x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / x86 / include / asm / fpu-internal.h
blob5be9f879957f523ea72d7a3126a1c6b5b56db7eb
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/compat.h>
16 #include <linux/slab.h>
17 #include <asm/asm.h>
18 #include <asm/cpufeature.h>
19 #include <asm/processor.h>
20 #include <asm/sigcontext.h>
21 #include <asm/user.h>
22 #include <asm/uaccess.h>
23 #include <asm/xsave.h>
24 #include <asm/smap.h>
26 #ifdef CONFIG_X86_64
27 # include <asm/sigcontext32.h>
28 # include <asm/user32.h>
29 struct ksignal;
30 int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
31 compat_sigset_t *set, struct pt_regs *regs);
32 int ia32_setup_frame(int sig, struct ksignal *ksig,
33 compat_sigset_t *set, struct pt_regs *regs);
34 #else
35 # define user_i387_ia32_struct user_i387_struct
36 # define user32_fxsr_struct user_fxsr_struct
37 # define ia32_setup_frame __setup_frame
38 # define ia32_setup_rt_frame __setup_rt_frame
39 #endif
41 extern unsigned int mxcsr_feature_mask;
42 extern void fpu_init(void);
43 extern void eager_fpu_init(void);
45 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
47 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
48 struct task_struct *tsk);
49 extern void convert_to_fxsr(struct task_struct *tsk,
50 const struct user_i387_ia32_struct *env);
52 extern user_regset_active_fn fpregs_active, xfpregs_active;
53 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
54 xstateregs_get;
55 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
56 xstateregs_set;
59 * xstateregs_active == fpregs_active. Please refer to the comment
60 * at the definition of fpregs_active.
62 #define xstateregs_active fpregs_active
64 #ifdef CONFIG_MATH_EMULATION
65 extern void finit_soft_fpu(struct i387_soft_struct *soft);
66 #else
67 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
68 #endif
70 static inline int is_ia32_compat_frame(void)
72 return config_enabled(CONFIG_IA32_EMULATION) &&
73 test_thread_flag(TIF_IA32);
76 static inline int is_ia32_frame(void)
78 return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
81 static inline int is_x32_frame(void)
83 return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
86 #define X87_FSW_ES (1 << 7) /* Exception Summary */
88 static __always_inline __pure bool use_eager_fpu(void)
90 return static_cpu_has(X86_FEATURE_EAGER_FPU);
93 static __always_inline __pure bool use_xsaveopt(void)
95 return static_cpu_has(X86_FEATURE_XSAVEOPT);
98 static __always_inline __pure bool use_xsave(void)
100 return static_cpu_has(X86_FEATURE_XSAVE);
103 static __always_inline __pure bool use_fxsr(void)
105 return static_cpu_has(X86_FEATURE_FXSR);
108 static inline void fx_finit(struct i387_fxsave_struct *fx)
110 memset(fx, 0, xstate_size);
111 fx->cwd = 0x37f;
112 fx->mxcsr = MXCSR_DEFAULT;
115 extern void __sanitize_i387_state(struct task_struct *);
117 static inline void sanitize_i387_state(struct task_struct *tsk)
119 if (!use_xsaveopt())
120 return;
121 __sanitize_i387_state(tsk);
124 #define user_insn(insn, output, input...) \
125 ({ \
126 int err; \
127 asm volatile(ASM_STAC "\n" \
128 "1:" #insn "\n\t" \
129 "2: " ASM_CLAC "\n" \
130 ".section .fixup,\"ax\"\n" \
131 "3: movl $-1,%[err]\n" \
132 " jmp 2b\n" \
133 ".previous\n" \
134 _ASM_EXTABLE(1b, 3b) \
135 : [err] "=r" (err), output \
136 : "0"(0), input); \
137 err; \
140 #define check_insn(insn, output, input...) \
141 ({ \
142 int err; \
143 asm volatile("1:" #insn "\n\t" \
144 "2:\n" \
145 ".section .fixup,\"ax\"\n" \
146 "3: movl $-1,%[err]\n" \
147 " jmp 2b\n" \
148 ".previous\n" \
149 _ASM_EXTABLE(1b, 3b) \
150 : [err] "=r" (err), output \
151 : "0"(0), input); \
152 err; \
155 static inline int fsave_user(struct i387_fsave_struct __user *fx)
157 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
160 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
162 if (config_enabled(CONFIG_X86_32))
163 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
164 else if (config_enabled(CONFIG_AS_FXSAVEQ))
165 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
167 /* See comment in fpu_fxsave() below. */
168 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
171 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
173 if (config_enabled(CONFIG_X86_32))
174 return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
175 else if (config_enabled(CONFIG_AS_FXSAVEQ))
176 return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
178 /* See comment in fpu_fxsave() below. */
179 return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
180 "m" (*fx));
183 static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
185 if (config_enabled(CONFIG_X86_32))
186 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
187 else if (config_enabled(CONFIG_AS_FXSAVEQ))
188 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
190 /* See comment in fpu_fxsave() below. */
191 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
192 "m" (*fx));
195 static inline int frstor_checking(struct i387_fsave_struct *fx)
197 return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
200 static inline int frstor_user(struct i387_fsave_struct __user *fx)
202 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
205 static inline void fpu_fxsave(struct fpu *fpu)
207 if (config_enabled(CONFIG_X86_32))
208 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
209 else if (config_enabled(CONFIG_AS_FXSAVEQ))
210 asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
211 else {
212 /* Using "rex64; fxsave %0" is broken because, if the memory
213 * operand uses any extended registers for addressing, a second
214 * REX prefix will be generated (to the assembler, rex64
215 * followed by semicolon is a separate instruction), and hence
216 * the 64-bitness is lost.
218 * Using "fxsaveq %0" would be the ideal choice, but is only
219 * supported starting with gas 2.16.
221 * Using, as a workaround, the properly prefixed form below
222 * isn't accepted by any binutils version so far released,
223 * complaining that the same type of prefix is used twice if
224 * an extended register is needed for addressing (fix submitted
225 * to mainline 2005-11-21).
227 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
229 * This, however, we can work around by forcing the compiler to
230 * select an addressing mode that doesn't require extended
231 * registers.
233 asm volatile( "rex64/fxsave (%[fx])"
234 : "=m" (fpu->state->fxsave)
235 : [fx] "R" (&fpu->state->fxsave));
240 * These must be called with preempt disabled. Returns
241 * 'true' if the FPU state is still intact.
243 static inline int fpu_save_init(struct fpu *fpu)
245 if (use_xsave()) {
246 fpu_xsave(fpu);
249 * xsave header may indicate the init state of the FP.
251 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
252 return 1;
253 } else if (use_fxsr()) {
254 fpu_fxsave(fpu);
255 } else {
256 asm volatile("fnsave %[fx]; fwait"
257 : [fx] "=m" (fpu->state->fsave));
258 return 0;
262 * If exceptions are pending, we need to clear them so
263 * that we don't randomly get exceptions later.
265 * FIXME! Is this perhaps only true for the old-style
266 * irq13 case? Maybe we could leave the x87 state
267 * intact otherwise?
269 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
270 asm volatile("fnclex");
271 return 0;
273 return 1;
276 static inline int __save_init_fpu(struct task_struct *tsk)
278 return fpu_save_init(&tsk->thread.fpu);
281 static inline int fpu_restore_checking(struct fpu *fpu)
283 if (use_xsave())
284 return fpu_xrstor_checking(&fpu->state->xsave);
285 else if (use_fxsr())
286 return fxrstor_checking(&fpu->state->fxsave);
287 else
288 return frstor_checking(&fpu->state->fsave);
291 static inline int restore_fpu_checking(struct task_struct *tsk)
293 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
294 is pending. Clear the x87 state here by setting it to fixed
295 values. "m" is a random variable that should be in L1 */
296 if (unlikely(static_cpu_has(X86_FEATURE_FXSAVE_LEAK))) {
297 asm volatile(
298 "fnclex\n\t"
299 "emms\n\t"
300 "fildl %P[addr]" /* set F?P to defined value */
301 : : [addr] "m" (tsk->thread.fpu.has_fpu));
304 return fpu_restore_checking(&tsk->thread.fpu);
308 * Software FPU state helpers. Careful: these need to
309 * be preemption protection *and* they need to be
310 * properly paired with the CR0.TS changes!
312 static inline int __thread_has_fpu(struct task_struct *tsk)
314 return tsk->thread.fpu.has_fpu;
317 /* Must be paired with an 'stts' after! */
318 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
320 tsk->thread.fpu.has_fpu = 0;
321 this_cpu_write(fpu_owner_task, NULL);
324 /* Must be paired with a 'clts' before! */
325 static inline void __thread_set_has_fpu(struct task_struct *tsk)
327 tsk->thread.fpu.has_fpu = 1;
328 this_cpu_write(fpu_owner_task, tsk);
332 * Encapsulate the CR0.TS handling together with the
333 * software flag.
335 * These generally need preemption protection to work,
336 * do try to avoid using these on their own.
338 static inline void __thread_fpu_end(struct task_struct *tsk)
340 __thread_clear_has_fpu(tsk);
341 if (!use_eager_fpu())
342 stts();
345 static inline void __thread_fpu_begin(struct task_struct *tsk)
347 if (!static_cpu_has_safe(X86_FEATURE_EAGER_FPU))
348 clts();
349 __thread_set_has_fpu(tsk);
352 static inline void __drop_fpu(struct task_struct *tsk)
354 if (__thread_has_fpu(tsk)) {
355 /* Ignore delayed exceptions from user space */
356 asm volatile("1: fwait\n"
357 "2:\n"
358 _ASM_EXTABLE(1b, 2b));
359 __thread_fpu_end(tsk);
363 static inline void drop_fpu(struct task_struct *tsk)
366 * Forget coprocessor state..
368 preempt_disable();
369 tsk->fpu_counter = 0;
370 __drop_fpu(tsk);
371 clear_used_math();
372 preempt_enable();
375 static inline void drop_init_fpu(struct task_struct *tsk)
377 if (!use_eager_fpu())
378 drop_fpu(tsk);
379 else {
380 if (use_xsave())
381 xrstor_state(init_xstate_buf, -1);
382 else
383 fxrstor_checking(&init_xstate_buf->i387);
388 * FPU state switching for scheduling.
390 * This is a two-stage process:
392 * - switch_fpu_prepare() saves the old state and
393 * sets the new state of the CR0.TS bit. This is
394 * done within the context of the old process.
396 * - switch_fpu_finish() restores the new state as
397 * necessary.
399 typedef struct { int preload; } fpu_switch_t;
402 * Must be run with preemption disabled: this clears the fpu_owner_task,
403 * on this CPU.
405 * This will disable any lazy FPU state restore of the current FPU state,
406 * but if the current thread owns the FPU, it will still be saved by.
408 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
410 per_cpu(fpu_owner_task, cpu) = NULL;
413 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
415 return new == this_cpu_read_stable(fpu_owner_task) &&
416 cpu == new->thread.fpu.last_cpu;
419 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
421 fpu_switch_t fpu;
424 * If the task has used the math, pre-load the FPU on xsave processors
425 * or if the past 5 consecutive context-switches used math.
427 fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
428 new->fpu_counter > 5);
429 if (__thread_has_fpu(old)) {
430 if (!__save_init_fpu(old))
431 cpu = ~0;
432 old->thread.fpu.last_cpu = cpu;
433 old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
435 /* Don't change CR0.TS if we just switch! */
436 if (fpu.preload) {
437 new->fpu_counter++;
438 __thread_set_has_fpu(new);
439 prefetch(new->thread.fpu.state);
440 } else if (!use_eager_fpu())
441 stts();
442 } else {
443 old->fpu_counter = 0;
444 old->thread.fpu.last_cpu = ~0;
445 if (fpu.preload) {
446 new->fpu_counter++;
447 if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
448 fpu.preload = 0;
449 else
450 prefetch(new->thread.fpu.state);
451 __thread_fpu_begin(new);
454 return fpu;
458 * By the time this gets called, we've already cleared CR0.TS and
459 * given the process the FPU if we are going to preload the FPU
460 * state - all we need to do is to conditionally restore the register
461 * state itself.
463 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
465 if (fpu.preload) {
466 if (unlikely(restore_fpu_checking(new)))
467 drop_init_fpu(new);
472 * Signal frame handlers...
474 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
475 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
477 static inline int xstate_sigframe_size(void)
479 return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
482 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
484 void __user *buf_fx = buf;
485 int size = xstate_sigframe_size();
487 if (ia32_frame && use_fxsr()) {
488 buf_fx = buf + sizeof(struct i387_fsave_struct);
489 size += sizeof(struct i387_fsave_struct);
492 return __restore_xstate_sig(buf, buf_fx, size);
496 * Need to be preemption-safe.
498 * NOTE! user_fpu_begin() must be used only immediately before restoring
499 * it. This function does not do any save/restore on their own.
501 static inline void user_fpu_begin(void)
503 preempt_disable();
504 if (!user_has_fpu())
505 __thread_fpu_begin(current);
506 preempt_enable();
509 static inline void __save_fpu(struct task_struct *tsk)
511 if (use_xsave())
512 xsave_state(&tsk->thread.fpu.state->xsave, -1);
513 else
514 fpu_fxsave(&tsk->thread.fpu);
518 * These disable preemption on their own and are safe
520 static inline void save_init_fpu(struct task_struct *tsk)
522 WARN_ON_ONCE(!__thread_has_fpu(tsk));
524 if (use_eager_fpu()) {
525 __save_fpu(tsk);
526 return;
529 preempt_disable();
530 __save_init_fpu(tsk);
531 __thread_fpu_end(tsk);
532 preempt_enable();
536 * i387 state interaction
538 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
540 if (cpu_has_fxsr) {
541 return tsk->thread.fpu.state->fxsave.cwd;
542 } else {
543 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
547 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
549 if (cpu_has_fxsr) {
550 return tsk->thread.fpu.state->fxsave.swd;
551 } else {
552 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
556 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
558 if (cpu_has_xmm) {
559 return tsk->thread.fpu.state->fxsave.mxcsr;
560 } else {
561 return MXCSR_DEFAULT;
565 static bool fpu_allocated(struct fpu *fpu)
567 return fpu->state != NULL;
570 static inline int fpu_alloc(struct fpu *fpu)
572 if (fpu_allocated(fpu))
573 return 0;
574 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
575 if (!fpu->state)
576 return -ENOMEM;
577 WARN_ON((unsigned long)fpu->state & 15);
578 return 0;
581 static inline void fpu_free(struct fpu *fpu)
583 if (fpu->state) {
584 kmem_cache_free(task_xstate_cachep, fpu->state);
585 fpu->state = NULL;
589 static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
591 if (use_eager_fpu()) {
592 memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
593 __save_fpu(dst);
594 } else {
595 struct fpu *dfpu = &dst->thread.fpu;
596 struct fpu *sfpu = &src->thread.fpu;
598 unlazy_fpu(src);
599 memcpy(dfpu->state, sfpu->state, xstate_size);
603 static inline unsigned long
604 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
605 unsigned long *size)
607 unsigned long frame_size = xstate_sigframe_size();
609 *buf_fx = sp = round_down(sp - frame_size, 64);
610 if (ia32_frame && use_fxsr()) {
611 frame_size += sizeof(struct i387_fsave_struct);
612 sp -= sizeof(struct i387_fsave_struct);
615 *size = frame_size;
616 return sp;
619 #endif