2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
12 #include <as-layout.h>
13 #include <kern_util.h>
15 #include <sysdep/mcontext.h>
18 void (*sig_info
[NSIG
])(int, struct siginfo
*, struct uml_pt_regs
*) = {
19 [SIGTRAP
] = relay_signal
,
20 [SIGFPE
] = relay_signal
,
21 [SIGILL
] = relay_signal
,
23 [SIGBUS
] = bus_handler
,
24 [SIGSEGV
] = segv_handler
,
25 [SIGIO
] = sigio_handler
,
26 [SIGVTALRM
] = timer_handler
};
28 static void sig_handler_common(int sig
, struct siginfo
*si
, mcontext_t
*mc
)
31 int save_errno
= errno
;
35 /* For segfaults, we want the data from the sigcontext. */
36 get_regs_from_mc(&r
, mc
);
37 GET_FAULTINFO_FROM_MC(r
.faultinfo
, mc
);
40 /* enable signals if sig isn't IRQ signal */
41 if ((sig
!= SIGIO
) && (sig
!= SIGWINCH
) && (sig
!= SIGVTALRM
))
44 (*sig_info
[sig
])(sig
, si
, &r
);
50 * These are the asynchronous signals. SIGPROF is excluded because we want to
51 * be able to profile all of UML, not just the non-critical sections. If
52 * profiling is not thread-safe, then that is not my problem. We can disable
53 * profiling when SMP is enabled in that case.
56 #define SIGIO_MASK (1 << SIGIO_BIT)
58 #define SIGVTALRM_BIT 1
59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
61 static int signals_enabled
;
62 static unsigned int signals_pending
;
64 void sig_handler(int sig
, struct siginfo
*si
, mcontext_t
*mc
)
68 enabled
= signals_enabled
;
69 if (!enabled
&& (sig
== SIGIO
)) {
70 signals_pending
|= SIGIO_MASK
;
76 sig_handler_common(sig
, si
, mc
);
81 static void real_alarm_handler(mcontext_t
*mc
)
83 struct uml_pt_regs regs
;
86 get_regs_from_mc(®s
, mc
);
89 timer_handler(SIGVTALRM
, NULL
, ®s
);
92 void alarm_handler(int sig
, struct siginfo
*unused_si
, mcontext_t
*mc
)
96 enabled
= signals_enabled
;
97 if (!signals_enabled
) {
98 signals_pending
|= SIGVTALRM_MASK
;
104 real_alarm_handler(mc
);
105 set_signals(enabled
);
108 void timer_init(void)
110 set_handler(SIGVTALRM
);
113 void set_sigstack(void *sig_stack
, int size
)
115 stack_t stack
= ((stack_t
) { .ss_flags
= 0,
116 .ss_sp
= (__ptr_t
) sig_stack
,
117 .ss_size
= size
- sizeof(void *) });
119 if (sigaltstack(&stack
, NULL
) != 0)
120 panic("enabling signal stack failed, errno = %d\n", errno
);
123 static void (*handlers
[_NSIG
])(int sig
, struct siginfo
*si
, mcontext_t
*mc
) = {
124 [SIGSEGV
] = sig_handler
,
125 [SIGBUS
] = sig_handler
,
126 [SIGILL
] = sig_handler
,
127 [SIGFPE
] = sig_handler
,
128 [SIGTRAP
] = sig_handler
,
130 [SIGIO
] = sig_handler
,
131 [SIGWINCH
] = sig_handler
,
132 [SIGVTALRM
] = alarm_handler
136 static void hard_handler(int sig
, siginfo_t
*si
, void *p
)
138 struct ucontext
*uc
= p
;
139 mcontext_t
*mc
= &uc
->uc_mcontext
;
140 unsigned long pending
= 1UL << sig
;
146 * pending comes back with one bit set for each
147 * interrupt that arrived while setting up the stack,
148 * plus a bit for this interrupt, plus the zero bit is
149 * set if this is a nested interrupt.
150 * If bail is true, then we interrupted another
151 * handler setting up the stack. In this case, we
152 * have to return, and the upper handler will deal
153 * with this interrupt.
155 bail
= to_irq_stack(&pending
);
159 nested
= pending
& 1;
162 while ((sig
= ffs(pending
)) != 0){
164 pending
&= ~(1 << sig
);
165 (*handlers
[sig
])(sig
, (struct siginfo
*)si
, mc
);
169 * Again, pending comes back with a mask of signals
170 * that arrived while tearing down the stack. If this
171 * is non-zero, we just go back, set up the stack
172 * again, and handle the new interrupts.
175 pending
= from_irq_stack(nested
);
179 void set_handler(int sig
)
181 struct sigaction action
;
182 int flags
= SA_SIGINFO
| SA_ONSTACK
;
185 action
.sa_sigaction
= hard_handler
;
188 sigemptyset(&action
.sa_mask
);
189 sigaddset(&action
.sa_mask
, SIGVTALRM
);
190 sigaddset(&action
.sa_mask
, SIGIO
);
191 sigaddset(&action
.sa_mask
, SIGWINCH
);
196 if (sigismember(&action
.sa_mask
, sig
))
197 flags
|= SA_RESTART
; /* if it's an irq signal */
199 action
.sa_flags
= flags
;
200 action
.sa_restorer
= NULL
;
201 if (sigaction(sig
, &action
, NULL
) < 0)
202 panic("sigaction failed - errno = %d\n", errno
);
204 sigemptyset(&sig_mask
);
205 sigaddset(&sig_mask
, sig
);
206 if (sigprocmask(SIG_UNBLOCK
, &sig_mask
, NULL
) < 0)
207 panic("sigprocmask failed - errno = %d\n", errno
);
210 int change_sig(int signal
, int on
)
214 sigemptyset(&sigset
);
215 sigaddset(&sigset
, signal
);
216 if (sigprocmask(on
? SIG_UNBLOCK
: SIG_BLOCK
, &sigset
, NULL
) < 0)
222 void block_signals(void)
226 * This must return with signals disabled, so this barrier
227 * ensures that writes are flushed out before the return.
228 * This might matter if gcc figures out how to inline this and
229 * decides to shuffle this code into the caller.
234 void unblock_signals(void)
238 if (signals_enabled
== 1)
242 * We loop because the IRQ handler returns with interrupts off. So,
243 * interrupts may have arrived and we need to re-enable them and
244 * recheck signals_pending.
248 * Save and reset save_pending after enabling signals. This
249 * way, signals_pending won't be changed while we're reading it.
254 * Setting signals_enabled and reading signals_pending must
255 * happen in this order.
259 save_pending
= signals_pending
;
260 if (save_pending
== 0)
266 * We have pending interrupts, so disable signals, as the
267 * handlers expect them off when they are called. They will
268 * be enabled again above.
274 * Deal with SIGIO first because the alarm handler might
275 * schedule, leaving the pending SIGIO stranded until we come
278 * SIGIO's handler doesn't use siginfo or mcontext,
279 * so they can be NULL.
281 if (save_pending
& SIGIO_MASK
)
282 sig_handler_common(SIGIO
, NULL
, NULL
);
284 if (save_pending
& SIGVTALRM_MASK
)
285 real_alarm_handler(NULL
);
289 int get_signals(void)
291 return signals_enabled
;
294 int set_signals(int enable
)
297 if (signals_enabled
== enable
)
300 ret
= signals_enabled
;
303 else block_signals();