x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / unicore32 / mm / init.c
blobae6bc036db92afdc4de9f83de485caf2a86695fe
1 /*
2 * linux/arch/unicore32/mm/init.c
4 * Copyright (C) 2010 GUAN Xue-tao
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/sizes.h>
28 #include <asm/tlb.h>
29 #include <asm/memblock.h>
30 #include <mach/map.h>
32 #include "mm.h"
34 static unsigned long phys_initrd_start __initdata = 0x01000000;
35 static unsigned long phys_initrd_size __initdata = SZ_8M;
37 static int __init early_initrd(char *p)
39 unsigned long start, size;
40 char *endp;
42 start = memparse(p, &endp);
43 if (*endp == ',') {
44 size = memparse(endp + 1, NULL);
46 phys_initrd_start = start;
47 phys_initrd_size = size;
49 return 0;
51 early_param("initrd", early_initrd);
54 * This keeps memory configuration data used by a couple memory
55 * initialization functions, as well as show_mem() for the skipping
56 * of holes in the memory map. It is populated by uc32_add_memory().
58 struct meminfo meminfo;
60 void show_mem(unsigned int filter)
62 int free = 0, total = 0, reserved = 0;
63 int shared = 0, cached = 0, slab = 0, i;
64 struct meminfo *mi = &meminfo;
66 printk(KERN_DEFAULT "Mem-info:\n");
67 show_free_areas(filter);
69 if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
70 return;
72 for_each_bank(i, mi) {
73 struct membank *bank = &mi->bank[i];
74 unsigned int pfn1, pfn2;
75 struct page *page, *end;
77 pfn1 = bank_pfn_start(bank);
78 pfn2 = bank_pfn_end(bank);
80 page = pfn_to_page(pfn1);
81 end = pfn_to_page(pfn2 - 1) + 1;
83 do {
84 total++;
85 if (PageReserved(page))
86 reserved++;
87 else if (PageSwapCache(page))
88 cached++;
89 else if (PageSlab(page))
90 slab++;
91 else if (!page_count(page))
92 free++;
93 else
94 shared += page_count(page) - 1;
95 page++;
96 } while (page < end);
99 printk(KERN_DEFAULT "%d pages of RAM\n", total);
100 printk(KERN_DEFAULT "%d free pages\n", free);
101 printk(KERN_DEFAULT "%d reserved pages\n", reserved);
102 printk(KERN_DEFAULT "%d slab pages\n", slab);
103 printk(KERN_DEFAULT "%d pages shared\n", shared);
104 printk(KERN_DEFAULT "%d pages swap cached\n", cached);
107 static void __init find_limits(unsigned long *min, unsigned long *max_low,
108 unsigned long *max_high)
110 struct meminfo *mi = &meminfo;
111 int i;
113 *min = -1UL;
114 *max_low = *max_high = 0;
116 for_each_bank(i, mi) {
117 struct membank *bank = &mi->bank[i];
118 unsigned long start, end;
120 start = bank_pfn_start(bank);
121 end = bank_pfn_end(bank);
123 if (*min > start)
124 *min = start;
125 if (*max_high < end)
126 *max_high = end;
127 if (bank->highmem)
128 continue;
129 if (*max_low < end)
130 *max_low = end;
134 static void __init uc32_bootmem_init(unsigned long start_pfn,
135 unsigned long end_pfn)
137 struct memblock_region *reg;
138 unsigned int boot_pages;
139 phys_addr_t bitmap;
140 pg_data_t *pgdat;
143 * Allocate the bootmem bitmap page. This must be in a region
144 * of memory which has already been mapped.
146 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
147 bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
148 __pfn_to_phys(end_pfn));
151 * Initialise the bootmem allocator, handing the
152 * memory banks over to bootmem.
154 node_set_online(0);
155 pgdat = NODE_DATA(0);
156 init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
158 /* Free the lowmem regions from memblock into bootmem. */
159 for_each_memblock(memory, reg) {
160 unsigned long start = memblock_region_memory_base_pfn(reg);
161 unsigned long end = memblock_region_memory_end_pfn(reg);
163 if (end >= end_pfn)
164 end = end_pfn;
165 if (start >= end)
166 break;
168 free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
171 /* Reserve the lowmem memblock reserved regions in bootmem. */
172 for_each_memblock(reserved, reg) {
173 unsigned long start = memblock_region_reserved_base_pfn(reg);
174 unsigned long end = memblock_region_reserved_end_pfn(reg);
176 if (end >= end_pfn)
177 end = end_pfn;
178 if (start >= end)
179 break;
181 reserve_bootmem(__pfn_to_phys(start),
182 (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
186 static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
187 unsigned long max_high)
189 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
190 struct memblock_region *reg;
193 * initialise the zones.
195 memset(zone_size, 0, sizeof(zone_size));
198 * The memory size has already been determined. If we need
199 * to do anything fancy with the allocation of this memory
200 * to the zones, now is the time to do it.
202 zone_size[0] = max_low - min;
205 * Calculate the size of the holes.
206 * holes = node_size - sum(bank_sizes)
208 memcpy(zhole_size, zone_size, sizeof(zhole_size));
209 for_each_memblock(memory, reg) {
210 unsigned long start = memblock_region_memory_base_pfn(reg);
211 unsigned long end = memblock_region_memory_end_pfn(reg);
213 if (start < max_low) {
214 unsigned long low_end = min(end, max_low);
215 zhole_size[0] -= low_end - start;
220 * Adjust the sizes according to any special requirements for
221 * this machine type.
223 arch_adjust_zones(zone_size, zhole_size);
225 free_area_init_node(0, zone_size, min, zhole_size);
228 int pfn_valid(unsigned long pfn)
230 return memblock_is_memory(pfn << PAGE_SHIFT);
232 EXPORT_SYMBOL(pfn_valid);
234 static void uc32_memory_present(void)
238 static int __init meminfo_cmp(const void *_a, const void *_b)
240 const struct membank *a = _a, *b = _b;
241 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
242 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
245 void __init uc32_memblock_init(struct meminfo *mi)
247 int i;
249 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
250 meminfo_cmp, NULL);
252 for (i = 0; i < mi->nr_banks; i++)
253 memblock_add(mi->bank[i].start, mi->bank[i].size);
255 /* Register the kernel text, kernel data and initrd with memblock. */
256 memblock_reserve(__pa(_text), _end - _text);
258 #ifdef CONFIG_BLK_DEV_INITRD
259 if (phys_initrd_size) {
260 memblock_reserve(phys_initrd_start, phys_initrd_size);
262 /* Now convert initrd to virtual addresses */
263 initrd_start = __phys_to_virt(phys_initrd_start);
264 initrd_end = initrd_start + phys_initrd_size;
266 #endif
268 uc32_mm_memblock_reserve();
270 memblock_allow_resize();
271 memblock_dump_all();
274 void __init bootmem_init(void)
276 unsigned long min, max_low, max_high;
278 max_low = max_high = 0;
280 find_limits(&min, &max_low, &max_high);
282 uc32_bootmem_init(min, max_low);
284 #ifdef CONFIG_SWIOTLB
285 swiotlb_init(1);
286 #endif
288 * Sparsemem tries to allocate bootmem in memory_present(),
289 * so must be done after the fixed reservations
291 uc32_memory_present();
294 * sparse_init() needs the bootmem allocator up and running.
296 sparse_init();
299 * Now free the memory - free_area_init_node needs
300 * the sparse mem_map arrays initialized by sparse_init()
301 * for memmap_init_zone(), otherwise all PFNs are invalid.
303 uc32_bootmem_free(min, max_low, max_high);
305 high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
308 * This doesn't seem to be used by the Linux memory manager any
309 * more, but is used by ll_rw_block. If we can get rid of it, we
310 * also get rid of some of the stuff above as well.
312 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
313 * the system, not the maximum PFN.
315 max_low_pfn = max_low - PHYS_PFN_OFFSET;
316 max_pfn = max_high - PHYS_PFN_OFFSET;
319 static inline void
320 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
322 struct page *start_pg, *end_pg;
323 unsigned long pg, pgend;
326 * Convert start_pfn/end_pfn to a struct page pointer.
328 start_pg = pfn_to_page(start_pfn - 1) + 1;
329 end_pg = pfn_to_page(end_pfn);
332 * Convert to physical addresses, and
333 * round start upwards and end downwards.
335 pg = PAGE_ALIGN(__pa(start_pg));
336 pgend = __pa(end_pg) & PAGE_MASK;
339 * If there are free pages between these,
340 * free the section of the memmap array.
342 if (pg < pgend)
343 free_bootmem(pg, pgend - pg);
347 * The mem_map array can get very big. Free the unused area of the memory map.
349 static void __init free_unused_memmap(struct meminfo *mi)
351 unsigned long bank_start, prev_bank_end = 0;
352 unsigned int i;
355 * This relies on each bank being in address order.
356 * The banks are sorted previously in bootmem_init().
358 for_each_bank(i, mi) {
359 struct membank *bank = &mi->bank[i];
361 bank_start = bank_pfn_start(bank);
364 * If we had a previous bank, and there is a space
365 * between the current bank and the previous, free it.
367 if (prev_bank_end && prev_bank_end < bank_start)
368 free_memmap(prev_bank_end, bank_start);
371 * Align up here since the VM subsystem insists that the
372 * memmap entries are valid from the bank end aligned to
373 * MAX_ORDER_NR_PAGES.
375 prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
380 * mem_init() marks the free areas in the mem_map and tells us how much
381 * memory is free. This is done after various parts of the system have
382 * claimed their memory after the kernel image.
384 void __init mem_init(void)
386 max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
388 free_unused_memmap(&meminfo);
390 /* this will put all unused low memory onto the freelists */
391 free_all_bootmem();
393 mem_init_print_info(NULL);
394 printk(KERN_NOTICE "Virtual kernel memory layout:\n"
395 " vector : 0x%08lx - 0x%08lx (%4ld kB)\n"
396 " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
397 " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
398 " modules : 0x%08lx - 0x%08lx (%4ld MB)\n"
399 " .init : 0x%p" " - 0x%p" " (%4d kB)\n"
400 " .text : 0x%p" " - 0x%p" " (%4d kB)\n"
401 " .data : 0x%p" " - 0x%p" " (%4d kB)\n",
403 VECTORS_BASE, VECTORS_BASE + PAGE_SIZE,
404 DIV_ROUND_UP(PAGE_SIZE, SZ_1K),
405 VMALLOC_START, VMALLOC_END,
406 DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M),
407 PAGE_OFFSET, (unsigned long)high_memory,
408 DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
409 MODULES_VADDR, MODULES_END,
410 DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M),
412 __init_begin, __init_end,
413 DIV_ROUND_UP((__init_end - __init_begin), SZ_1K),
414 _stext, _etext,
415 DIV_ROUND_UP((_etext - _stext), SZ_1K),
416 _sdata, _edata,
417 DIV_ROUND_UP((_edata - _sdata), SZ_1K));
419 BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR);
420 BUG_ON(TASK_SIZE > MODULES_VADDR);
422 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
424 * On a machine this small we won't get
425 * anywhere without overcommit, so turn
426 * it on by default.
428 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
432 void free_initmem(void)
434 free_initmem_default(-1);
437 #ifdef CONFIG_BLK_DEV_INITRD
439 static int keep_initrd;
441 void free_initrd_mem(unsigned long start, unsigned long end)
443 if (!keep_initrd)
444 free_reserved_area((void *)start, (void *)end, -1, "initrd");
447 static int __init keepinitrd_setup(char *__unused)
449 keep_initrd = 1;
450 return 1;
453 __setup("keepinitrd", keepinitrd_setup);
454 #endif