x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / unicore32 / mm / mmu.c
blob4f5a532bee13123b08cbc775116fe4b92291973c
1 /*
2 * linux/arch/unicore32/mm/mmu.c
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/memblock.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <linux/io.h>
23 #include <asm/cputype.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
27 #include <asm/tlb.h>
28 #include <asm/memblock.h>
30 #include <mach/map.h>
32 #include "mm.h"
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
42 * The pmd table for the upper-most set of pages.
44 pmd_t *top_pmd;
46 pgprot_t pgprot_user;
47 EXPORT_SYMBOL(pgprot_user);
49 pgprot_t pgprot_kernel;
50 EXPORT_SYMBOL(pgprot_kernel);
52 static int __init noalign_setup(char *__unused)
54 cr_alignment &= ~CR_A;
55 cr_no_alignment &= ~CR_A;
56 set_cr(cr_alignment);
57 return 1;
59 __setup("noalign", noalign_setup);
61 void adjust_cr(unsigned long mask, unsigned long set)
63 unsigned long flags;
65 mask &= ~CR_A;
67 set &= mask;
69 local_irq_save(flags);
71 cr_no_alignment = (cr_no_alignment & ~mask) | set;
72 cr_alignment = (cr_alignment & ~mask) | set;
74 set_cr((get_cr() & ~mask) | set);
76 local_irq_restore(flags);
79 struct map_desc {
80 unsigned long virtual;
81 unsigned long pfn;
82 unsigned long length;
83 unsigned int type;
86 #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
87 PTE_DIRTY | PTE_READ | PTE_WRITE)
88 #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
89 PMD_SECT_READ | PMD_SECT_WRITE)
91 static struct mem_type mem_types[] = {
92 [MT_DEVICE] = { /* Strongly ordered */
93 .prot_pte = PROT_PTE_DEVICE,
94 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
95 .prot_sect = PROT_SECT_DEVICE,
98 * MT_KUSER: pte for vecpage -- cacheable,
99 * and sect for unigfx mmap -- noncacheable
101 [MT_KUSER] = {
102 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
103 PTE_CACHEABLE | PTE_READ | PTE_EXEC,
104 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
105 .prot_sect = PROT_SECT_DEVICE,
107 [MT_HIGH_VECTORS] = {
108 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
109 PTE_CACHEABLE | PTE_READ | PTE_WRITE |
110 PTE_EXEC,
111 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
113 [MT_MEMORY] = {
114 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
115 PTE_WRITE | PTE_EXEC,
116 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
117 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
118 PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
120 [MT_ROM] = {
121 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
122 PMD_SECT_READ,
126 const struct mem_type *get_mem_type(unsigned int type)
128 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
130 EXPORT_SYMBOL(get_mem_type);
133 * Adjust the PMD section entries according to the CPU in use.
135 static void __init build_mem_type_table(void)
137 pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
138 pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
139 PTE_DIRTY | PTE_READ | PTE_WRITE |
140 PTE_EXEC | PTE_CACHEABLE);
143 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
145 static void __init *early_alloc(unsigned long sz)
147 void *ptr = __va(memblock_alloc(sz, sz));
148 memset(ptr, 0, sz);
149 return ptr;
152 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
153 unsigned long prot)
155 if (pmd_none(*pmd)) {
156 pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
157 __pmd_populate(pmd, __pa(pte) | prot);
159 BUG_ON(pmd_bad(*pmd));
160 return pte_offset_kernel(pmd, addr);
163 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
164 unsigned long end, unsigned long pfn,
165 const struct mem_type *type)
167 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
168 do {
169 set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
170 pfn++;
171 } while (pte++, addr += PAGE_SIZE, addr != end);
174 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
175 unsigned long end, unsigned long phys,
176 const struct mem_type *type)
178 pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
181 * Try a section mapping - end, addr and phys must all be aligned
182 * to a section boundary.
184 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
185 pmd_t *p = pmd;
187 do {
188 set_pmd(pmd, __pmd(phys | type->prot_sect));
189 phys += SECTION_SIZE;
190 } while (pmd++, addr += SECTION_SIZE, addr != end);
192 flush_pmd_entry(p);
193 } else {
195 * No need to loop; pte's aren't interested in the
196 * individual L1 entries.
198 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
203 * Create the page directory entries and any necessary
204 * page tables for the mapping specified by `md'. We
205 * are able to cope here with varying sizes and address
206 * offsets, and we take full advantage of sections.
208 static void __init create_mapping(struct map_desc *md)
210 unsigned long phys, addr, length, end;
211 const struct mem_type *type;
212 pgd_t *pgd;
214 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
215 printk(KERN_WARNING "BUG: not creating mapping for "
216 "0x%08llx at 0x%08lx in user region\n",
217 __pfn_to_phys((u64)md->pfn), md->virtual);
218 return;
221 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
222 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
223 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
224 "overlaps vmalloc space\n",
225 __pfn_to_phys((u64)md->pfn), md->virtual);
228 type = &mem_types[md->type];
230 addr = md->virtual & PAGE_MASK;
231 phys = (unsigned long)__pfn_to_phys(md->pfn);
232 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
234 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
235 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
236 "be mapped using pages, ignoring.\n",
237 __pfn_to_phys(md->pfn), addr);
238 return;
241 pgd = pgd_offset_k(addr);
242 end = addr + length;
243 do {
244 unsigned long next = pgd_addr_end(addr, end);
246 alloc_init_section(pgd, addr, next, phys, type);
248 phys += next - addr;
249 addr = next;
250 } while (pgd++, addr != end);
253 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
256 * vmalloc=size forces the vmalloc area to be exactly 'size'
257 * bytes. This can be used to increase (or decrease) the vmalloc
258 * area - the default is 128m.
260 static int __init early_vmalloc(char *arg)
262 unsigned long vmalloc_reserve = memparse(arg, NULL);
264 if (vmalloc_reserve < SZ_16M) {
265 vmalloc_reserve = SZ_16M;
266 printk(KERN_WARNING
267 "vmalloc area too small, limiting to %luMB\n",
268 vmalloc_reserve >> 20);
271 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
272 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
273 printk(KERN_WARNING
274 "vmalloc area is too big, limiting to %luMB\n",
275 vmalloc_reserve >> 20);
278 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
279 return 0;
281 early_param("vmalloc", early_vmalloc);
283 static phys_addr_t lowmem_limit __initdata = SZ_1G;
285 static void __init sanity_check_meminfo(void)
287 int i, j;
289 lowmem_limit = __pa(vmalloc_min - 1) + 1;
290 memblock_set_current_limit(lowmem_limit);
292 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
293 struct membank *bank = &meminfo.bank[j];
294 *bank = meminfo.bank[i];
295 j++;
297 meminfo.nr_banks = j;
300 static inline void prepare_page_table(void)
302 unsigned long addr;
303 phys_addr_t end;
306 * Clear out all the mappings below the kernel image.
308 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
309 pmd_clear(pmd_off_k(addr));
311 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
312 pmd_clear(pmd_off_k(addr));
315 * Find the end of the first block of lowmem.
317 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
318 if (end >= lowmem_limit)
319 end = lowmem_limit;
322 * Clear out all the kernel space mappings, except for the first
323 * memory bank, up to the end of the vmalloc region.
325 for (addr = __phys_to_virt(end);
326 addr < VMALLOC_END; addr += PGDIR_SIZE)
327 pmd_clear(pmd_off_k(addr));
331 * Reserve the special regions of memory
333 void __init uc32_mm_memblock_reserve(void)
336 * Reserve the page tables. These are already in use,
337 * and can only be in node 0.
339 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
343 * Set up device the mappings. Since we clear out the page tables for all
344 * mappings above VMALLOC_END, we will remove any debug device mappings.
345 * This means you have to be careful how you debug this function, or any
346 * called function. This means you can't use any function or debugging
347 * method which may touch any device, otherwise the kernel _will_ crash.
349 static void __init devicemaps_init(void)
351 struct map_desc map;
352 unsigned long addr;
353 void *vectors;
356 * Allocate the vector page early.
358 vectors = early_alloc(PAGE_SIZE);
360 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
361 pmd_clear(pmd_off_k(addr));
364 * Create a mapping for the machine vectors at the high-vectors
365 * location (0xffff0000). If we aren't using high-vectors, also
366 * create a mapping at the low-vectors virtual address.
368 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
369 map.virtual = VECTORS_BASE;
370 map.length = PAGE_SIZE;
371 map.type = MT_HIGH_VECTORS;
372 create_mapping(&map);
375 * Create a mapping for the kuser page at the special
376 * location (0xbfff0000) to the same vectors location.
378 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
379 map.virtual = KUSER_VECPAGE_BASE;
380 map.length = PAGE_SIZE;
381 map.type = MT_KUSER;
382 create_mapping(&map);
385 * Finally flush the caches and tlb to ensure that we're in a
386 * consistent state wrt the writebuffer. This also ensures that
387 * any write-allocated cache lines in the vector page are written
388 * back. After this point, we can start to touch devices again.
390 local_flush_tlb_all();
391 flush_cache_all();
394 static void __init map_lowmem(void)
396 struct memblock_region *reg;
398 /* Map all the lowmem memory banks. */
399 for_each_memblock(memory, reg) {
400 phys_addr_t start = reg->base;
401 phys_addr_t end = start + reg->size;
402 struct map_desc map;
404 if (end > lowmem_limit)
405 end = lowmem_limit;
406 if (start >= end)
407 break;
409 map.pfn = __phys_to_pfn(start);
410 map.virtual = __phys_to_virt(start);
411 map.length = end - start;
412 map.type = MT_MEMORY;
414 create_mapping(&map);
419 * paging_init() sets up the page tables, initialises the zone memory
420 * maps, and sets up the zero page, bad page and bad page tables.
422 void __init paging_init(void)
424 void *zero_page;
426 build_mem_type_table();
427 sanity_check_meminfo();
428 prepare_page_table();
429 map_lowmem();
430 devicemaps_init();
432 top_pmd = pmd_off_k(0xffff0000);
434 /* allocate the zero page. */
435 zero_page = early_alloc(PAGE_SIZE);
437 bootmem_init();
439 empty_zero_page = virt_to_page(zero_page);
440 __flush_dcache_page(NULL, empty_zero_page);
444 * In order to soft-boot, we need to insert a 1:1 mapping in place of
445 * the user-mode pages. This will then ensure that we have predictable
446 * results when turning the mmu off
448 void setup_mm_for_reboot(void)
450 unsigned long base_pmdval;
451 pgd_t *pgd;
452 int i;
455 * We need to access to user-mode page tables here. For kernel threads
456 * we don't have any user-mode mappings so we use the context that we
457 * "borrowed".
459 pgd = current->active_mm->pgd;
461 base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
463 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
464 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
465 pmd_t *pmd;
467 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
468 set_pmd(pmd, __pmd(pmdval));
469 flush_pmd_entry(pmd);
472 local_flush_tlb_all();
476 * Take care of architecture specific things when placing a new PTE into
477 * a page table, or changing an existing PTE. Basically, there are two
478 * things that we need to take care of:
480 * 1. If PG_dcache_clean is not set for the page, we need to ensure
481 * that any cache entries for the kernels virtual memory
482 * range are written back to the page.
483 * 2. If we have multiple shared mappings of the same space in
484 * an object, we need to deal with the cache aliasing issues.
486 * Note that the pte lock will be held.
488 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
489 pte_t *ptep)
491 unsigned long pfn = pte_pfn(*ptep);
492 struct address_space *mapping;
493 struct page *page;
495 if (!pfn_valid(pfn))
496 return;
499 * The zero page is never written to, so never has any dirty
500 * cache lines, and therefore never needs to be flushed.
502 page = pfn_to_page(pfn);
503 if (page == ZERO_PAGE(0))
504 return;
506 mapping = page_mapping(page);
507 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
508 __flush_dcache_page(mapping, page);
509 if (mapping)
510 if (vma->vm_flags & VM_EXEC)
511 __flush_icache_all();