controllers
[i
].root_bus
;
344 struct pci_bus
*next_bus
;
347 list_for_each_entry(dev
, &root_bus
->devices
, bus_list
) {
349 * Find the PCI host controller, ie. the 1st
352 if ((dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
&&
353 (PCI_SLOT(dev
->devfn
) == 0)) {
354 next_bus
= dev
->subordinate
;
355 controllers
[i
].mem_resources
[0] =
356 *next_bus
->resource
[0];
357 controllers
[i
].mem_resources
[1] =
358 *next_bus
->resource
[1];
359 controllers
[i
].mem_resources
[2] =
360 *next_bus
->resource
[2];
363 pci_scan_flags
[i
] = 1;
373 subsys_initcall(pcibios_init
);
376 * No bus fixups needed.
378 void pcibios_fixup_bus(struct pci_bus
*bus
)
380 /* Nothing needs to be done. */
383 void pcibios_set_master(struct pci_dev
*dev
)
385 /* No special bus mastering setup handling. */
388 /* Process any "pci=" kernel boot arguments. */
389 char *__init
pcibios_setup(char *str
)
391 if (!strcmp(str
, "off")) {
399 * Enable memory and/or address decoding, as appropriate, for the
400 * device described by the 'dev' struct.
402 * This is called from the generic PCI layer, and can be called
403 * for bridges or endpoints.
405 int pcibios_enable_device(struct pci_dev
*dev
, int mask
)
412 pci_read_config_byte(dev
, PCI_HEADER_TYPE
, &header_type
);
414 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
416 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
418 * For bridges, we enable both memory and I/O decoding
421 cmd
|= PCI_COMMAND_IO
;
422 cmd
|= PCI_COMMAND_MEMORY
;
425 * For endpoints, we enable memory and/or I/O decoding
426 * only if they have a memory resource of that type.
428 for (i
= 0; i
< 6; i
++) {
429 r
= &dev
->resource
[i
];
430 if (r
->flags
& IORESOURCE_UNSET
) {
431 pr_err("PCI: Device %s not available "
432 "because of resource collisions\n",
436 if (r
->flags
& IORESOURCE_IO
)
437 cmd
|= PCI_COMMAND_IO
;
438 if (r
->flags
& IORESOURCE_MEM
)
439 cmd
|= PCI_COMMAND_MEMORY
;
444 * We only write the command if it changed.
447 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
451 /****************************************************************
453 * Tile PCI config space read/write routines
455 ****************************************************************/
458 * These are the normal read and write ops
459 * These are expanded with macros from pci_bus_read_config_byte() etc.
461 * devfn is the combined PCI slot & function.
463 * offset is in bytes, from the start of config space for the
464 * specified bus & slot.
467 static int tile_cfg_read(struct pci_bus
*bus
, unsigned int devfn
, int offset
,
470 struct pci_controller
*controller
= bus
->sysdata
;
471 int busnum
= bus
->number
& 0xff;
472 int slot
= (devfn
>> 3) & 0x1f;
473 int function
= devfn
& 0x7;
478 * There is no bridge between the Tile and bus 0, so we
479 * use config0 to talk to bus 0.
481 * If we're talking to a bus other than zero then we
482 * must have found a bridge.
486 * We fake an empty slot for (busnum == 0) && (slot > 0),
487 * since there is only one slot on bus 0.
496 addr
= busnum
<< 20; /* Bus in 27:20 */
497 addr
|= slot
<< 15; /* Slot (device) in 19:15 */
498 addr
|= function
<< 12; /* Function is in 14:12 */
499 addr
|= (offset
& 0xFFF); /* byte address in 0:11 */
501 return hv_dev_pread(controller
->hv_cfg_fd
[config_mode
], 0,
502 (HV_VirtAddr
)(val
), size
, addr
);
507 * See tile_cfg_read() for relevant comments.
508 * Note that "val" is the value to write, not a pointer to that value.
510 static int tile_cfg_write(struct pci_bus
*bus
, unsigned int devfn
, int offset
,
513 struct pci_controller
*controller
= bus
->sysdata
;
514 int busnum
= bus
->number
& 0xff;
515 int slot
= (devfn
>> 3) & 0x1f;
516 int function
= devfn
& 0x7;
519 HV_VirtAddr valp
= (HV_VirtAddr
)&val
;
522 * For bus 0 slot 0 we use config 0 accesses.
526 * We fake an empty slot for (busnum == 0) && (slot > 0),
527 * since there is only one slot on bus 0.
534 addr
= busnum
<< 20; /* Bus in 27:20 */
535 addr
|= slot
<< 15; /* Slot (device) in 19:15 */
536 addr
|= function
<< 12; /* Function is in 14:12 */
537 addr
|= (offset
& 0xFFF); /* byte address in 0:11 */
540 /* Point to the correct part of the 32-bit "val". */
544 return hv_dev_pwrite(controller
->hv_cfg_fd
[config_mode
], 0,
549 static struct pci_ops tile_cfg_ops
= {
550 .read
= tile_cfg_read
,
551 .write
= tile_cfg_write
,
556 * In the following, each PCI controller's mem_resources[1]
557 * represents its (non-prefetchable) PCI memory resource.
558 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
559 * prefetchable PCI memory resources, respectively.
560 * For more details, see pci_setup_bridge() in setup-bus.c.
561 * By comparing the target PCI memory address against the
562 * end address of controller 0, we can determine the controller
563 * that should accept the PCI memory access.
565 #define TILE_READ(size, type) \
566 type _tile_read##size(unsigned long addr) \
570 if (addr > controllers[0].mem_resources[1].end && \
571 addr > controllers[0].mem_resources[2].end) \
573 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
574 (HV_VirtAddr)(&val), sizeof(type), addr)) \
575 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
576 sizeof(type), addr); \
579 EXPORT_SYMBOL(_tile_read##size)
586 #define TILE_WRITE(size, type) \
587 void _tile_write##size(type val, unsigned long addr) \
590 if (addr > controllers[0].mem_resources[1].end && \
591 addr > controllers[0].mem_resources[2].end) \
593 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
594 (HV_VirtAddr)(&val), sizeof(type), addr)) \
595 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
596 sizeof(type), addr); \
598 EXPORT_SYMBOL(_tile_write##size)