2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
29 * The current flushing context - we pass it instead of 5 arguments:
38 unsigned force_split
: 1;
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
49 static DEFINE_SPINLOCK(cpa_lock
);
51 #define CPA_FLUSHTLB 1
53 #define CPA_PAGES_ARRAY 4
56 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
58 void update_page_count(int level
, unsigned long pages
)
60 /* Protect against CPA */
62 direct_pages_count
[level
] += pages
;
63 spin_unlock(&pgd_lock
);
66 static void split_page_count(int level
)
68 direct_pages_count
[level
]--;
69 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
72 void arch_report_meminfo(struct seq_file
*m
)
74 seq_printf(m
, "DirectMap4k: %8lu kB\n",
75 direct_pages_count
[PG_LEVEL_4K
] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 seq_printf(m
, "DirectMap2M: %8lu kB\n",
78 direct_pages_count
[PG_LEVEL_2M
] << 11);
80 seq_printf(m
, "DirectMap4M: %8lu kB\n",
81 direct_pages_count
[PG_LEVEL_2M
] << 12);
85 seq_printf(m
, "DirectMap1G: %8lu kB\n",
86 direct_pages_count
[PG_LEVEL_1G
] << 20);
90 static inline void split_page_count(int level
) { }
95 static inline unsigned long highmap_start_pfn(void)
97 return __pa_symbol(_text
) >> PAGE_SHIFT
;
100 static inline unsigned long highmap_end_pfn(void)
102 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
)) >> PAGE_SHIFT
;
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
110 # define debug_pagealloc 0
114 within(unsigned long addr
, unsigned long start
, unsigned long end
)
116 return addr
>= start
&& addr
< end
;
124 * clflush_cache_range - flush a cache range with clflush
125 * @vaddr: virtual start address
126 * @size: number of bytes to flush
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
131 void clflush_cache_range(void *vaddr
, unsigned int size
)
133 void *vend
= vaddr
+ size
- 1;
137 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
140 * Flush any possible final partial cacheline:
146 EXPORT_SYMBOL_GPL(clflush_cache_range
);
148 static void __cpa_flush_all(void *arg
)
150 unsigned long cache
= (unsigned long)arg
;
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
158 if (cache
&& boot_cpu_data
.x86
>= 4)
162 static void cpa_flush_all(unsigned long cache
)
164 BUG_ON(irqs_disabled());
166 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
169 static void __cpa_flush_range(void *arg
)
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
179 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
181 unsigned int i
, level
;
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start
) != start
);
187 on_each_cpu(__cpa_flush_range
, NULL
, 1);
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
198 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
199 pte_t
*pte
= lookup_address(addr
, &level
);
202 * Only flush present addresses:
204 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
205 clflush_cache_range((void *) addr
, PAGE_SIZE
);
209 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
210 int in_flags
, struct page
**pages
)
212 unsigned int i
, level
;
213 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
215 BUG_ON(irqs_disabled());
217 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
219 if (!cache
|| do_wbinvd
)
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
228 for (i
= 0; i
< numpages
; i
++) {
232 if (in_flags
& CPA_PAGES_ARRAY
)
233 addr
= (unsigned long)page_address(pages
[i
]);
237 pte
= lookup_address(addr
, &level
);
240 * Only flush present addresses:
242 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
243 clflush_cache_range((void *)addr
, PAGE_SIZE
);
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
253 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
256 pgprot_t forbidden
= __pgprot(0);
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262 #ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled
&& within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
264 pgprot_val(forbidden
) |= _PAGE_NX
;
268 * The kernel text needs to be executable for obvious reasons
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
272 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
273 pgprot_val(forbidden
) |= _PAGE_NX
;
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
279 if (within(pfn
, __pa_symbol(__start_rodata
) >> PAGE_SHIFT
,
280 __pa_symbol(__end_rodata
) >> PAGE_SHIFT
))
281 pgprot_val(forbidden
) |= _PAGE_RW
;
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
290 * This will preserve the large page mappings for kernel text/data
293 if (kernel_set_to_readonly
&&
294 within(address
, (unsigned long)_text
,
295 (unsigned long)__end_rodata_hpage_align
)) {
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
315 if (lookup_address(address
, &level
) && (level
!= PG_LEVEL_4K
))
316 pgprot_val(forbidden
) |= _PAGE_RW
;
320 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
326 * Lookup the page table entry for a virtual address. Return a pointer
327 * to the entry and the level of the mapping.
329 * Note: We return pud and pmd either when the entry is marked large
330 * or when the present bit is not set. Otherwise we would return a
331 * pointer to a nonexisting mapping.
333 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
335 pgd_t
*pgd
= pgd_offset_k(address
);
339 *level
= PG_LEVEL_NONE
;
344 pud
= pud_offset(pgd
, address
);
348 *level
= PG_LEVEL_1G
;
349 if (pud_large(*pud
) || !pud_present(*pud
))
352 pmd
= pmd_offset(pud
, address
);
356 *level
= PG_LEVEL_2M
;
357 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
360 *level
= PG_LEVEL_4K
;
362 return pte_offset_kernel(pmd
, address
);
364 EXPORT_SYMBOL_GPL(lookup_address
);
367 * This is necessary because __pa() does not work on some
368 * kinds of memory, like vmalloc() or the alloc_remap()
369 * areas on 32-bit NUMA systems. The percpu areas can
370 * end up in this kind of memory, for instance.
372 * This could be optimized, but it is only intended to be
373 * used at inititalization time, and keeping it
374 * unoptimized should increase the testing coverage for
375 * the more obscure platforms.
377 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
379 unsigned long virt_addr
= (unsigned long)__virt_addr
;
380 phys_addr_t phys_addr
;
381 unsigned long offset
;
387 pte
= lookup_address(virt_addr
, &level
);
389 psize
= page_level_size(level
);
390 pmask
= page_level_mask(level
);
391 offset
= virt_addr
& ~pmask
;
392 phys_addr
= pte_pfn(*pte
) << PAGE_SHIFT
;
393 return (phys_addr
| offset
);
395 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
398 * Set the new pmd in all the pgds we know about:
400 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
403 set_pte_atomic(kpte
, pte
);
405 if (!SHARED_KERNEL_PMD
) {
408 list_for_each_entry(page
, &pgd_list
, lru
) {
413 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
414 pud
= pud_offset(pgd
, address
);
415 pmd
= pmd_offset(pud
, address
);
416 set_pte_atomic((pte_t
*)pmd
, pte
);
423 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
424 struct cpa_data
*cpa
)
426 unsigned long nextpage_addr
, numpages
, pmask
, psize
, addr
, pfn
;
427 pte_t new_pte
, old_pte
, *tmp
;
428 pgprot_t old_prot
, new_prot
, req_prot
;
432 if (cpa
->force_split
)
435 spin_lock(&pgd_lock
);
437 * Check for races, another CPU might have split this page
440 tmp
= lookup_address(address
, &level
);
449 psize
= page_level_size(level
);
450 pmask
= page_level_mask(level
);
458 * Calculate the number of pages, which fit into this large
459 * page starting at address:
461 nextpage_addr
= (address
+ psize
) & pmask
;
462 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
463 if (numpages
< cpa
->numpages
)
464 cpa
->numpages
= numpages
;
467 * We are safe now. Check whether the new pgprot is the same:
470 old_prot
= req_prot
= pte_pgprot(old_pte
);
472 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
473 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
476 * Set the PSE and GLOBAL flags only if the PRESENT flag is
477 * set otherwise pmd_present/pmd_huge will return true even on
478 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
479 * for the ancient hardware that doesn't support it.
481 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
482 pgprot_val(req_prot
) |= _PAGE_PSE
| _PAGE_GLOBAL
;
484 pgprot_val(req_prot
) &= ~(_PAGE_PSE
| _PAGE_GLOBAL
);
486 req_prot
= canon_pgprot(req_prot
);
489 * old_pte points to the large page base address. So we need
490 * to add the offset of the virtual address:
492 pfn
= pte_pfn(old_pte
) + ((address
& (psize
- 1)) >> PAGE_SHIFT
);
495 new_prot
= static_protections(req_prot
, address
, pfn
);
498 * We need to check the full range, whether
499 * static_protection() requires a different pgprot for one of
500 * the pages in the range we try to preserve:
502 addr
= address
& pmask
;
503 pfn
= pte_pfn(old_pte
);
504 for (i
= 0; i
< (psize
>> PAGE_SHIFT
); i
++, addr
+= PAGE_SIZE
, pfn
++) {
505 pgprot_t chk_prot
= static_protections(req_prot
, addr
, pfn
);
507 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
512 * If there are no changes, return. maxpages has been updated
515 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
521 * We need to change the attributes. Check, whether we can
522 * change the large page in one go. We request a split, when
523 * the address is not aligned and the number of pages is
524 * smaller than the number of pages in the large page. Note
525 * that we limited the number of possible pages already to
526 * the number of pages in the large page.
528 if (address
== (address
& pmask
) && cpa
->numpages
== (psize
>> PAGE_SHIFT
)) {
530 * The address is aligned and the number of pages
531 * covers the full page.
533 new_pte
= pfn_pte(pte_pfn(old_pte
), new_prot
);
534 __set_pmd_pte(kpte
, address
, new_pte
);
535 cpa
->flags
|= CPA_FLUSHTLB
;
540 spin_unlock(&pgd_lock
);
546 __split_large_page(pte_t
*kpte
, unsigned long address
, struct page
*base
)
548 pte_t
*pbase
= (pte_t
*)page_address(base
);
549 unsigned long pfn
, pfninc
= 1;
550 unsigned int i
, level
;
554 spin_lock(&pgd_lock
);
556 * Check for races, another CPU might have split this page
559 tmp
= lookup_address(address
, &level
);
561 spin_unlock(&pgd_lock
);
565 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
566 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
568 * If we ever want to utilize the PAT bit, we need to
569 * update this function to make sure it's converted from
570 * bit 12 to bit 7 when we cross from the 2MB level to
573 WARN_ON_ONCE(pgprot_val(ref_prot
) & _PAGE_PAT_LARGE
);
576 if (level
== PG_LEVEL_1G
) {
577 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
579 * Set the PSE flags only if the PRESENT flag is set
580 * otherwise pmd_present/pmd_huge will return true
581 * even on a non present pmd.
583 if (pgprot_val(ref_prot
) & _PAGE_PRESENT
)
584 pgprot_val(ref_prot
) |= _PAGE_PSE
;
586 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
591 * Set the GLOBAL flags only if the PRESENT flag is set
592 * otherwise pmd/pte_present will return true even on a non
593 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
594 * for the ancient hardware that doesn't support it.
596 if (pgprot_val(ref_prot
) & _PAGE_PRESENT
)
597 pgprot_val(ref_prot
) |= _PAGE_GLOBAL
;
599 pgprot_val(ref_prot
) &= ~_PAGE_GLOBAL
;
602 * Get the target pfn from the original entry:
604 pfn
= pte_pfn(*kpte
);
605 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
606 set_pte(&pbase
[i
], pfn_pte(pfn
, canon_pgprot(ref_prot
)));
608 if (pfn_range_is_mapped(PFN_DOWN(__pa(address
)),
609 PFN_DOWN(__pa(address
)) + 1))
610 split_page_count(level
);
613 * Install the new, split up pagetable.
615 * We use the standard kernel pagetable protections for the new
616 * pagetable protections, the actual ptes set above control the
617 * primary protection behavior:
619 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
622 * Intel Atom errata AAH41 workaround.
624 * The real fix should be in hw or in a microcode update, but
625 * we also probabilistically try to reduce the window of having
626 * a large TLB mixed with 4K TLBs while instruction fetches are
630 spin_unlock(&pgd_lock
);
635 static int split_large_page(pte_t
*kpte
, unsigned long address
)
639 if (!debug_pagealloc
)
640 spin_unlock(&cpa_lock
);
641 base
= alloc_pages(GFP_KERNEL
| __GFP_NOTRACK
, 0);
642 if (!debug_pagealloc
)
643 spin_lock(&cpa_lock
);
647 if (__split_large_page(kpte
, address
, base
))
653 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
657 * Ignore all non primary paths.
663 * Ignore the NULL PTE for kernel identity mapping, as it is expected
665 * Also set numpages to '1' indicating that we processed cpa req for
666 * one virtual address page and its pfn. TBD: numpages can be set based
667 * on the initial value and the level returned by lookup_address().
669 if (within(vaddr
, PAGE_OFFSET
,
670 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
672 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
675 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
676 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
683 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
685 unsigned long address
;
688 pte_t
*kpte
, old_pte
;
690 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
691 struct page
*page
= cpa
->pages
[cpa
->curpage
];
692 if (unlikely(PageHighMem(page
)))
694 address
= (unsigned long)page_address(page
);
695 } else if (cpa
->flags
& CPA_ARRAY
)
696 address
= cpa
->vaddr
[cpa
->curpage
];
698 address
= *cpa
->vaddr
;
700 kpte
= lookup_address(address
, &level
);
702 return __cpa_process_fault(cpa
, address
, primary
);
705 if (!pte_val(old_pte
))
706 return __cpa_process_fault(cpa
, address
, primary
);
708 if (level
== PG_LEVEL_4K
) {
710 pgprot_t new_prot
= pte_pgprot(old_pte
);
711 unsigned long pfn
= pte_pfn(old_pte
);
713 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
714 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
716 new_prot
= static_protections(new_prot
, address
, pfn
);
719 * Set the GLOBAL flags only if the PRESENT flag is
720 * set otherwise pte_present will return true even on
721 * a non present pte. The canon_pgprot will clear
722 * _PAGE_GLOBAL for the ancient hardware that doesn't
725 if (pgprot_val(new_prot
) & _PAGE_PRESENT
)
726 pgprot_val(new_prot
) |= _PAGE_GLOBAL
;
728 pgprot_val(new_prot
) &= ~_PAGE_GLOBAL
;
731 * We need to keep the pfn from the existing PTE,
732 * after all we're only going to change it's attributes
733 * not the memory it points to
735 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
738 * Do we really change anything ?
740 if (pte_val(old_pte
) != pte_val(new_pte
)) {
741 set_pte_atomic(kpte
, new_pte
);
742 cpa
->flags
|= CPA_FLUSHTLB
;
749 * Check, whether we can keep the large page intact
750 * and just change the pte:
752 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
754 * When the range fits into the existing large page,
755 * return. cp->numpages and cpa->tlbflush have been updated in
762 * We have to split the large page:
764 err
= split_large_page(kpte
, address
);
767 * Do a global flush tlb after splitting the large page
768 * and before we do the actual change page attribute in the PTE.
770 * With out this, we violate the TLB application note, that says
771 * "The TLBs may contain both ordinary and large-page
772 * translations for a 4-KByte range of linear addresses. This
773 * may occur if software modifies the paging structures so that
774 * the page size used for the address range changes. If the two
775 * translations differ with respect to page frame or attributes
776 * (e.g., permissions), processor behavior is undefined and may
777 * be implementation-specific."
779 * We do this global tlb flush inside the cpa_lock, so that we
780 * don't allow any other cpu, with stale tlb entries change the
781 * page attribute in parallel, that also falls into the
782 * just split large page entry.
791 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
793 static int cpa_process_alias(struct cpa_data
*cpa
)
795 struct cpa_data alias_cpa
;
796 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
800 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
804 * No need to redo, when the primary call touched the direct
807 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
808 struct page
*page
= cpa
->pages
[cpa
->curpage
];
809 if (unlikely(PageHighMem(page
)))
811 vaddr
= (unsigned long)page_address(page
);
812 } else if (cpa
->flags
& CPA_ARRAY
)
813 vaddr
= cpa
->vaddr
[cpa
->curpage
];
817 if (!(within(vaddr
, PAGE_OFFSET
,
818 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
821 alias_cpa
.vaddr
= &laddr
;
822 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
824 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
831 * If the primary call didn't touch the high mapping already
832 * and the physical address is inside the kernel map, we need
833 * to touch the high mapped kernel as well:
835 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
836 within(cpa
->pfn
, highmap_start_pfn(), highmap_end_pfn())) {
837 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
838 __START_KERNEL_map
- phys_base
;
840 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
841 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
844 * The high mapping range is imprecise, so ignore the
847 __change_page_attr_set_clr(&alias_cpa
, 0);
854 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
856 int ret
, numpages
= cpa
->numpages
;
860 * Store the remaining nr of pages for the large page
861 * preservation check.
863 cpa
->numpages
= numpages
;
864 /* for array changes, we can't use large page */
865 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
868 if (!debug_pagealloc
)
869 spin_lock(&cpa_lock
);
870 ret
= __change_page_attr(cpa
, checkalias
);
871 if (!debug_pagealloc
)
872 spin_unlock(&cpa_lock
);
877 ret
= cpa_process_alias(cpa
);
883 * Adjust the number of pages with the result of the
884 * CPA operation. Either a large page has been
885 * preserved or a single page update happened.
887 BUG_ON(cpa
->numpages
> numpages
);
888 numpages
-= cpa
->numpages
;
889 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
892 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
898 static inline int cache_attr(pgprot_t attr
)
900 return pgprot_val(attr
) &
901 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
904 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
905 pgprot_t mask_set
, pgprot_t mask_clr
,
906 int force_split
, int in_flag
,
910 int ret
, cache
, checkalias
;
911 unsigned long baddr
= 0;
914 * Check, if we are requested to change a not supported
917 mask_set
= canon_pgprot(mask_set
);
918 mask_clr
= canon_pgprot(mask_clr
);
919 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
922 /* Ensure we are PAGE_SIZE aligned */
923 if (in_flag
& CPA_ARRAY
) {
925 for (i
= 0; i
< numpages
; i
++) {
926 if (addr
[i
] & ~PAGE_MASK
) {
927 addr
[i
] &= PAGE_MASK
;
931 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
933 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
934 * No need to cehck in that case
936 if (*addr
& ~PAGE_MASK
) {
939 * People should not be passing in unaligned addresses:
944 * Save address for cache flush. *addr is modified in the call
945 * to __change_page_attr_set_clr() below.
950 /* Must avoid aliasing mappings in the highmem code */
957 cpa
.numpages
= numpages
;
958 cpa
.mask_set
= mask_set
;
959 cpa
.mask_clr
= mask_clr
;
962 cpa
.force_split
= force_split
;
964 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
965 cpa
.flags
|= in_flag
;
967 /* No alias checking for _NX bit modifications */
968 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
970 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
973 * Check whether we really changed something:
975 if (!(cpa
.flags
& CPA_FLUSHTLB
))
979 * No need to flush, when we did not set any of the caching
982 cache
= cache_attr(mask_set
);
985 * On success we use clflush, when the CPU supports it to
986 * avoid the wbindv. If the CPU does not support it and in the
987 * error case we fall back to cpa_flush_all (which uses
990 if (!ret
&& cpu_has_clflush
) {
991 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
992 cpa_flush_array(addr
, numpages
, cache
,
995 cpa_flush_range(baddr
, numpages
, cache
);
997 cpa_flush_all(cache
);
1003 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1004 pgprot_t mask
, int array
)
1006 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1007 (array
? CPA_ARRAY
: 0), NULL
);
1010 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1011 pgprot_t mask
, int array
)
1013 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1014 (array
? CPA_ARRAY
: 0), NULL
);
1017 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1020 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1021 CPA_PAGES_ARRAY
, pages
);
1024 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1027 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1028 CPA_PAGES_ARRAY
, pages
);
1031 int _set_memory_uc(unsigned long addr
, int numpages
)
1034 * for now UC MINUS. see comments in ioremap_nocache()
1036 return change_page_attr_set(&addr
, numpages
,
1037 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
1040 int set_memory_uc(unsigned long addr
, int numpages
)
1045 * for now UC MINUS. see comments in ioremap_nocache()
1047 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1048 _PAGE_CACHE_UC_MINUS
, NULL
);
1052 ret
= _set_memory_uc(addr
, numpages
);
1059 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1063 EXPORT_SYMBOL(set_memory_uc
);
1065 static int _set_memory_array(unsigned long *addr
, int addrinarray
,
1066 unsigned long new_type
)
1072 * for now UC MINUS. see comments in ioremap_nocache()
1074 for (i
= 0; i
< addrinarray
; i
++) {
1075 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
1081 ret
= change_page_attr_set(addr
, addrinarray
,
1082 __pgprot(_PAGE_CACHE_UC_MINUS
), 1);
1084 if (!ret
&& new_type
== _PAGE_CACHE_WC
)
1085 ret
= change_page_attr_set_clr(addr
, addrinarray
,
1086 __pgprot(_PAGE_CACHE_WC
),
1087 __pgprot(_PAGE_CACHE_MASK
),
1088 0, CPA_ARRAY
, NULL
);
1095 for (j
= 0; j
< i
; j
++)
1096 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1101 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
1103 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_UC_MINUS
);
1105 EXPORT_SYMBOL(set_memory_array_uc
);
1107 int set_memory_array_wc(unsigned long *addr
, int addrinarray
)
1109 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_WC
);
1111 EXPORT_SYMBOL(set_memory_array_wc
);
1113 int _set_memory_wc(unsigned long addr
, int numpages
)
1116 unsigned long addr_copy
= addr
;
1118 ret
= change_page_attr_set(&addr
, numpages
,
1119 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
1121 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1122 __pgprot(_PAGE_CACHE_WC
),
1123 __pgprot(_PAGE_CACHE_MASK
),
1129 int set_memory_wc(unsigned long addr
, int numpages
)
1134 return set_memory_uc(addr
, numpages
);
1136 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1137 _PAGE_CACHE_WC
, NULL
);
1141 ret
= _set_memory_wc(addr
, numpages
);
1148 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1152 EXPORT_SYMBOL(set_memory_wc
);
1154 int _set_memory_wb(unsigned long addr
, int numpages
)
1156 return change_page_attr_clear(&addr
, numpages
,
1157 __pgprot(_PAGE_CACHE_MASK
), 0);
1160 int set_memory_wb(unsigned long addr
, int numpages
)
1164 ret
= _set_memory_wb(addr
, numpages
);
1168 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1171 EXPORT_SYMBOL(set_memory_wb
);
1173 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1178 ret
= change_page_attr_clear(addr
, addrinarray
,
1179 __pgprot(_PAGE_CACHE_MASK
), 1);
1183 for (i
= 0; i
< addrinarray
; i
++)
1184 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1188 EXPORT_SYMBOL(set_memory_array_wb
);
1190 int set_memory_x(unsigned long addr
, int numpages
)
1192 if (!(__supported_pte_mask
& _PAGE_NX
))
1195 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1197 EXPORT_SYMBOL(set_memory_x
);
1199 int set_memory_nx(unsigned long addr
, int numpages
)
1201 if (!(__supported_pte_mask
& _PAGE_NX
))
1204 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1206 EXPORT_SYMBOL(set_memory_nx
);
1208 int set_memory_ro(unsigned long addr
, int numpages
)
1210 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1212 EXPORT_SYMBOL_GPL(set_memory_ro
);
1214 int set_memory_rw(unsigned long addr
, int numpages
)
1216 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1218 EXPORT_SYMBOL_GPL(set_memory_rw
);
1220 int set_memory_np(unsigned long addr
, int numpages
)
1222 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1225 int set_memory_4k(unsigned long addr
, int numpages
)
1227 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1228 __pgprot(0), 1, 0, NULL
);
1231 int set_pages_uc(struct page
*page
, int numpages
)
1233 unsigned long addr
= (unsigned long)page_address(page
);
1235 return set_memory_uc(addr
, numpages
);
1237 EXPORT_SYMBOL(set_pages_uc
);
1239 static int _set_pages_array(struct page
**pages
, int addrinarray
,
1240 unsigned long new_type
)
1242 unsigned long start
;
1248 for (i
= 0; i
< addrinarray
; i
++) {
1249 if (PageHighMem(pages
[i
]))
1251 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1252 end
= start
+ PAGE_SIZE
;
1253 if (reserve_memtype(start
, end
, new_type
, NULL
))
1257 ret
= cpa_set_pages_array(pages
, addrinarray
,
1258 __pgprot(_PAGE_CACHE_UC_MINUS
));
1259 if (!ret
&& new_type
== _PAGE_CACHE_WC
)
1260 ret
= change_page_attr_set_clr(NULL
, addrinarray
,
1261 __pgprot(_PAGE_CACHE_WC
),
1262 __pgprot(_PAGE_CACHE_MASK
),
1263 0, CPA_PAGES_ARRAY
, pages
);
1266 return 0; /* Success */
1269 for (i
= 0; i
< free_idx
; i
++) {
1270 if (PageHighMem(pages
[i
]))
1272 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1273 end
= start
+ PAGE_SIZE
;
1274 free_memtype(start
, end
);
1279 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1281 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_UC_MINUS
);
1283 EXPORT_SYMBOL(set_pages_array_uc
);
1285 int set_pages_array_wc(struct page
**pages
, int addrinarray
)
1287 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_WC
);
1289 EXPORT_SYMBOL(set_pages_array_wc
);
1291 int set_pages_wb(struct page
*page
, int numpages
)
1293 unsigned long addr
= (unsigned long)page_address(page
);
1295 return set_memory_wb(addr
, numpages
);
1297 EXPORT_SYMBOL(set_pages_wb
);
1299 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1302 unsigned long start
;
1306 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1307 __pgprot(_PAGE_CACHE_MASK
));
1311 for (i
= 0; i
< addrinarray
; i
++) {
1312 if (PageHighMem(pages
[i
]))
1314 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1315 end
= start
+ PAGE_SIZE
;
1316 free_memtype(start
, end
);
1321 EXPORT_SYMBOL(set_pages_array_wb
);
1323 int set_pages_x(struct page
*page
, int numpages
)
1325 unsigned long addr
= (unsigned long)page_address(page
);
1327 return set_memory_x(addr
, numpages
);
1329 EXPORT_SYMBOL(set_pages_x
);
1331 int set_pages_nx(struct page
*page
, int numpages
)
1333 unsigned long addr
= (unsigned long)page_address(page
);
1335 return set_memory_nx(addr
, numpages
);
1337 EXPORT_SYMBOL(set_pages_nx
);
1339 int set_pages_ro(struct page
*page
, int numpages
)
1341 unsigned long addr
= (unsigned long)page_address(page
);
1343 return set_memory_ro(addr
, numpages
);
1346 int set_pages_rw(struct page
*page
, int numpages
)
1348 unsigned long addr
= (unsigned long)page_address(page
);
1350 return set_memory_rw(addr
, numpages
);
1353 #ifdef CONFIG_DEBUG_PAGEALLOC
1355 static int __set_pages_p(struct page
*page
, int numpages
)
1357 unsigned long tempaddr
= (unsigned long) page_address(page
);
1358 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1359 .numpages
= numpages
,
1360 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1361 .mask_clr
= __pgprot(0),
1365 * No alias checking needed for setting present flag. otherwise,
1366 * we may need to break large pages for 64-bit kernel text
1367 * mappings (this adds to complexity if we want to do this from
1368 * atomic context especially). Let's keep it simple!
1370 return __change_page_attr_set_clr(&cpa
, 0);
1373 static int __set_pages_np(struct page
*page
, int numpages
)
1375 unsigned long tempaddr
= (unsigned long) page_address(page
);
1376 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1377 .numpages
= numpages
,
1378 .mask_set
= __pgprot(0),
1379 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1383 * No alias checking needed for setting not present flag. otherwise,
1384 * we may need to break large pages for 64-bit kernel text
1385 * mappings (this adds to complexity if we want to do this from
1386 * atomic context especially). Let's keep it simple!
1388 return __change_page_attr_set_clr(&cpa
, 0);
1391 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1393 if (PageHighMem(page
))
1396 debug_check_no_locks_freed(page_address(page
),
1397 numpages
* PAGE_SIZE
);
1401 * The return value is ignored as the calls cannot fail.
1402 * Large pages for identity mappings are not used at boot time
1403 * and hence no memory allocations during large page split.
1406 __set_pages_p(page
, numpages
);
1408 __set_pages_np(page
, numpages
);
1411 * We should perform an IPI and flush all tlbs,
1412 * but that can deadlock->flush only current cpu:
1416 arch_flush_lazy_mmu_mode();
1419 #ifdef CONFIG_HIBERNATION
1421 bool kernel_page_present(struct page
*page
)
1426 if (PageHighMem(page
))
1429 pte
= lookup_address((unsigned long)page_address(page
), &level
);
1430 return (pte_val(*pte
) & _PAGE_PRESENT
);
1433 #endif /* CONFIG_HIBERNATION */
1435 #endif /* CONFIG_DEBUG_PAGEALLOC */
1438 * The testcases use internal knowledge of the implementation that shouldn't
1439 * be exposed to the rest of the kernel. Include these directly here.
1441 #ifdef CONFIG_CPA_DEBUG
1442 #include "pageattr-test.c"