x86/xen: resume timer irqs early
[linux/fpc-iii.git] / arch / x86 / include / asm / spinlock.h
blobbf156ded74b56006a76cc02b8917984117af8afd
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
4 #include <linux/jump_label.h>
5 #include <linux/atomic.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
9 #include <asm/paravirt.h>
10 #include <asm/bitops.h>
13 * Your basic SMP spinlocks, allowing only a single CPU anywhere
15 * Simple spin lock operations. There are two variants, one clears IRQ's
16 * on the local processor, one does not.
18 * These are fair FIFO ticket locks, which support up to 2^16 CPUs.
20 * (the type definitions are in asm/spinlock_types.h)
23 #ifdef CONFIG_X86_32
24 # define LOCK_PTR_REG "a"
25 #else
26 # define LOCK_PTR_REG "D"
27 #endif
29 #if defined(CONFIG_X86_32) && \
30 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
32 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33 * (PPro errata 66, 92)
35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
36 #else
37 # define UNLOCK_LOCK_PREFIX
38 #endif
40 /* How long a lock should spin before we consider blocking */
41 #define SPIN_THRESHOLD (1 << 15)
43 extern struct static_key paravirt_ticketlocks_enabled;
44 static __always_inline bool static_key_false(struct static_key *key);
46 #ifdef CONFIG_PARAVIRT_SPINLOCKS
48 static inline void __ticket_enter_slowpath(arch_spinlock_t *lock)
50 set_bit(0, (volatile unsigned long *)&lock->tickets.tail);
53 #else /* !CONFIG_PARAVIRT_SPINLOCKS */
54 static __always_inline void __ticket_lock_spinning(arch_spinlock_t *lock,
55 __ticket_t ticket)
58 static inline void __ticket_unlock_kick(arch_spinlock_t *lock,
59 __ticket_t ticket)
63 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
65 static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock)
67 return lock.tickets.head == lock.tickets.tail;
71 * Ticket locks are conceptually two parts, one indicating the current head of
72 * the queue, and the other indicating the current tail. The lock is acquired
73 * by atomically noting the tail and incrementing it by one (thus adding
74 * ourself to the queue and noting our position), then waiting until the head
75 * becomes equal to the the initial value of the tail.
77 * We use an xadd covering *both* parts of the lock, to increment the tail and
78 * also load the position of the head, which takes care of memory ordering
79 * issues and should be optimal for the uncontended case. Note the tail must be
80 * in the high part, because a wide xadd increment of the low part would carry
81 * up and contaminate the high part.
83 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
85 register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC };
87 inc = xadd(&lock->tickets, inc);
88 if (likely(inc.head == inc.tail))
89 goto out;
91 inc.tail &= ~TICKET_SLOWPATH_FLAG;
92 for (;;) {
93 unsigned count = SPIN_THRESHOLD;
95 do {
96 if (ACCESS_ONCE(lock->tickets.head) == inc.tail)
97 goto out;
98 cpu_relax();
99 } while (--count);
100 __ticket_lock_spinning(lock, inc.tail);
102 out: barrier(); /* make sure nothing creeps before the lock is taken */
105 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
107 arch_spinlock_t old, new;
109 old.tickets = ACCESS_ONCE(lock->tickets);
110 if (old.tickets.head != (old.tickets.tail & ~TICKET_SLOWPATH_FLAG))
111 return 0;
113 new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT);
115 /* cmpxchg is a full barrier, so nothing can move before it */
116 return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
119 static inline void __ticket_unlock_slowpath(arch_spinlock_t *lock,
120 arch_spinlock_t old)
122 arch_spinlock_t new;
124 BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS);
126 /* Perform the unlock on the "before" copy */
127 old.tickets.head += TICKET_LOCK_INC;
129 /* Clear the slowpath flag */
130 new.head_tail = old.head_tail & ~(TICKET_SLOWPATH_FLAG << TICKET_SHIFT);
133 * If the lock is uncontended, clear the flag - use cmpxchg in
134 * case it changes behind our back though.
136 if (new.tickets.head != new.tickets.tail ||
137 cmpxchg(&lock->head_tail, old.head_tail,
138 new.head_tail) != old.head_tail) {
140 * Lock still has someone queued for it, so wake up an
141 * appropriate waiter.
143 __ticket_unlock_kick(lock, old.tickets.head);
147 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
149 if (TICKET_SLOWPATH_FLAG &&
150 static_key_false(&paravirt_ticketlocks_enabled)) {
151 arch_spinlock_t prev;
153 prev = *lock;
154 add_smp(&lock->tickets.head, TICKET_LOCK_INC);
156 /* add_smp() is a full mb() */
158 if (unlikely(lock->tickets.tail & TICKET_SLOWPATH_FLAG))
159 __ticket_unlock_slowpath(lock, prev);
160 } else
161 __add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
164 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
166 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
168 return tmp.tail != tmp.head;
171 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
173 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
175 return (__ticket_t)(tmp.tail - tmp.head) > TICKET_LOCK_INC;
177 #define arch_spin_is_contended arch_spin_is_contended
179 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
180 unsigned long flags)
182 arch_spin_lock(lock);
185 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
187 while (arch_spin_is_locked(lock))
188 cpu_relax();
192 * Read-write spinlocks, allowing multiple readers
193 * but only one writer.
195 * NOTE! it is quite common to have readers in interrupts
196 * but no interrupt writers. For those circumstances we
197 * can "mix" irq-safe locks - any writer needs to get a
198 * irq-safe write-lock, but readers can get non-irqsafe
199 * read-locks.
201 * On x86, we implement read-write locks as a 32-bit counter
202 * with the high bit (sign) being the "contended" bit.
206 * read_can_lock - would read_trylock() succeed?
207 * @lock: the rwlock in question.
209 static inline int arch_read_can_lock(arch_rwlock_t *lock)
211 return lock->lock > 0;
215 * write_can_lock - would write_trylock() succeed?
216 * @lock: the rwlock in question.
218 static inline int arch_write_can_lock(arch_rwlock_t *lock)
220 return lock->write == WRITE_LOCK_CMP;
223 static inline void arch_read_lock(arch_rwlock_t *rw)
225 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
226 "jns 1f\n"
227 "call __read_lock_failed\n\t"
228 "1:\n"
229 ::LOCK_PTR_REG (rw) : "memory");
232 static inline void arch_write_lock(arch_rwlock_t *rw)
234 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
235 "jz 1f\n"
236 "call __write_lock_failed\n\t"
237 "1:\n"
238 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
239 : "memory");
242 static inline int arch_read_trylock(arch_rwlock_t *lock)
244 READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
246 if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
247 return 1;
248 READ_LOCK_ATOMIC(inc)(count);
249 return 0;
252 static inline int arch_write_trylock(arch_rwlock_t *lock)
254 atomic_t *count = (atomic_t *)&lock->write;
256 if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
257 return 1;
258 atomic_add(WRITE_LOCK_CMP, count);
259 return 0;
262 static inline void arch_read_unlock(arch_rwlock_t *rw)
264 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
265 :"+m" (rw->lock) : : "memory");
268 static inline void arch_write_unlock(arch_rwlock_t *rw)
270 asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
271 : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
274 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
275 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
277 #undef READ_LOCK_SIZE
278 #undef READ_LOCK_ATOMIC
279 #undef WRITE_LOCK_ADD
280 #undef WRITE_LOCK_SUB
281 #undef WRITE_LOCK_CMP
283 #define arch_spin_relax(lock) cpu_relax()
284 #define arch_read_relax(lock) cpu_relax()
285 #define arch_write_relax(lock) cpu_relax()
287 #endif /* _ASM_X86_SPINLOCK_H */