x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / tile / kernel / time.c
blob5d10642db63e8e9f98934e36200128a9dfd26073
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * Support the cycle counter clocksource and tile timer clock event device.
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/clocksource.h>
20 #include <linux/clockchips.h>
21 #include <linux/hardirq.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/timekeeper_internal.h>
27 #include <asm/irq_regs.h>
28 #include <asm/traps.h>
29 #include <asm/vdso.h>
30 #include <hv/hypervisor.h>
31 #include <arch/interrupts.h>
32 #include <arch/spr_def.h>
36 * Define the cycle counter clock source.
39 /* How many cycles per second we are running at. */
40 static cycles_t cycles_per_sec __write_once;
42 cycles_t get_clock_rate(void)
44 return cycles_per_sec;
47 #if CHIP_HAS_SPLIT_CYCLE()
48 cycles_t get_cycles(void)
50 unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
51 unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
52 unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
54 while (unlikely(high != high2)) {
55 low = __insn_mfspr(SPR_CYCLE_LOW);
56 high = high2;
57 high2 = __insn_mfspr(SPR_CYCLE_HIGH);
60 return (((cycles_t)high) << 32) | low;
62 EXPORT_SYMBOL(get_cycles);
63 #endif
66 * We use a relatively small shift value so that sched_clock()
67 * won't wrap around very often.
69 #define SCHED_CLOCK_SHIFT 10
71 static unsigned long sched_clock_mult __write_once;
73 static cycles_t clocksource_get_cycles(struct clocksource *cs)
75 return get_cycles();
78 static struct clocksource cycle_counter_cs = {
79 .name = "cycle counter",
80 .rating = 300,
81 .read = clocksource_get_cycles,
82 .mask = CLOCKSOURCE_MASK(64),
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 * Called very early from setup_arch() to set cycles_per_sec.
88 * We initialize it early so we can use it to set up loops_per_jiffy.
90 void __init setup_clock(void)
92 cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
93 sched_clock_mult =
94 clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
97 void __init calibrate_delay(void)
99 loops_per_jiffy = get_clock_rate() / HZ;
100 pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
101 loops_per_jiffy/(500000/HZ),
102 (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
105 /* Called fairly late in init/main.c, but before we go smp. */
106 void __init time_init(void)
108 /* Initialize and register the clock source. */
109 clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
111 /* Start up the tile-timer interrupt source on the boot cpu. */
112 setup_tile_timer();
116 * Define the tile timer clock event device. The timer is driven by
117 * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
118 * counter, plus bit 31, which signifies that the counter has wrapped
119 * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
120 * raised as long as bit 31 is set.
122 * The TILE_MINSEC value represents the largest range of real-time
123 * we can possibly cover with the timer, based on MAX_TICK combined
124 * with the slowest reasonable clock rate we might run at.
127 #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
128 #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */
130 static int tile_timer_set_next_event(unsigned long ticks,
131 struct clock_event_device *evt)
133 BUG_ON(ticks > MAX_TICK);
134 __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
135 arch_local_irq_unmask_now(INT_TILE_TIMER);
136 return 0;
140 * Whenever anyone tries to change modes, we just mask interrupts
141 * and wait for the next event to get set.
143 static void tile_timer_set_mode(enum clock_event_mode mode,
144 struct clock_event_device *evt)
146 arch_local_irq_mask_now(INT_TILE_TIMER);
150 * Set min_delta_ns to 1 microsecond, since it takes about
151 * that long to fire the interrupt.
153 static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
154 .name = "tile timer",
155 .features = CLOCK_EVT_FEAT_ONESHOT,
156 .min_delta_ns = 1000,
157 .rating = 100,
158 .irq = -1,
159 .set_next_event = tile_timer_set_next_event,
160 .set_mode = tile_timer_set_mode,
163 void setup_tile_timer(void)
165 struct clock_event_device *evt = &__get_cpu_var(tile_timer);
167 /* Fill in fields that are speed-specific. */
168 clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
169 evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
171 /* Mark as being for this cpu only. */
172 evt->cpumask = cpumask_of(smp_processor_id());
174 /* Start out with timer not firing. */
175 arch_local_irq_mask_now(INT_TILE_TIMER);
177 /* Register tile timer. */
178 clockevents_register_device(evt);
181 /* Called from the interrupt vector. */
182 void do_timer_interrupt(struct pt_regs *regs, int fault_num)
184 struct pt_regs *old_regs = set_irq_regs(regs);
185 struct clock_event_device *evt = &__get_cpu_var(tile_timer);
188 * Mask the timer interrupt here, since we are a oneshot timer
189 * and there are now by definition no events pending.
191 arch_local_irq_mask(INT_TILE_TIMER);
193 /* Track time spent here in an interrupt context */
194 irq_enter();
196 /* Track interrupt count. */
197 __get_cpu_var(irq_stat).irq_timer_count++;
199 /* Call the generic timer handler */
200 evt->event_handler(evt);
203 * Track time spent against the current process again and
204 * process any softirqs if they are waiting.
206 irq_exit();
208 set_irq_regs(old_regs);
212 * Scheduler clock - returns current time in nanosec units.
213 * Note that with LOCKDEP, this is called during lockdep_init(), and
214 * we will claim that sched_clock() is zero for a little while, until
215 * we run setup_clock(), above.
217 unsigned long long sched_clock(void)
219 return clocksource_cyc2ns(get_cycles(),
220 sched_clock_mult, SCHED_CLOCK_SHIFT);
223 int setup_profiling_timer(unsigned int multiplier)
225 return -EINVAL;
229 * Use the tile timer to convert nsecs to core clock cycles, relying
230 * on it having the same frequency as SPR_CYCLE.
232 cycles_t ns2cycles(unsigned long nsecs)
235 * We do not have to disable preemption here as each core has the same
236 * clock frequency.
238 struct clock_event_device *dev = &__raw_get_cpu_var(tile_timer);
239 return ((u64)nsecs * dev->mult) >> dev->shift;
242 void update_vsyscall_tz(void)
244 /* Userspace gettimeofday will spin while this value is odd. */
245 ++vdso_data->tz_update_count;
246 smp_wmb();
247 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
248 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
249 smp_wmb();
250 ++vdso_data->tz_update_count;
253 void update_vsyscall(struct timekeeper *tk)
255 struct timespec wall_time = tk_xtime(tk);
256 struct timespec *wtm = &tk->wall_to_monotonic;
257 struct clocksource *clock = tk->clock;
259 if (clock != &cycle_counter_cs)
260 return;
262 /* Userspace gettimeofday will spin while this value is odd. */
263 ++vdso_data->tb_update_count;
264 smp_wmb();
265 vdso_data->xtime_tod_stamp = clock->cycle_last;
266 vdso_data->xtime_clock_sec = wall_time.tv_sec;
267 vdso_data->xtime_clock_nsec = wall_time.tv_nsec;
268 vdso_data->wtom_clock_sec = wtm->tv_sec;
269 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
270 vdso_data->mult = clock->mult;
271 vdso_data->shift = clock->shift;
272 smp_wmb();
273 ++vdso_data->tb_update_count;