2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
69 #include <linux/of_irq.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_device.h>
73 #include <linux/libata.h>
75 #define DRV_NAME "sata_mv"
76 #define DRV_VERSION "1.28"
84 module_param(msi
, int, S_IRUGO
);
85 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
88 static int irq_coalescing_io_count
;
89 module_param(irq_coalescing_io_count
, int, S_IRUGO
);
90 MODULE_PARM_DESC(irq_coalescing_io_count
,
91 "IRQ coalescing I/O count threshold (0..255)");
93 static int irq_coalescing_usecs
;
94 module_param(irq_coalescing_usecs
, int, S_IRUGO
);
95 MODULE_PARM_DESC(irq_coalescing_usecs
,
96 "IRQ coalescing time threshold in usecs");
99 /* BAR's are enumerated in terms of pci_resource_start() terms */
100 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
101 MV_IO_BAR
= 2, /* offset 0x18: IO space */
102 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
104 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
105 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
107 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
108 COAL_CLOCKS_PER_USEC
= 150, /* for calculating COAL_TIMEs */
109 MAX_COAL_TIME_THRESHOLD
= ((1 << 24) - 1), /* internal clocks count */
110 MAX_COAL_IO_COUNT
= 255, /* completed I/O count */
115 * Per-chip ("all ports") interrupt coalescing feature.
116 * This is only for GEN_II / GEN_IIE hardware.
118 * Coalescing defers the interrupt until either the IO_THRESHOLD
119 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121 COAL_REG_BASE
= 0x18000,
122 IRQ_COAL_CAUSE
= (COAL_REG_BASE
+ 0x08),
123 ALL_PORTS_COAL_IRQ
= (1 << 4), /* all ports irq event */
125 IRQ_COAL_IO_THRESHOLD
= (COAL_REG_BASE
+ 0xcc),
126 IRQ_COAL_TIME_THRESHOLD
= (COAL_REG_BASE
+ 0xd0),
129 * Registers for the (unused here) transaction coalescing feature:
131 TRAN_COAL_CAUSE_LO
= (COAL_REG_BASE
+ 0x88),
132 TRAN_COAL_CAUSE_HI
= (COAL_REG_BASE
+ 0x8c),
134 SATAHC0_REG_BASE
= 0x20000,
136 GPIO_PORT_CTL
= 0x104f0,
139 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
140 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
141 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
142 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
145 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
147 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
148 * CRPB needs alignment on a 256B boundary. Size == 256B
149 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
152 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
154 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
156 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
157 MV_PORT_HC_SHIFT
= 2,
158 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
159 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
160 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
163 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
165 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_PIO_POLLING
,
167 MV_GEN_I_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NO_ATAPI
,
169 MV_GEN_II_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NCQ
|
170 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
,
172 MV_GEN_IIE_FLAGS
= MV_GEN_II_FLAGS
| ATA_FLAG_AN
,
174 CRQB_FLAG_READ
= (1 << 0),
176 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
177 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
178 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
179 CRQB_CMD_ADDR_SHIFT
= 8,
180 CRQB_CMD_CS
= (0x2 << 11),
181 CRQB_CMD_LAST
= (1 << 15),
183 CRPB_FLAG_STATUS_SHIFT
= 8,
184 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
185 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
187 EPRD_FLAG_END_OF_TBL
= (1 << 31),
189 /* PCI interface registers */
191 MV_PCI_COMMAND
= 0xc00,
192 MV_PCI_COMMAND_MWRCOM
= (1 << 4), /* PCI Master Write Combining */
193 MV_PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
195 PCI_MAIN_CMD_STS
= 0xd30,
196 STOP_PCI_MASTER
= (1 << 2),
197 PCI_MASTER_EMPTY
= (1 << 3),
198 GLOB_SFT_RST
= (1 << 4),
201 MV_PCI_MODE_MASK
= 0x30,
203 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
204 MV_PCI_DISC_TIMER
= 0xd04,
205 MV_PCI_MSI_TRIGGER
= 0xc38,
206 MV_PCI_SERR_MASK
= 0xc28,
207 MV_PCI_XBAR_TMOUT
= 0x1d04,
208 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
209 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
210 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
211 MV_PCI_ERR_COMMAND
= 0x1d50,
213 PCI_IRQ_CAUSE
= 0x1d58,
214 PCI_IRQ_MASK
= 0x1d5c,
215 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
217 PCIE_IRQ_CAUSE
= 0x1900,
218 PCIE_IRQ_MASK
= 0x1910,
219 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
221 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
222 PCI_HC_MAIN_IRQ_CAUSE
= 0x1d60,
223 PCI_HC_MAIN_IRQ_MASK
= 0x1d64,
224 SOC_HC_MAIN_IRQ_CAUSE
= 0x20020,
225 SOC_HC_MAIN_IRQ_MASK
= 0x20024,
226 ERR_IRQ
= (1 << 0), /* shift by (2 * port #) */
227 DONE_IRQ
= (1 << 1), /* shift by (2 * port #) */
228 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
229 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
230 DONE_IRQ_0_3
= 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
231 DONE_IRQ_4_7
= (DONE_IRQ_0_3
<< HC_SHIFT
), /* 4,5,6,7 */
233 TRAN_COAL_LO_DONE
= (1 << 19), /* transaction coalescing */
234 TRAN_COAL_HI_DONE
= (1 << 20), /* transaction coalescing */
235 PORTS_0_3_COAL_DONE
= (1 << 8), /* HC0 IRQ coalescing */
236 PORTS_4_7_COAL_DONE
= (1 << 17), /* HC1 IRQ coalescing */
237 ALL_PORTS_COAL_DONE
= (1 << 21), /* GEN_II(E) IRQ coalescing */
238 GPIO_INT
= (1 << 22),
239 SELF_INT
= (1 << 23),
240 TWSI_INT
= (1 << 24),
241 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
242 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
243 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
245 /* SATAHC registers */
249 DMA_IRQ
= (1 << 0), /* shift by port # */
250 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
251 DEV_IRQ
= (1 << 8), /* shift by port # */
254 * Per-HC (Host-Controller) interrupt coalescing feature.
255 * This is present on all chip generations.
257 * Coalescing defers the interrupt until either the IO_THRESHOLD
258 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260 HC_IRQ_COAL_IO_THRESHOLD
= 0x000c,
261 HC_IRQ_COAL_TIME_THRESHOLD
= 0x0010,
264 SOC_LED_CTRL_BLINK
= (1 << 0), /* Active LED blink */
265 SOC_LED_CTRL_ACT_PRESENCE
= (1 << 2), /* Multiplex dev presence */
266 /* with dev activity LED */
268 /* Shadow block registers */
270 SHD_CTL_AST
= 0x20, /* ofs from SHD_BLK */
273 SATA_STATUS
= 0x300, /* ctrl, err regs follow status */
275 FIS_IRQ_CAUSE
= 0x364,
276 FIS_IRQ_CAUSE_AN
= (1 << 9), /* async notification */
278 LTMODE
= 0x30c, /* requires read-after-write */
279 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
284 PHY_MODE4
= 0x314, /* requires read-after-write */
285 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
286 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
287 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
288 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
291 SATA_TESTCTL
= 0x348,
293 VENDOR_UNIQUE_FIS
= 0x35c,
296 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
297 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
299 PHY_MODE9_GEN2
= 0x398,
300 PHY_MODE9_GEN1
= 0x39c,
301 PHYCFG_OFS
= 0x3a0, /* only in 65n devices */
309 MV_M2_PREAMP_MASK
= 0x7e0,
313 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
314 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
315 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
316 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
317 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
318 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
319 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
321 EDMA_ERR_IRQ_CAUSE
= 0x8,
322 EDMA_ERR_IRQ_MASK
= 0xc,
323 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
324 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
325 EDMA_ERR_DEV
= (1 << 2), /* device error */
326 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
327 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
328 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
329 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
330 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
331 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
332 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
333 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
334 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
335 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
336 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
338 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
339 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
340 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
341 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
342 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
344 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
346 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
347 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
348 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
349 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
350 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
351 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
353 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
355 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
356 EDMA_ERR_OVERRUN_5
= (1 << 5),
357 EDMA_ERR_UNDERRUN_5
= (1 << 6),
359 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
360 EDMA_ERR_LNK_CTRL_RX_1
|
361 EDMA_ERR_LNK_CTRL_RX_3
|
362 EDMA_ERR_LNK_CTRL_TX
,
364 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
374 EDMA_ERR_LNK_CTRL_RX_2
|
375 EDMA_ERR_LNK_DATA_RX
|
376 EDMA_ERR_LNK_DATA_TX
|
377 EDMA_ERR_TRANS_PROTO
,
379 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
384 EDMA_ERR_UNDERRUN_5
|
385 EDMA_ERR_SELF_DIS_5
|
391 EDMA_REQ_Q_BASE_HI
= 0x10,
392 EDMA_REQ_Q_IN_PTR
= 0x14, /* also contains BASE_LO */
394 EDMA_REQ_Q_OUT_PTR
= 0x18,
395 EDMA_REQ_Q_PTR_SHIFT
= 5,
397 EDMA_RSP_Q_BASE_HI
= 0x1c,
398 EDMA_RSP_Q_IN_PTR
= 0x20,
399 EDMA_RSP_Q_OUT_PTR
= 0x24, /* also contains BASE_LO */
400 EDMA_RSP_Q_PTR_SHIFT
= 3,
402 EDMA_CMD
= 0x28, /* EDMA command register */
403 EDMA_EN
= (1 << 0), /* enable EDMA */
404 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
405 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
407 EDMA_STATUS
= 0x30, /* EDMA engine status */
408 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
409 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
411 EDMA_IORDY_TMOUT
= 0x34,
414 EDMA_HALTCOND
= 0x60, /* GenIIe halt conditions */
415 EDMA_UNKNOWN_RSVD
= 0x6C, /* GenIIe unknown/reserved */
417 BMDMA_CMD
= 0x224, /* bmdma command register */
418 BMDMA_STATUS
= 0x228, /* bmdma status register */
419 BMDMA_PRD_LOW
= 0x22c, /* bmdma PRD addr 31:0 */
420 BMDMA_PRD_HIGH
= 0x230, /* bmdma PRD addr 63:32 */
422 /* Host private flags (hp_flags) */
423 MV_HP_FLAG_MSI
= (1 << 0),
424 MV_HP_ERRATA_50XXB0
= (1 << 1),
425 MV_HP_ERRATA_50XXB2
= (1 << 2),
426 MV_HP_ERRATA_60X1B2
= (1 << 3),
427 MV_HP_ERRATA_60X1C0
= (1 << 4),
428 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
429 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
430 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
431 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
432 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
433 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
434 MV_HP_QUIRK_LED_BLINK_EN
= (1 << 12), /* is led blinking enabled? */
435 MV_HP_FIX_LP_PHY_CTL
= (1 << 13), /* fix speed in LP_PHY_CTL ? */
437 /* Port private flags (pp_flags) */
438 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
439 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
440 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
441 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
442 MV_PP_FLAG_FAKE_ATA_BUSY
= (1 << 4), /* ignore initial ATA_DRDY */
445 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
446 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
447 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
448 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
449 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
451 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
452 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
455 /* DMA boundary 0xffff is required by the s/g splitting
456 * we need on /length/ in mv_fill-sg().
458 MV_DMA_BOUNDARY
= 0xffffU
,
460 /* mask of register bits containing lower 32 bits
461 * of EDMA request queue DMA address
463 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
465 /* ditto, for response queue */
466 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
480 /* Command ReQuest Block: 32B */
496 /* Command ResPonse Block: 8B */
503 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
512 * We keep a local cache of a few frequently accessed port
513 * registers here, to avoid having to read them (very slow)
514 * when switching between EDMA and non-EDMA modes.
516 struct mv_cached_regs
{
523 struct mv_port_priv
{
524 struct mv_crqb
*crqb
;
526 struct mv_crpb
*crpb
;
528 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
529 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
531 unsigned int req_idx
;
532 unsigned int resp_idx
;
535 struct mv_cached_regs cached
;
536 unsigned int delayed_eh_pmp_map
;
539 struct mv_port_signal
{
544 struct mv_host_priv
{
546 unsigned int board_idx
;
548 struct mv_port_signal signal
[8];
549 const struct mv_hw_ops
*ops
;
552 void __iomem
*main_irq_cause_addr
;
553 void __iomem
*main_irq_mask_addr
;
554 u32 irq_cause_offset
;
559 * Needed on some devices that require their clocks to be enabled.
560 * These are optional: if the platform device does not have any
561 * clocks, they won't be used. Also, if the underlying hardware
562 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
563 * all the clock operations become no-ops (see clk.h).
566 struct clk
**port_clks
;
568 * These consistent DMA memory pools give us guaranteed
569 * alignment for hardware-accessed data structures,
570 * and less memory waste in accomplishing the alignment.
572 struct dma_pool
*crqb_pool
;
573 struct dma_pool
*crpb_pool
;
574 struct dma_pool
*sg_tbl_pool
;
578 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
580 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
581 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
583 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
585 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
586 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
589 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
590 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
591 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
592 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
593 static int mv_port_start(struct ata_port
*ap
);
594 static void mv_port_stop(struct ata_port
*ap
);
595 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
596 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
597 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
598 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
599 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
600 unsigned long deadline
);
601 static void mv_eh_freeze(struct ata_port
*ap
);
602 static void mv_eh_thaw(struct ata_port
*ap
);
603 static void mv6_dev_config(struct ata_device
*dev
);
605 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
607 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
608 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
610 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
612 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
613 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
615 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
617 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
618 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
620 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
622 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
623 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
625 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
627 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
628 void __iomem
*mmio
, unsigned int n_hc
);
629 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
631 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
632 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
633 void __iomem
*mmio
, unsigned int port
);
634 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
635 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
636 unsigned int port_no
);
637 static int mv_stop_edma(struct ata_port
*ap
);
638 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
639 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
);
641 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
642 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
643 unsigned long deadline
);
644 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
645 unsigned long deadline
);
646 static void mv_pmp_error_handler(struct ata_port
*ap
);
647 static void mv_process_crpb_entries(struct ata_port
*ap
,
648 struct mv_port_priv
*pp
);
650 static void mv_sff_irq_clear(struct ata_port
*ap
);
651 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
);
652 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
);
653 static void mv_bmdma_start(struct ata_queued_cmd
*qc
);
654 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
);
655 static u8
mv_bmdma_status(struct ata_port
*ap
);
656 static u8
mv_sff_check_status(struct ata_port
*ap
);
658 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
659 * because we have to allow room for worst case splitting of
660 * PRDs for 64K boundaries in mv_fill_sg().
663 static struct scsi_host_template mv5_sht
= {
664 ATA_BASE_SHT(DRV_NAME
),
665 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
666 .dma_boundary
= MV_DMA_BOUNDARY
,
669 static struct scsi_host_template mv6_sht
= {
670 ATA_NCQ_SHT(DRV_NAME
),
671 .can_queue
= MV_MAX_Q_DEPTH
- 1,
672 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
673 .dma_boundary
= MV_DMA_BOUNDARY
,
676 static struct ata_port_operations mv5_ops
= {
677 .inherits
= &ata_sff_port_ops
,
679 .lost_interrupt
= ATA_OP_NULL
,
681 .qc_defer
= mv_qc_defer
,
682 .qc_prep
= mv_qc_prep
,
683 .qc_issue
= mv_qc_issue
,
685 .freeze
= mv_eh_freeze
,
687 .hardreset
= mv_hardreset
,
689 .scr_read
= mv5_scr_read
,
690 .scr_write
= mv5_scr_write
,
692 .port_start
= mv_port_start
,
693 .port_stop
= mv_port_stop
,
696 static struct ata_port_operations mv6_ops
= {
697 .inherits
= &ata_bmdma_port_ops
,
699 .lost_interrupt
= ATA_OP_NULL
,
701 .qc_defer
= mv_qc_defer
,
702 .qc_prep
= mv_qc_prep
,
703 .qc_issue
= mv_qc_issue
,
705 .dev_config
= mv6_dev_config
,
707 .freeze
= mv_eh_freeze
,
709 .hardreset
= mv_hardreset
,
710 .softreset
= mv_softreset
,
711 .pmp_hardreset
= mv_pmp_hardreset
,
712 .pmp_softreset
= mv_softreset
,
713 .error_handler
= mv_pmp_error_handler
,
715 .scr_read
= mv_scr_read
,
716 .scr_write
= mv_scr_write
,
718 .sff_check_status
= mv_sff_check_status
,
719 .sff_irq_clear
= mv_sff_irq_clear
,
720 .check_atapi_dma
= mv_check_atapi_dma
,
721 .bmdma_setup
= mv_bmdma_setup
,
722 .bmdma_start
= mv_bmdma_start
,
723 .bmdma_stop
= mv_bmdma_stop
,
724 .bmdma_status
= mv_bmdma_status
,
726 .port_start
= mv_port_start
,
727 .port_stop
= mv_port_stop
,
730 static struct ata_port_operations mv_iie_ops
= {
731 .inherits
= &mv6_ops
,
732 .dev_config
= ATA_OP_NULL
,
733 .qc_prep
= mv_qc_prep_iie
,
736 static const struct ata_port_info mv_port_info
[] = {
738 .flags
= MV_GEN_I_FLAGS
,
739 .pio_mask
= ATA_PIO4
,
740 .udma_mask
= ATA_UDMA6
,
741 .port_ops
= &mv5_ops
,
744 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
745 .pio_mask
= ATA_PIO4
,
746 .udma_mask
= ATA_UDMA6
,
747 .port_ops
= &mv5_ops
,
750 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
751 .pio_mask
= ATA_PIO4
,
752 .udma_mask
= ATA_UDMA6
,
753 .port_ops
= &mv5_ops
,
756 .flags
= MV_GEN_II_FLAGS
,
757 .pio_mask
= ATA_PIO4
,
758 .udma_mask
= ATA_UDMA6
,
759 .port_ops
= &mv6_ops
,
762 .flags
= MV_GEN_II_FLAGS
| MV_FLAG_DUAL_HC
,
763 .pio_mask
= ATA_PIO4
,
764 .udma_mask
= ATA_UDMA6
,
765 .port_ops
= &mv6_ops
,
768 .flags
= MV_GEN_IIE_FLAGS
,
769 .pio_mask
= ATA_PIO4
,
770 .udma_mask
= ATA_UDMA6
,
771 .port_ops
= &mv_iie_ops
,
774 .flags
= MV_GEN_IIE_FLAGS
,
775 .pio_mask
= ATA_PIO4
,
776 .udma_mask
= ATA_UDMA6
,
777 .port_ops
= &mv_iie_ops
,
780 .flags
= MV_GEN_IIE_FLAGS
,
781 .pio_mask
= ATA_PIO4
,
782 .udma_mask
= ATA_UDMA6
,
783 .port_ops
= &mv_iie_ops
,
787 static const struct pci_device_id mv_pci_tbl
[] = {
788 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
789 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
790 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
791 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
792 /* RocketRAID 1720/174x have different identifiers */
793 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
794 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
795 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
797 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
798 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
799 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
800 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
801 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
803 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
806 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
808 /* Marvell 7042 support */
809 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
811 /* Highpoint RocketRAID PCIe series */
812 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
813 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
815 { } /* terminate list */
818 static const struct mv_hw_ops mv5xxx_ops
= {
819 .phy_errata
= mv5_phy_errata
,
820 .enable_leds
= mv5_enable_leds
,
821 .read_preamp
= mv5_read_preamp
,
822 .reset_hc
= mv5_reset_hc
,
823 .reset_flash
= mv5_reset_flash
,
824 .reset_bus
= mv5_reset_bus
,
827 static const struct mv_hw_ops mv6xxx_ops
= {
828 .phy_errata
= mv6_phy_errata
,
829 .enable_leds
= mv6_enable_leds
,
830 .read_preamp
= mv6_read_preamp
,
831 .reset_hc
= mv6_reset_hc
,
832 .reset_flash
= mv6_reset_flash
,
833 .reset_bus
= mv_reset_pci_bus
,
836 static const struct mv_hw_ops mv_soc_ops
= {
837 .phy_errata
= mv6_phy_errata
,
838 .enable_leds
= mv_soc_enable_leds
,
839 .read_preamp
= mv_soc_read_preamp
,
840 .reset_hc
= mv_soc_reset_hc
,
841 .reset_flash
= mv_soc_reset_flash
,
842 .reset_bus
= mv_soc_reset_bus
,
845 static const struct mv_hw_ops mv_soc_65n_ops
= {
846 .phy_errata
= mv_soc_65n_phy_errata
,
847 .enable_leds
= mv_soc_enable_leds
,
848 .reset_hc
= mv_soc_reset_hc
,
849 .reset_flash
= mv_soc_reset_flash
,
850 .reset_bus
= mv_soc_reset_bus
,
857 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
860 (void) readl(addr
); /* flush to avoid PCI posted write */
863 static inline unsigned int mv_hc_from_port(unsigned int port
)
865 return port
>> MV_PORT_HC_SHIFT
;
868 static inline unsigned int mv_hardport_from_port(unsigned int port
)
870 return port
& MV_PORT_MASK
;
874 * Consolidate some rather tricky bit shift calculations.
875 * This is hot-path stuff, so not a function.
876 * Simple code, with two return values, so macro rather than inline.
878 * port is the sole input, in range 0..7.
879 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
880 * hardport is the other output, in range 0..3.
882 * Note that port and hardport may be the same variable in some cases.
884 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
886 shift = mv_hc_from_port(port) * HC_SHIFT; \
887 hardport = mv_hardport_from_port(port); \
888 shift += hardport * 2; \
891 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
893 return (base
+ SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
896 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
899 return mv_hc_base(base
, mv_hc_from_port(port
));
902 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
904 return mv_hc_base_from_port(base
, port
) +
905 MV_SATAHC_ARBTR_REG_SZ
+
906 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
909 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
911 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
912 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
914 return hc_mmio
+ ofs
;
917 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
919 struct mv_host_priv
*hpriv
= host
->private_data
;
923 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
925 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
928 static inline int mv_get_hc_count(unsigned long port_flags
)
930 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
934 * mv_save_cached_regs - (re-)initialize cached port registers
935 * @ap: the port whose registers we are caching
937 * Initialize the local cache of port registers,
938 * so that reading them over and over again can
939 * be avoided on the hotter paths of this driver.
940 * This saves a few microseconds each time we switch
941 * to/from EDMA mode to perform (eg.) a drive cache flush.
943 static void mv_save_cached_regs(struct ata_port
*ap
)
945 void __iomem
*port_mmio
= mv_ap_base(ap
);
946 struct mv_port_priv
*pp
= ap
->private_data
;
948 pp
->cached
.fiscfg
= readl(port_mmio
+ FISCFG
);
949 pp
->cached
.ltmode
= readl(port_mmio
+ LTMODE
);
950 pp
->cached
.haltcond
= readl(port_mmio
+ EDMA_HALTCOND
);
951 pp
->cached
.unknown_rsvd
= readl(port_mmio
+ EDMA_UNKNOWN_RSVD
);
955 * mv_write_cached_reg - write to a cached port register
956 * @addr: hardware address of the register
957 * @old: pointer to cached value of the register
958 * @new: new value for the register
960 * Write a new value to a cached register,
961 * but only if the value is different from before.
963 static inline void mv_write_cached_reg(void __iomem
*addr
, u32
*old
, u32
new)
969 * Workaround for 88SX60x1-B2 FEr SATA#13:
970 * Read-after-write is needed to prevent generating 64-bit
971 * write cycles on the PCI bus for SATA interface registers
972 * at offsets ending in 0x4 or 0xc.
974 * Looks like a lot of fuss, but it avoids an unnecessary
975 * +1 usec read-after-write delay for unaffected registers.
977 laddr
= (long)addr
& 0xffff;
978 if (laddr
>= 0x300 && laddr
<= 0x33c) {
980 if (laddr
== 0x4 || laddr
== 0xc) {
981 writelfl(new, addr
); /* read after write */
985 writel(new, addr
); /* unaffected by the errata */
989 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
990 struct mv_host_priv
*hpriv
,
991 struct mv_port_priv
*pp
)
996 * initialize request queue
998 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
999 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1001 WARN_ON(pp
->crqb_dma
& 0x3ff);
1002 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI
);
1003 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
1004 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
1005 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR
);
1008 * initialize response queue
1010 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
1011 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
1013 WARN_ON(pp
->crpb_dma
& 0xff);
1014 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI
);
1015 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR
);
1016 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
1017 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
1020 static void mv_write_main_irq_mask(u32 mask
, struct mv_host_priv
*hpriv
)
1023 * When writing to the main_irq_mask in hardware,
1024 * we must ensure exclusivity between the interrupt coalescing bits
1025 * and the corresponding individual port DONE_IRQ bits.
1027 * Note that this register is really an "IRQ enable" register,
1028 * not an "IRQ mask" register as Marvell's naming might suggest.
1030 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_0_3_COAL_DONE
))
1031 mask
&= ~DONE_IRQ_0_3
;
1032 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_4_7_COAL_DONE
))
1033 mask
&= ~DONE_IRQ_4_7
;
1034 writelfl(mask
, hpriv
->main_irq_mask_addr
);
1037 static void mv_set_main_irq_mask(struct ata_host
*host
,
1038 u32 disable_bits
, u32 enable_bits
)
1040 struct mv_host_priv
*hpriv
= host
->private_data
;
1041 u32 old_mask
, new_mask
;
1043 old_mask
= hpriv
->main_irq_mask
;
1044 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
1045 if (new_mask
!= old_mask
) {
1046 hpriv
->main_irq_mask
= new_mask
;
1047 mv_write_main_irq_mask(new_mask
, hpriv
);
1051 static void mv_enable_port_irqs(struct ata_port
*ap
,
1052 unsigned int port_bits
)
1054 unsigned int shift
, hardport
, port
= ap
->port_no
;
1055 u32 disable_bits
, enable_bits
;
1057 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
1059 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
1060 enable_bits
= port_bits
<< shift
;
1061 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
1064 static void mv_clear_and_enable_port_irqs(struct ata_port
*ap
,
1065 void __iomem
*port_mmio
,
1066 unsigned int port_irqs
)
1068 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1069 int hardport
= mv_hardport_from_port(ap
->port_no
);
1070 void __iomem
*hc_mmio
= mv_hc_base_from_port(
1071 mv_host_base(ap
->host
), ap
->port_no
);
1074 /* clear EDMA event indicators, if any */
1075 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
1077 /* clear pending irq events */
1078 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
1079 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
1081 /* clear FIS IRQ Cause */
1082 if (IS_GEN_IIE(hpriv
))
1083 writelfl(0, port_mmio
+ FIS_IRQ_CAUSE
);
1085 mv_enable_port_irqs(ap
, port_irqs
);
1088 static void mv_set_irq_coalescing(struct ata_host
*host
,
1089 unsigned int count
, unsigned int usecs
)
1091 struct mv_host_priv
*hpriv
= host
->private_data
;
1092 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
1093 u32 coal_enable
= 0;
1094 unsigned long flags
;
1095 unsigned int clks
, is_dual_hc
= hpriv
->n_ports
> MV_PORTS_PER_HC
;
1096 const u32 coal_disable
= PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
1097 ALL_PORTS_COAL_DONE
;
1099 /* Disable IRQ coalescing if either threshold is zero */
1100 if (!usecs
|| !count
) {
1103 /* Respect maximum limits of the hardware */
1104 clks
= usecs
* COAL_CLOCKS_PER_USEC
;
1105 if (clks
> MAX_COAL_TIME_THRESHOLD
)
1106 clks
= MAX_COAL_TIME_THRESHOLD
;
1107 if (count
> MAX_COAL_IO_COUNT
)
1108 count
= MAX_COAL_IO_COUNT
;
1111 spin_lock_irqsave(&host
->lock
, flags
);
1112 mv_set_main_irq_mask(host
, coal_disable
, 0);
1114 if (is_dual_hc
&& !IS_GEN_I(hpriv
)) {
1116 * GEN_II/GEN_IIE with dual host controllers:
1117 * one set of global thresholds for the entire chip.
1119 writel(clks
, mmio
+ IRQ_COAL_TIME_THRESHOLD
);
1120 writel(count
, mmio
+ IRQ_COAL_IO_THRESHOLD
);
1121 /* clear leftover coal IRQ bit */
1122 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
1124 coal_enable
= ALL_PORTS_COAL_DONE
;
1125 clks
= count
= 0; /* force clearing of regular regs below */
1129 * All chips: independent thresholds for each HC on the chip.
1131 hc_mmio
= mv_hc_base_from_port(mmio
, 0);
1132 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1133 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1134 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1136 coal_enable
|= PORTS_0_3_COAL_DONE
;
1138 hc_mmio
= mv_hc_base_from_port(mmio
, MV_PORTS_PER_HC
);
1139 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1140 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1141 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1143 coal_enable
|= PORTS_4_7_COAL_DONE
;
1146 mv_set_main_irq_mask(host
, 0, coal_enable
);
1147 spin_unlock_irqrestore(&host
->lock
, flags
);
1151 * mv_start_edma - Enable eDMA engine
1152 * @base: port base address
1153 * @pp: port private data
1155 * Verify the local cache of the eDMA state is accurate with a
1159 * Inherited from caller.
1161 static void mv_start_edma(struct ata_port
*ap
, void __iomem
*port_mmio
,
1162 struct mv_port_priv
*pp
, u8 protocol
)
1164 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
1166 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1167 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
1168 if (want_ncq
!= using_ncq
)
1171 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1172 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1174 mv_edma_cfg(ap
, want_ncq
, 1);
1176 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
1177 mv_clear_and_enable_port_irqs(ap
, port_mmio
, DONE_IRQ
|ERR_IRQ
);
1179 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD
);
1180 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
1184 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
1186 void __iomem
*port_mmio
= mv_ap_base(ap
);
1187 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
1188 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
1192 * Wait for the EDMA engine to finish transactions in progress.
1193 * No idea what a good "timeout" value might be, but measurements
1194 * indicate that it often requires hundreds of microseconds
1195 * with two drives in-use. So we use the 15msec value above
1196 * as a rough guess at what even more drives might require.
1198 for (i
= 0; i
< timeout
; ++i
) {
1199 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS
);
1200 if ((edma_stat
& empty_idle
) == empty_idle
)
1204 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1208 * mv_stop_edma_engine - Disable eDMA engine
1209 * @port_mmio: io base address
1212 * Inherited from caller.
1214 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
1218 /* Disable eDMA. The disable bit auto clears. */
1219 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD
);
1221 /* Wait for the chip to confirm eDMA is off. */
1222 for (i
= 10000; i
> 0; i
--) {
1223 u32 reg
= readl(port_mmio
+ EDMA_CMD
);
1224 if (!(reg
& EDMA_EN
))
1231 static int mv_stop_edma(struct ata_port
*ap
)
1233 void __iomem
*port_mmio
= mv_ap_base(ap
);
1234 struct mv_port_priv
*pp
= ap
->private_data
;
1237 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1239 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1240 mv_wait_for_edma_empty_idle(ap
);
1241 if (mv_stop_edma_engine(port_mmio
)) {
1242 ata_port_err(ap
, "Unable to stop eDMA\n");
1245 mv_edma_cfg(ap
, 0, 0);
1250 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
1253 for (b
= 0; b
< bytes
; ) {
1254 DPRINTK("%p: ", start
+ b
);
1255 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1256 printk("%08x ", readl(start
+ b
));
1263 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1264 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
1269 for (b
= 0; b
< bytes
; ) {
1270 DPRINTK("%02x: ", b
);
1271 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1272 (void) pci_read_config_dword(pdev
, b
, &dw
);
1273 printk("%08x ", dw
);
1281 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1282 struct pci_dev
*pdev
)
1285 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1286 port
>> MV_PORT_HC_SHIFT
);
1287 void __iomem
*port_base
;
1288 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1291 start_hc
= start_port
= 0;
1292 num_ports
= 8; /* shld be benign for 4 port devs */
1295 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1297 num_ports
= num_hcs
= 1;
1299 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1300 num_ports
> 1 ? num_ports
- 1 : start_port
);
1303 DPRINTK("PCI config space regs:\n");
1304 mv_dump_pci_cfg(pdev
, 0x68);
1306 DPRINTK("PCI regs:\n");
1307 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1308 mv_dump_mem(mmio_base
+0xd00, 0x34);
1309 mv_dump_mem(mmio_base
+0xf00, 0x4);
1310 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1311 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1312 hc_base
= mv_hc_base(mmio_base
, hc
);
1313 DPRINTK("HC regs (HC %i):\n", hc
);
1314 mv_dump_mem(hc_base
, 0x1c);
1316 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1317 port_base
= mv_port_base(mmio_base
, p
);
1318 DPRINTK("EDMA regs (port %i):\n", p
);
1319 mv_dump_mem(port_base
, 0x54);
1320 DPRINTK("SATA regs (port %i):\n", p
);
1321 mv_dump_mem(port_base
+0x300, 0x60);
1326 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1330 switch (sc_reg_in
) {
1334 ofs
= SATA_STATUS
+ (sc_reg_in
* sizeof(u32
));
1337 ofs
= SATA_ACTIVE
; /* active is not with the others */
1346 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1348 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1350 if (ofs
!= 0xffffffffU
) {
1351 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1357 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1359 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1361 if (ofs
!= 0xffffffffU
) {
1362 void __iomem
*addr
= mv_ap_base(link
->ap
) + ofs
;
1363 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
1364 if (sc_reg_in
== SCR_CONTROL
) {
1366 * Workaround for 88SX60x1 FEr SATA#26:
1368 * COMRESETs have to take care not to accidentally
1369 * put the drive to sleep when writing SCR_CONTROL.
1370 * Setting bits 12..15 prevents this problem.
1372 * So if we see an outbound COMMRESET, set those bits.
1373 * Ditto for the followup write that clears the reset.
1375 * The proprietary driver does this for
1376 * all chip versions, and so do we.
1378 if ((val
& 0xf) == 1 || (readl(addr
) & 0xf) == 1)
1381 if (hpriv
->hp_flags
& MV_HP_FIX_LP_PHY_CTL
) {
1382 void __iomem
*lp_phy_addr
=
1383 mv_ap_base(link
->ap
) + LP_PHY_CTL
;
1385 * Set PHY speed according to SControl speed.
1387 if ((val
& 0xf0) == 0x10)
1388 writelfl(0x7, lp_phy_addr
);
1390 writelfl(0x227, lp_phy_addr
);
1393 writelfl(val
, addr
);
1399 static void mv6_dev_config(struct ata_device
*adev
)
1402 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1404 * Gen-II does not support NCQ over a port multiplier
1405 * (no FIS-based switching).
1407 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1408 if (sata_pmp_attached(adev
->link
->ap
)) {
1409 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1411 "NCQ disabled for command-based switching\n");
1416 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1418 struct ata_link
*link
= qc
->dev
->link
;
1419 struct ata_port
*ap
= link
->ap
;
1420 struct mv_port_priv
*pp
= ap
->private_data
;
1423 * Don't allow new commands if we're in a delayed EH state
1424 * for NCQ and/or FIS-based switching.
1426 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1427 return ATA_DEFER_PORT
;
1429 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1430 * can run concurrently.
1431 * set excl_link when we want to send a PIO command in DMA mode
1432 * or a non-NCQ command in NCQ mode.
1433 * When we receive a command from that link, and there are no
1434 * outstanding commands, mark a flag to clear excl_link and let
1435 * the command go through.
1437 if (unlikely(ap
->excl_link
)) {
1438 if (link
== ap
->excl_link
) {
1439 if (ap
->nr_active_links
)
1440 return ATA_DEFER_PORT
;
1441 qc
->flags
|= ATA_QCFLAG_CLEAR_EXCL
;
1444 return ATA_DEFER_PORT
;
1448 * If the port is completely idle, then allow the new qc.
1450 if (ap
->nr_active_links
== 0)
1454 * The port is operating in host queuing mode (EDMA) with NCQ
1455 * enabled, allow multiple NCQ commands. EDMA also allows
1456 * queueing multiple DMA commands but libata core currently
1459 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1460 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)) {
1461 if (ata_is_ncq(qc
->tf
.protocol
))
1464 ap
->excl_link
= link
;
1465 return ATA_DEFER_PORT
;
1469 return ATA_DEFER_PORT
;
1472 static void mv_config_fbs(struct ata_port
*ap
, int want_ncq
, int want_fbs
)
1474 struct mv_port_priv
*pp
= ap
->private_data
;
1475 void __iomem
*port_mmio
;
1477 u32 fiscfg
, *old_fiscfg
= &pp
->cached
.fiscfg
;
1478 u32 ltmode
, *old_ltmode
= &pp
->cached
.ltmode
;
1479 u32 haltcond
, *old_haltcond
= &pp
->cached
.haltcond
;
1481 ltmode
= *old_ltmode
& ~LTMODE_BIT8
;
1482 haltcond
= *old_haltcond
| EDMA_ERR_DEV
;
1485 fiscfg
= *old_fiscfg
| FISCFG_SINGLE_SYNC
;
1486 ltmode
= *old_ltmode
| LTMODE_BIT8
;
1488 haltcond
&= ~EDMA_ERR_DEV
;
1490 fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1492 fiscfg
= *old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1495 port_mmio
= mv_ap_base(ap
);
1496 mv_write_cached_reg(port_mmio
+ FISCFG
, old_fiscfg
, fiscfg
);
1497 mv_write_cached_reg(port_mmio
+ LTMODE
, old_ltmode
, ltmode
);
1498 mv_write_cached_reg(port_mmio
+ EDMA_HALTCOND
, old_haltcond
, haltcond
);
1501 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1503 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1506 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1507 old
= readl(hpriv
->base
+ GPIO_PORT_CTL
);
1509 new = old
| (1 << 22);
1511 new = old
& ~(1 << 22);
1513 writel(new, hpriv
->base
+ GPIO_PORT_CTL
);
1517 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1518 * @ap: Port being initialized
1520 * There are two DMA modes on these chips: basic DMA, and EDMA.
1522 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1523 * of basic DMA on the GEN_IIE versions of the chips.
1525 * This bit survives EDMA resets, and must be set for basic DMA
1526 * to function, and should be cleared when EDMA is active.
1528 static void mv_bmdma_enable_iie(struct ata_port
*ap
, int enable_bmdma
)
1530 struct mv_port_priv
*pp
= ap
->private_data
;
1531 u32
new, *old
= &pp
->cached
.unknown_rsvd
;
1537 mv_write_cached_reg(mv_ap_base(ap
) + EDMA_UNKNOWN_RSVD
, old
, new);
1541 * SOC chips have an issue whereby the HDD LEDs don't always blink
1542 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1543 * of the SOC takes care of it, generating a steady blink rate when
1544 * any drive on the chip is active.
1546 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1547 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1549 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1550 * LED operation works then, and provides better (more accurate) feedback.
1552 * Note that this code assumes that an SOC never has more than one HC onboard.
1554 static void mv_soc_led_blink_enable(struct ata_port
*ap
)
1556 struct ata_host
*host
= ap
->host
;
1557 struct mv_host_priv
*hpriv
= host
->private_data
;
1558 void __iomem
*hc_mmio
;
1561 if (hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
)
1563 hpriv
->hp_flags
|= MV_HP_QUIRK_LED_BLINK_EN
;
1564 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1565 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1566 writel(led_ctrl
| SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1569 static void mv_soc_led_blink_disable(struct ata_port
*ap
)
1571 struct ata_host
*host
= ap
->host
;
1572 struct mv_host_priv
*hpriv
= host
->private_data
;
1573 void __iomem
*hc_mmio
;
1577 if (!(hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
))
1580 /* disable led-blink only if no ports are using NCQ */
1581 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1582 struct ata_port
*this_ap
= host
->ports
[port
];
1583 struct mv_port_priv
*pp
= this_ap
->private_data
;
1585 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1589 hpriv
->hp_flags
&= ~MV_HP_QUIRK_LED_BLINK_EN
;
1590 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1591 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1592 writel(led_ctrl
& ~SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1595 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
)
1598 struct mv_port_priv
*pp
= ap
->private_data
;
1599 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1600 void __iomem
*port_mmio
= mv_ap_base(ap
);
1602 /* set up non-NCQ EDMA configuration */
1603 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1605 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
1607 if (IS_GEN_I(hpriv
))
1608 cfg
|= (1 << 8); /* enab config burst size mask */
1610 else if (IS_GEN_II(hpriv
)) {
1611 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1612 mv_60x1_errata_sata25(ap
, want_ncq
);
1614 } else if (IS_GEN_IIE(hpriv
)) {
1615 int want_fbs
= sata_pmp_attached(ap
);
1617 * Possible future enhancement:
1619 * The chip can use FBS with non-NCQ, if we allow it,
1620 * But first we need to have the error handling in place
1621 * for this mode (datasheet section 7.3.15.4.2.3).
1622 * So disallow non-NCQ FBS for now.
1624 want_fbs
&= want_ncq
;
1626 mv_config_fbs(ap
, want_ncq
, want_fbs
);
1629 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1630 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1633 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1635 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1637 cfg
|= (1 << 18); /* enab early completion */
1639 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1640 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1641 mv_bmdma_enable_iie(ap
, !want_edma
);
1643 if (IS_SOC(hpriv
)) {
1645 mv_soc_led_blink_enable(ap
);
1647 mv_soc_led_blink_disable(ap
);
1652 cfg
|= EDMA_CFG_NCQ
;
1653 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1656 writelfl(cfg
, port_mmio
+ EDMA_CFG
);
1659 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1661 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1662 struct mv_port_priv
*pp
= ap
->private_data
;
1666 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1670 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1674 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1675 * For later hardware, we have one unique sg_tbl per NCQ tag.
1677 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1678 if (pp
->sg_tbl
[tag
]) {
1679 if (tag
== 0 || !IS_GEN_I(hpriv
))
1680 dma_pool_free(hpriv
->sg_tbl_pool
,
1682 pp
->sg_tbl_dma
[tag
]);
1683 pp
->sg_tbl
[tag
] = NULL
;
1689 * mv_port_start - Port specific init/start routine.
1690 * @ap: ATA channel to manipulate
1692 * Allocate and point to DMA memory, init port private memory,
1696 * Inherited from caller.
1698 static int mv_port_start(struct ata_port
*ap
)
1700 struct device
*dev
= ap
->host
->dev
;
1701 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1702 struct mv_port_priv
*pp
;
1703 unsigned long flags
;
1706 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1709 ap
->private_data
= pp
;
1711 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1714 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1716 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1718 goto out_port_free_dma_mem
;
1719 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1721 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1722 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1723 ap
->flags
|= ATA_FLAG_AN
;
1725 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1726 * For later hardware, we need one unique sg_tbl per NCQ tag.
1728 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1729 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1730 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1731 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1732 if (!pp
->sg_tbl
[tag
])
1733 goto out_port_free_dma_mem
;
1735 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1736 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1740 spin_lock_irqsave(ap
->lock
, flags
);
1741 mv_save_cached_regs(ap
);
1742 mv_edma_cfg(ap
, 0, 0);
1743 spin_unlock_irqrestore(ap
->lock
, flags
);
1747 out_port_free_dma_mem
:
1748 mv_port_free_dma_mem(ap
);
1753 * mv_port_stop - Port specific cleanup/stop routine.
1754 * @ap: ATA channel to manipulate
1756 * Stop DMA, cleanup port memory.
1759 * This routine uses the host lock to protect the DMA stop.
1761 static void mv_port_stop(struct ata_port
*ap
)
1763 unsigned long flags
;
1765 spin_lock_irqsave(ap
->lock
, flags
);
1767 mv_enable_port_irqs(ap
, 0);
1768 spin_unlock_irqrestore(ap
->lock
, flags
);
1769 mv_port_free_dma_mem(ap
);
1773 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1774 * @qc: queued command whose SG list to source from
1776 * Populate the SG list and mark the last entry.
1779 * Inherited from caller.
1781 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1783 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1784 struct scatterlist
*sg
;
1785 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1788 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1789 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1790 dma_addr_t addr
= sg_dma_address(sg
);
1791 u32 sg_len
= sg_dma_len(sg
);
1794 u32 offset
= addr
& 0xffff;
1797 if (offset
+ len
> 0x10000)
1798 len
= 0x10000 - offset
;
1800 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1801 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1802 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1803 mv_sg
->reserved
= 0;
1813 if (likely(last_sg
))
1814 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1815 mb(); /* ensure data structure is visible to the chipset */
1818 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1820 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1821 (last
? CRQB_CMD_LAST
: 0);
1822 *cmdw
= cpu_to_le16(tmp
);
1826 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1827 * @ap: Port associated with this ATA transaction.
1829 * We need this only for ATAPI bmdma transactions,
1830 * as otherwise we experience spurious interrupts
1831 * after libata-sff handles the bmdma interrupts.
1833 static void mv_sff_irq_clear(struct ata_port
*ap
)
1835 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), ERR_IRQ
);
1839 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1840 * @qc: queued command to check for chipset/DMA compatibility.
1842 * The bmdma engines cannot handle speculative data sizes
1843 * (bytecount under/over flow). So only allow DMA for
1844 * data transfer commands with known data sizes.
1847 * Inherited from caller.
1849 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
)
1851 struct scsi_cmnd
*scmd
= qc
->scsicmd
;
1854 switch (scmd
->cmnd
[0]) {
1862 case GPCMD_SEND_DVD_STRUCTURE
:
1863 case GPCMD_SEND_CUE_SHEET
:
1864 return 0; /* DMA is safe */
1867 return -EOPNOTSUPP
; /* use PIO instead */
1871 * mv_bmdma_setup - Set up BMDMA transaction
1872 * @qc: queued command to prepare DMA for.
1875 * Inherited from caller.
1877 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
)
1879 struct ata_port
*ap
= qc
->ap
;
1880 void __iomem
*port_mmio
= mv_ap_base(ap
);
1881 struct mv_port_priv
*pp
= ap
->private_data
;
1885 /* clear all DMA cmd bits */
1886 writel(0, port_mmio
+ BMDMA_CMD
);
1888 /* load PRD table addr. */
1889 writel((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16,
1890 port_mmio
+ BMDMA_PRD_HIGH
);
1891 writelfl(pp
->sg_tbl_dma
[qc
->tag
],
1892 port_mmio
+ BMDMA_PRD_LOW
);
1894 /* issue r/w command */
1895 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
1899 * mv_bmdma_start - Start a BMDMA transaction
1900 * @qc: queued command to start DMA on.
1903 * Inherited from caller.
1905 static void mv_bmdma_start(struct ata_queued_cmd
*qc
)
1907 struct ata_port
*ap
= qc
->ap
;
1908 void __iomem
*port_mmio
= mv_ap_base(ap
);
1909 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
1910 u32 cmd
= (rw
? 0 : ATA_DMA_WR
) | ATA_DMA_START
;
1912 /* start host DMA transaction */
1913 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1917 * mv_bmdma_stop - Stop BMDMA transfer
1918 * @qc: queued command to stop DMA on.
1920 * Clears the ATA_DMA_START flag in the bmdma control register
1923 * Inherited from caller.
1925 static void mv_bmdma_stop_ap(struct ata_port
*ap
)
1927 void __iomem
*port_mmio
= mv_ap_base(ap
);
1930 /* clear start/stop bit */
1931 cmd
= readl(port_mmio
+ BMDMA_CMD
);
1932 if (cmd
& ATA_DMA_START
) {
1933 cmd
&= ~ATA_DMA_START
;
1934 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1936 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1937 ata_sff_dma_pause(ap
);
1941 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
)
1943 mv_bmdma_stop_ap(qc
->ap
);
1947 * mv_bmdma_status - Read BMDMA status
1948 * @ap: port for which to retrieve DMA status.
1950 * Read and return equivalent of the sff BMDMA status register.
1953 * Inherited from caller.
1955 static u8
mv_bmdma_status(struct ata_port
*ap
)
1957 void __iomem
*port_mmio
= mv_ap_base(ap
);
1961 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1962 * and the ATA_DMA_INTR bit doesn't exist.
1964 reg
= readl(port_mmio
+ BMDMA_STATUS
);
1965 if (reg
& ATA_DMA_ACTIVE
)
1966 status
= ATA_DMA_ACTIVE
;
1967 else if (reg
& ATA_DMA_ERR
)
1968 status
= (reg
& ATA_DMA_ERR
) | ATA_DMA_INTR
;
1971 * Just because DMA_ACTIVE is 0 (DMA completed),
1972 * this does _not_ mean the device is "done".
1973 * So we should not yet be signalling ATA_DMA_INTR
1974 * in some cases. Eg. DSM/TRIM, and perhaps others.
1976 mv_bmdma_stop_ap(ap
);
1977 if (ioread8(ap
->ioaddr
.altstatus_addr
) & ATA_BUSY
)
1980 status
= ATA_DMA_INTR
;
1985 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd
*qc
)
1987 struct ata_taskfile
*tf
= &qc
->tf
;
1989 * Workaround for 88SX60x1 FEr SATA#24.
1991 * Chip may corrupt WRITEs if multi_count >= 4kB.
1992 * Note that READs are unaffected.
1994 * It's not clear if this errata really means "4K bytes",
1995 * or if it always happens for multi_count > 7
1996 * regardless of device sector_size.
1998 * So, for safety, any write with multi_count > 7
1999 * gets converted here into a regular PIO write instead:
2001 if ((tf
->flags
& ATA_TFLAG_WRITE
) && is_multi_taskfile(tf
)) {
2002 if (qc
->dev
->multi_count
> 7) {
2003 switch (tf
->command
) {
2004 case ATA_CMD_WRITE_MULTI
:
2005 tf
->command
= ATA_CMD_PIO_WRITE
;
2007 case ATA_CMD_WRITE_MULTI_FUA_EXT
:
2008 tf
->flags
&= ~ATA_TFLAG_FUA
; /* ugh */
2010 case ATA_CMD_WRITE_MULTI_EXT
:
2011 tf
->command
= ATA_CMD_PIO_WRITE_EXT
;
2019 * mv_qc_prep - Host specific command preparation.
2020 * @qc: queued command to prepare
2022 * This routine simply redirects to the general purpose routine
2023 * if command is not DMA. Else, it handles prep of the CRQB
2024 * (command request block), does some sanity checking, and calls
2025 * the SG load routine.
2028 * Inherited from caller.
2030 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
2032 struct ata_port
*ap
= qc
->ap
;
2033 struct mv_port_priv
*pp
= ap
->private_data
;
2035 struct ata_taskfile
*tf
= &qc
->tf
;
2039 switch (tf
->protocol
) {
2041 if (tf
->command
== ATA_CMD_DSM
)
2045 break; /* continue below */
2047 mv_rw_multi_errata_sata24(qc
);
2053 /* Fill in command request block
2055 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2056 flags
|= CRQB_FLAG_READ
;
2057 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2058 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2059 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2061 /* get current queue index from software */
2062 in_index
= pp
->req_idx
;
2064 pp
->crqb
[in_index
].sg_addr
=
2065 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2066 pp
->crqb
[in_index
].sg_addr_hi
=
2067 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2068 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
2070 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
2072 /* Sadly, the CRQB cannot accommodate all registers--there are
2073 * only 11 bytes...so we must pick and choose required
2074 * registers based on the command. So, we drop feature and
2075 * hob_feature for [RW] DMA commands, but they are needed for
2076 * NCQ. NCQ will drop hob_nsect, which is not needed there
2077 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2079 switch (tf
->command
) {
2081 case ATA_CMD_READ_EXT
:
2083 case ATA_CMD_WRITE_EXT
:
2084 case ATA_CMD_WRITE_FUA_EXT
:
2085 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
2087 case ATA_CMD_FPDMA_READ
:
2088 case ATA_CMD_FPDMA_WRITE
:
2089 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
2090 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
2093 /* The only other commands EDMA supports in non-queued and
2094 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2095 * of which are defined/used by Linux. If we get here, this
2096 * driver needs work.
2098 * FIXME: modify libata to give qc_prep a return value and
2099 * return error here.
2101 BUG_ON(tf
->command
);
2104 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
2105 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
2106 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
2107 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
2108 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
2109 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
2110 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
2111 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
2112 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
2114 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2120 * mv_qc_prep_iie - Host specific command preparation.
2121 * @qc: queued command to prepare
2123 * This routine simply redirects to the general purpose routine
2124 * if command is not DMA. Else, it handles prep of the CRQB
2125 * (command request block), does some sanity checking, and calls
2126 * the SG load routine.
2129 * Inherited from caller.
2131 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
2133 struct ata_port
*ap
= qc
->ap
;
2134 struct mv_port_priv
*pp
= ap
->private_data
;
2135 struct mv_crqb_iie
*crqb
;
2136 struct ata_taskfile
*tf
= &qc
->tf
;
2140 if ((tf
->protocol
!= ATA_PROT_DMA
) &&
2141 (tf
->protocol
!= ATA_PROT_NCQ
))
2143 if (tf
->command
== ATA_CMD_DSM
)
2144 return; /* use bmdma for this */
2146 /* Fill in Gen IIE command request block */
2147 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2148 flags
|= CRQB_FLAG_READ
;
2150 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2151 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2152 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
2153 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2155 /* get current queue index from software */
2156 in_index
= pp
->req_idx
;
2158 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
2159 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2160 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2161 crqb
->flags
= cpu_to_le32(flags
);
2163 crqb
->ata_cmd
[0] = cpu_to_le32(
2164 (tf
->command
<< 16) |
2167 crqb
->ata_cmd
[1] = cpu_to_le32(
2173 crqb
->ata_cmd
[2] = cpu_to_le32(
2174 (tf
->hob_lbal
<< 0) |
2175 (tf
->hob_lbam
<< 8) |
2176 (tf
->hob_lbah
<< 16) |
2177 (tf
->hob_feature
<< 24)
2179 crqb
->ata_cmd
[3] = cpu_to_le32(
2181 (tf
->hob_nsect
<< 8)
2184 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2190 * mv_sff_check_status - fetch device status, if valid
2191 * @ap: ATA port to fetch status from
2193 * When using command issue via mv_qc_issue_fis(),
2194 * the initial ATA_BUSY state does not show up in the
2195 * ATA status (shadow) register. This can confuse libata!
2197 * So we have a hook here to fake ATA_BUSY for that situation,
2198 * until the first time a BUSY, DRQ, or ERR bit is seen.
2200 * The rest of the time, it simply returns the ATA status register.
2202 static u8
mv_sff_check_status(struct ata_port
*ap
)
2204 u8 stat
= ioread8(ap
->ioaddr
.status_addr
);
2205 struct mv_port_priv
*pp
= ap
->private_data
;
2207 if (pp
->pp_flags
& MV_PP_FLAG_FAKE_ATA_BUSY
) {
2208 if (stat
& (ATA_BUSY
| ATA_DRQ
| ATA_ERR
))
2209 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
;
2217 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2218 * @fis: fis to be sent
2219 * @nwords: number of 32-bit words in the fis
2221 static unsigned int mv_send_fis(struct ata_port
*ap
, u32
*fis
, int nwords
)
2223 void __iomem
*port_mmio
= mv_ap_base(ap
);
2224 u32 ifctl
, old_ifctl
, ifstat
;
2225 int i
, timeout
= 200, final_word
= nwords
- 1;
2227 /* Initiate FIS transmission mode */
2228 old_ifctl
= readl(port_mmio
+ SATA_IFCTL
);
2229 ifctl
= 0x100 | (old_ifctl
& 0xf);
2230 writelfl(ifctl
, port_mmio
+ SATA_IFCTL
);
2232 /* Send all words of the FIS except for the final word */
2233 for (i
= 0; i
< final_word
; ++i
)
2234 writel(fis
[i
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2236 /* Flag end-of-transmission, and then send the final word */
2237 writelfl(ifctl
| 0x200, port_mmio
+ SATA_IFCTL
);
2238 writelfl(fis
[final_word
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2241 * Wait for FIS transmission to complete.
2242 * This typically takes just a single iteration.
2245 ifstat
= readl(port_mmio
+ SATA_IFSTAT
);
2246 } while (!(ifstat
& 0x1000) && --timeout
);
2248 /* Restore original port configuration */
2249 writelfl(old_ifctl
, port_mmio
+ SATA_IFCTL
);
2251 /* See if it worked */
2252 if ((ifstat
& 0x3000) != 0x1000) {
2253 ata_port_warn(ap
, "%s transmission error, ifstat=%08x\n",
2255 return AC_ERR_OTHER
;
2261 * mv_qc_issue_fis - Issue a command directly as a FIS
2262 * @qc: queued command to start
2264 * Note that the ATA shadow registers are not updated
2265 * after command issue, so the device will appear "READY"
2266 * if polled, even while it is BUSY processing the command.
2268 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2270 * Note: we don't get updated shadow regs on *completion*
2271 * of non-data commands. So avoid sending them via this function,
2272 * as they will appear to have completed immediately.
2274 * GEN_IIE has special registers that we could get the result tf from,
2275 * but earlier chipsets do not. For now, we ignore those registers.
2277 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd
*qc
)
2279 struct ata_port
*ap
= qc
->ap
;
2280 struct mv_port_priv
*pp
= ap
->private_data
;
2281 struct ata_link
*link
= qc
->dev
->link
;
2285 ata_tf_to_fis(&qc
->tf
, link
->pmp
, 1, (void *)fis
);
2286 err
= mv_send_fis(ap
, fis
, ARRAY_SIZE(fis
));
2290 switch (qc
->tf
.protocol
) {
2291 case ATAPI_PROT_PIO
:
2292 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2294 case ATAPI_PROT_NODATA
:
2295 ap
->hsm_task_state
= HSM_ST_FIRST
;
2298 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2299 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2300 ap
->hsm_task_state
= HSM_ST_FIRST
;
2302 ap
->hsm_task_state
= HSM_ST
;
2305 ap
->hsm_task_state
= HSM_ST_LAST
;
2309 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2310 ata_sff_queue_pio_task(link
, 0);
2315 * mv_qc_issue - Initiate a command to the host
2316 * @qc: queued command to start
2318 * This routine simply redirects to the general purpose routine
2319 * if command is not DMA. Else, it sanity checks our local
2320 * caches of the request producer/consumer indices then enables
2321 * DMA and bumps the request producer index.
2324 * Inherited from caller.
2326 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
2328 static int limit_warnings
= 10;
2329 struct ata_port
*ap
= qc
->ap
;
2330 void __iomem
*port_mmio
= mv_ap_base(ap
);
2331 struct mv_port_priv
*pp
= ap
->private_data
;
2333 unsigned int port_irqs
;
2335 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
; /* paranoia */
2337 switch (qc
->tf
.protocol
) {
2339 if (qc
->tf
.command
== ATA_CMD_DSM
) {
2340 if (!ap
->ops
->bmdma_setup
) /* no bmdma on GEN_I */
2341 return AC_ERR_OTHER
;
2342 break; /* use bmdma for this */
2346 mv_start_edma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
2347 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2348 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
2350 /* Write the request in pointer to kick the EDMA to life */
2351 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
2352 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
2357 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2359 * Someday, we might implement special polling workarounds
2360 * for these, but it all seems rather unnecessary since we
2361 * normally use only DMA for commands which transfer more
2362 * than a single block of data.
2364 * Much of the time, this could just work regardless.
2365 * So for now, just log the incident, and allow the attempt.
2367 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
2369 ata_link_warn(qc
->dev
->link
, DRV_NAME
2370 ": attempting PIO w/multiple DRQ: "
2371 "this may fail due to h/w errata\n");
2374 case ATA_PROT_NODATA
:
2375 case ATAPI_PROT_PIO
:
2376 case ATAPI_PROT_NODATA
:
2377 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
2378 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
2382 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2383 port_irqs
= ERR_IRQ
; /* mask device interrupt when polling */
2385 port_irqs
= ERR_IRQ
| DONE_IRQ
; /* unmask all interrupts */
2388 * We're about to send a non-EDMA capable command to the
2389 * port. Turn off EDMA so there won't be problems accessing
2390 * shadow block, etc registers.
2393 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), port_irqs
);
2394 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
2396 if (qc
->tf
.command
== ATA_CMD_READ_LOG_EXT
) {
2397 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2399 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2401 * After any NCQ error, the READ_LOG_EXT command
2402 * from libata-eh *must* use mv_qc_issue_fis().
2403 * Otherwise it might fail, due to chip errata.
2405 * Rather than special-case it, we'll just *always*
2406 * use this method here for READ_LOG_EXT, making for
2409 if (IS_GEN_II(hpriv
))
2410 return mv_qc_issue_fis(qc
);
2412 return ata_bmdma_qc_issue(qc
);
2415 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
2417 struct mv_port_priv
*pp
= ap
->private_data
;
2418 struct ata_queued_cmd
*qc
;
2420 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
2422 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2423 if (qc
&& !(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2428 static void mv_pmp_error_handler(struct ata_port
*ap
)
2430 unsigned int pmp
, pmp_map
;
2431 struct mv_port_priv
*pp
= ap
->private_data
;
2433 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
2435 * Perform NCQ error analysis on failed PMPs
2436 * before we freeze the port entirely.
2438 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2440 pmp_map
= pp
->delayed_eh_pmp_map
;
2441 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
2442 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2443 unsigned int this_pmp
= (1 << pmp
);
2444 if (pmp_map
& this_pmp
) {
2445 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2446 pmp_map
&= ~this_pmp
;
2447 ata_eh_analyze_ncq_error(link
);
2450 ata_port_freeze(ap
);
2452 sata_pmp_error_handler(ap
);
2455 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
2457 void __iomem
*port_mmio
= mv_ap_base(ap
);
2459 return readl(port_mmio
+ SATA_TESTCTL
) >> 16;
2462 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
2464 struct ata_eh_info
*ehi
;
2468 * Initialize EH info for PMPs which saw device errors
2470 ehi
= &ap
->link
.eh_info
;
2471 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2472 unsigned int this_pmp
= (1 << pmp
);
2473 if (pmp_map
& this_pmp
) {
2474 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2476 pmp_map
&= ~this_pmp
;
2477 ehi
= &link
->eh_info
;
2478 ata_ehi_clear_desc(ehi
);
2479 ata_ehi_push_desc(ehi
, "dev err");
2480 ehi
->err_mask
|= AC_ERR_DEV
;
2481 ehi
->action
|= ATA_EH_RESET
;
2482 ata_link_abort(link
);
2487 static int mv_req_q_empty(struct ata_port
*ap
)
2489 void __iomem
*port_mmio
= mv_ap_base(ap
);
2490 u32 in_ptr
, out_ptr
;
2492 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR
)
2493 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2494 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR
)
2495 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2496 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
2499 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
2501 struct mv_port_priv
*pp
= ap
->private_data
;
2503 unsigned int old_map
, new_map
;
2506 * Device error during FBS+NCQ operation:
2508 * Set a port flag to prevent further I/O being enqueued.
2509 * Leave the EDMA running to drain outstanding commands from this port.
2510 * Perform the post-mortem/EH only when all responses are complete.
2511 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2513 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
2514 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
2515 pp
->delayed_eh_pmp_map
= 0;
2517 old_map
= pp
->delayed_eh_pmp_map
;
2518 new_map
= old_map
| mv_get_err_pmp_map(ap
);
2520 if (old_map
!= new_map
) {
2521 pp
->delayed_eh_pmp_map
= new_map
;
2522 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
2524 failed_links
= hweight16(new_map
);
2527 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2528 __func__
, pp
->delayed_eh_pmp_map
,
2529 ap
->qc_active
, failed_links
,
2530 ap
->nr_active_links
);
2532 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
2533 mv_process_crpb_entries(ap
, pp
);
2536 ata_port_info(ap
, "%s: done\n", __func__
);
2537 return 1; /* handled */
2539 ata_port_info(ap
, "%s: waiting\n", __func__
);
2540 return 1; /* handled */
2543 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
2546 * Possible future enhancement:
2548 * FBS+non-NCQ operation is not yet implemented.
2549 * See related notes in mv_edma_cfg().
2551 * Device error during FBS+non-NCQ operation:
2553 * We need to snapshot the shadow registers for each failed command.
2554 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2556 return 0; /* not handled */
2559 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
2561 struct mv_port_priv
*pp
= ap
->private_data
;
2563 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
2564 return 0; /* EDMA was not active: not handled */
2565 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
2566 return 0; /* FBS was not active: not handled */
2568 if (!(edma_err_cause
& EDMA_ERR_DEV
))
2569 return 0; /* non DEV error: not handled */
2570 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
2571 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
2572 return 0; /* other problems: not handled */
2574 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
2576 * EDMA should NOT have self-disabled for this case.
2577 * If it did, then something is wrong elsewhere,
2578 * and we cannot handle it here.
2580 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2581 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2582 __func__
, edma_err_cause
, pp
->pp_flags
);
2583 return 0; /* not handled */
2585 return mv_handle_fbs_ncq_dev_err(ap
);
2588 * EDMA should have self-disabled for this case.
2589 * If it did not, then something is wrong elsewhere,
2590 * and we cannot handle it here.
2592 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
2593 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2594 __func__
, edma_err_cause
, pp
->pp_flags
);
2595 return 0; /* not handled */
2597 return mv_handle_fbs_non_ncq_dev_err(ap
);
2599 return 0; /* not handled */
2602 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
2604 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2605 char *when
= "idle";
2607 ata_ehi_clear_desc(ehi
);
2608 if (edma_was_enabled
) {
2609 when
= "EDMA enabled";
2611 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2612 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2615 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
2616 ehi
->err_mask
|= AC_ERR_OTHER
;
2617 ehi
->action
|= ATA_EH_RESET
;
2618 ata_port_freeze(ap
);
2622 * mv_err_intr - Handle error interrupts on the port
2623 * @ap: ATA channel to manipulate
2625 * Most cases require a full reset of the chip's state machine,
2626 * which also performs a COMRESET.
2627 * Also, if the port disabled DMA, update our cached copy to match.
2630 * Inherited from caller.
2632 static void mv_err_intr(struct ata_port
*ap
)
2634 void __iomem
*port_mmio
= mv_ap_base(ap
);
2635 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
2637 struct mv_port_priv
*pp
= ap
->private_data
;
2638 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2639 unsigned int action
= 0, err_mask
= 0;
2640 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2641 struct ata_queued_cmd
*qc
;
2645 * Read and clear the SError and err_cause bits.
2646 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2647 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2649 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
2650 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
2652 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2653 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2654 fis_cause
= readl(port_mmio
+ FIS_IRQ_CAUSE
);
2655 writelfl(~fis_cause
, port_mmio
+ FIS_IRQ_CAUSE
);
2657 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2659 if (edma_err_cause
& EDMA_ERR_DEV
) {
2661 * Device errors during FIS-based switching operation
2662 * require special handling.
2664 if (mv_handle_dev_err(ap
, edma_err_cause
))
2668 qc
= mv_get_active_qc(ap
);
2669 ata_ehi_clear_desc(ehi
);
2670 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
2671 edma_err_cause
, pp
->pp_flags
);
2673 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2674 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
2675 if (fis_cause
& FIS_IRQ_CAUSE_AN
) {
2676 u32 ec
= edma_err_cause
&
2677 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
2678 sata_async_notification(ap
);
2680 return; /* Just an AN; no need for the nukes */
2681 ata_ehi_push_desc(ehi
, "SDB notify");
2685 * All generations share these EDMA error cause bits:
2687 if (edma_err_cause
& EDMA_ERR_DEV
) {
2688 err_mask
|= AC_ERR_DEV
;
2689 action
|= ATA_EH_RESET
;
2690 ata_ehi_push_desc(ehi
, "dev error");
2692 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
2693 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
2694 EDMA_ERR_INTRL_PAR
)) {
2695 err_mask
|= AC_ERR_ATA_BUS
;
2696 action
|= ATA_EH_RESET
;
2697 ata_ehi_push_desc(ehi
, "parity error");
2699 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
2700 ata_ehi_hotplugged(ehi
);
2701 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
2702 "dev disconnect" : "dev connect");
2703 action
|= ATA_EH_RESET
;
2707 * Gen-I has a different SELF_DIS bit,
2708 * different FREEZE bits, and no SERR bit:
2710 if (IS_GEN_I(hpriv
)) {
2711 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
2712 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
2713 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2714 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2717 eh_freeze_mask
= EDMA_EH_FREEZE
;
2718 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2719 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2720 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2722 if (edma_err_cause
& EDMA_ERR_SERR
) {
2723 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
2724 err_mask
|= AC_ERR_ATA_BUS
;
2725 action
|= ATA_EH_RESET
;
2730 err_mask
= AC_ERR_OTHER
;
2731 action
|= ATA_EH_RESET
;
2734 ehi
->serror
|= serr
;
2735 ehi
->action
|= action
;
2738 qc
->err_mask
|= err_mask
;
2740 ehi
->err_mask
|= err_mask
;
2742 if (err_mask
== AC_ERR_DEV
) {
2744 * Cannot do ata_port_freeze() here,
2745 * because it would kill PIO access,
2746 * which is needed for further diagnosis.
2750 } else if (edma_err_cause
& eh_freeze_mask
) {
2752 * Note to self: ata_port_freeze() calls ata_port_abort()
2754 ata_port_freeze(ap
);
2761 ata_link_abort(qc
->dev
->link
);
2767 static bool mv_process_crpb_response(struct ata_port
*ap
,
2768 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
2771 u16 edma_status
= le16_to_cpu(response
->flags
);
2774 * edma_status from a response queue entry:
2775 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2776 * MSB is saved ATA status from command completion.
2779 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2782 * Error will be seen/handled by
2783 * mv_err_intr(). So do nothing at all here.
2788 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2789 if (!ac_err_mask(ata_status
))
2791 /* else: leave it for mv_err_intr() */
2795 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2797 void __iomem
*port_mmio
= mv_ap_base(ap
);
2798 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2800 bool work_done
= false;
2802 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2804 /* Get the hardware queue position index */
2805 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR
)
2806 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2808 /* Process new responses from since the last time we looked */
2809 while (in_index
!= pp
->resp_idx
) {
2811 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2813 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2815 if (IS_GEN_I(hpriv
)) {
2816 /* 50xx: no NCQ, only one command active at a time */
2817 tag
= ap
->link
.active_tag
;
2819 /* Gen II/IIE: get command tag from CRPB entry */
2820 tag
= le16_to_cpu(response
->id
) & 0x1f;
2822 if (mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
))
2823 done_mask
|= 1 << tag
;
2828 ata_qc_complete_multiple(ap
, ap
->qc_active
^ done_mask
);
2830 /* Update the software queue position index in hardware */
2831 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2832 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2833 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
2837 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2839 struct mv_port_priv
*pp
;
2840 int edma_was_enabled
;
2843 * Grab a snapshot of the EDMA_EN flag setting,
2844 * so that we have a consistent view for this port,
2845 * even if something we call of our routines changes it.
2847 pp
= ap
->private_data
;
2848 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2850 * Process completed CRPB response(s) before other events.
2852 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2853 mv_process_crpb_entries(ap
, pp
);
2854 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2855 mv_handle_fbs_ncq_dev_err(ap
);
2858 * Handle chip-reported errors, or continue on to handle PIO.
2860 if (unlikely(port_cause
& ERR_IRQ
)) {
2862 } else if (!edma_was_enabled
) {
2863 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2865 ata_bmdma_port_intr(ap
, qc
);
2867 mv_unexpected_intr(ap
, edma_was_enabled
);
2872 * mv_host_intr - Handle all interrupts on the given host controller
2873 * @host: host specific structure
2874 * @main_irq_cause: Main interrupt cause register for the chip.
2877 * Inherited from caller.
2879 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2881 struct mv_host_priv
*hpriv
= host
->private_data
;
2882 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2883 unsigned int handled
= 0, port
;
2885 /* If asserted, clear the "all ports" IRQ coalescing bit */
2886 if (main_irq_cause
& ALL_PORTS_COAL_DONE
)
2887 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
2889 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2890 struct ata_port
*ap
= host
->ports
[port
];
2891 unsigned int p
, shift
, hardport
, port_cause
;
2893 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2895 * Each hc within the host has its own hc_irq_cause register,
2896 * where the interrupting ports bits get ack'd.
2898 if (hardport
== 0) { /* first port on this hc ? */
2899 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2900 u32 port_mask
, ack_irqs
;
2902 * Skip this entire hc if nothing pending for any ports
2905 port
+= MV_PORTS_PER_HC
- 1;
2909 * We don't need/want to read the hc_irq_cause register,
2910 * because doing so hurts performance, and
2911 * main_irq_cause already gives us everything we need.
2913 * But we do have to *write* to the hc_irq_cause to ack
2914 * the ports that we are handling this time through.
2916 * This requires that we create a bitmap for those
2917 * ports which interrupted us, and use that bitmap
2918 * to ack (only) those ports via hc_irq_cause.
2921 if (hc_cause
& PORTS_0_3_COAL_DONE
)
2922 ack_irqs
= HC_COAL_IRQ
;
2923 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2924 if ((port
+ p
) >= hpriv
->n_ports
)
2926 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2927 if (hc_cause
& port_mask
)
2928 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2930 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2931 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE
);
2935 * Handle interrupts signalled for this port:
2937 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2939 mv_port_intr(ap
, port_cause
);
2944 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2946 struct mv_host_priv
*hpriv
= host
->private_data
;
2947 struct ata_port
*ap
;
2948 struct ata_queued_cmd
*qc
;
2949 struct ata_eh_info
*ehi
;
2950 unsigned int i
, err_mask
, printed
= 0;
2953 err_cause
= readl(mmio
+ hpriv
->irq_cause_offset
);
2955 dev_err(host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause
);
2957 DPRINTK("All regs @ PCI error\n");
2958 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2960 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
2962 for (i
= 0; i
< host
->n_ports
; i
++) {
2963 ap
= host
->ports
[i
];
2964 if (!ata_link_offline(&ap
->link
)) {
2965 ehi
= &ap
->link
.eh_info
;
2966 ata_ehi_clear_desc(ehi
);
2968 ata_ehi_push_desc(ehi
,
2969 "PCI err cause 0x%08x", err_cause
);
2970 err_mask
= AC_ERR_HOST_BUS
;
2971 ehi
->action
= ATA_EH_RESET
;
2972 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2974 qc
->err_mask
|= err_mask
;
2976 ehi
->err_mask
|= err_mask
;
2978 ata_port_freeze(ap
);
2981 return 1; /* handled */
2985 * mv_interrupt - Main interrupt event handler
2987 * @dev_instance: private data; in this case the host structure
2989 * Read the read only register to determine if any host
2990 * controllers have pending interrupts. If so, call lower level
2991 * routine to handle. Also check for PCI errors which are only
2995 * This routine holds the host lock while processing pending
2998 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
3000 struct ata_host
*host
= dev_instance
;
3001 struct mv_host_priv
*hpriv
= host
->private_data
;
3002 unsigned int handled
= 0;
3003 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
3004 u32 main_irq_cause
, pending_irqs
;
3006 spin_lock(&host
->lock
);
3008 /* for MSI: block new interrupts while in here */
3010 mv_write_main_irq_mask(0, hpriv
);
3012 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
3013 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
3015 * Deal with cases where we either have nothing pending, or have read
3016 * a bogus register value which can indicate HW removal or PCI fault.
3018 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
3019 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
3020 handled
= mv_pci_error(host
, hpriv
->base
);
3022 handled
= mv_host_intr(host
, pending_irqs
);
3025 /* for MSI: unmask; interrupt cause bits will retrigger now */
3027 mv_write_main_irq_mask(hpriv
->main_irq_mask
, hpriv
);
3029 spin_unlock(&host
->lock
);
3031 return IRQ_RETVAL(handled
);
3034 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
3038 switch (sc_reg_in
) {
3042 ofs
= sc_reg_in
* sizeof(u32
);
3051 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
3053 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3054 void __iomem
*mmio
= hpriv
->base
;
3055 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3056 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3058 if (ofs
!= 0xffffffffU
) {
3059 *val
= readl(addr
+ ofs
);
3065 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
3067 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3068 void __iomem
*mmio
= hpriv
->base
;
3069 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3070 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3072 if (ofs
!= 0xffffffffU
) {
3073 writelfl(val
, addr
+ ofs
);
3079 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3081 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3084 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
3087 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3089 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3092 mv_reset_pci_bus(host
, mmio
);
3095 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3097 writel(0x0fcfffff, mmio
+ FLASH_CTL
);
3100 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3103 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
3106 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3108 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
3109 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
3112 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3116 writel(0, mmio
+ GPIO_PORT_CTL
);
3118 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3120 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3122 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3125 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3128 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
3129 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3131 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
3134 tmp
= readl(phy_mmio
+ MV5_LTMODE
);
3136 writel(tmp
, phy_mmio
+ MV5_LTMODE
);
3138 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
3141 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
3144 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3146 tmp
|= hpriv
->signal
[port
].pre
;
3147 tmp
|= hpriv
->signal
[port
].amps
;
3148 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
3153 #define ZERO(reg) writel(0, port_mmio + (reg))
3154 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3157 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3159 mv_reset_channel(hpriv
, mmio
, port
);
3161 ZERO(0x028); /* command */
3162 writel(0x11f, port_mmio
+ EDMA_CFG
);
3163 ZERO(0x004); /* timer */
3164 ZERO(0x008); /* irq err cause */
3165 ZERO(0x00c); /* irq err mask */
3166 ZERO(0x010); /* rq bah */
3167 ZERO(0x014); /* rq inp */
3168 ZERO(0x018); /* rq outp */
3169 ZERO(0x01c); /* respq bah */
3170 ZERO(0x024); /* respq outp */
3171 ZERO(0x020); /* respq inp */
3172 ZERO(0x02c); /* test control */
3173 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
3177 #define ZERO(reg) writel(0, hc_mmio + (reg))
3178 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3181 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3189 tmp
= readl(hc_mmio
+ 0x20);
3192 writel(tmp
, hc_mmio
+ 0x20);
3196 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3199 unsigned int hc
, port
;
3201 for (hc
= 0; hc
< n_hc
; hc
++) {
3202 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
3203 mv5_reset_hc_port(hpriv
, mmio
,
3204 (hc
* MV_PORTS_PER_HC
) + port
);
3206 mv5_reset_one_hc(hpriv
, mmio
, hc
);
3213 #define ZERO(reg) writel(0, mmio + (reg))
3214 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
3216 struct mv_host_priv
*hpriv
= host
->private_data
;
3219 tmp
= readl(mmio
+ MV_PCI_MODE
);
3221 writel(tmp
, mmio
+ MV_PCI_MODE
);
3223 ZERO(MV_PCI_DISC_TIMER
);
3224 ZERO(MV_PCI_MSI_TRIGGER
);
3225 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
3226 ZERO(MV_PCI_SERR_MASK
);
3227 ZERO(hpriv
->irq_cause_offset
);
3228 ZERO(hpriv
->irq_mask_offset
);
3229 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
3230 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
3231 ZERO(MV_PCI_ERR_ATTRIBUTE
);
3232 ZERO(MV_PCI_ERR_COMMAND
);
3236 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3240 mv5_reset_flash(hpriv
, mmio
);
3242 tmp
= readl(mmio
+ GPIO_PORT_CTL
);
3244 tmp
|= (1 << 5) | (1 << 6);
3245 writel(tmp
, mmio
+ GPIO_PORT_CTL
);
3249 * mv6_reset_hc - Perform the 6xxx global soft reset
3250 * @mmio: base address of the HBA
3252 * This routine only applies to 6xxx parts.
3255 * Inherited from caller.
3257 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3260 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS
;
3264 /* Following procedure defined in PCI "main command and status
3268 writel(t
| STOP_PCI_MASTER
, reg
);
3270 for (i
= 0; i
< 1000; i
++) {
3273 if (PCI_MASTER_EMPTY
& t
)
3276 if (!(PCI_MASTER_EMPTY
& t
)) {
3277 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
3285 writel(t
| GLOB_SFT_RST
, reg
);
3288 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
3290 if (!(GLOB_SFT_RST
& t
)) {
3291 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
3296 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3299 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
3302 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
3304 if (GLOB_SFT_RST
& t
) {
3305 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
3312 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3315 void __iomem
*port_mmio
;
3318 tmp
= readl(mmio
+ RESET_CFG
);
3319 if ((tmp
& (1 << 0)) == 0) {
3320 hpriv
->signal
[idx
].amps
= 0x7 << 8;
3321 hpriv
->signal
[idx
].pre
= 0x1 << 5;
3325 port_mmio
= mv_port_base(mmio
, idx
);
3326 tmp
= readl(port_mmio
+ PHY_MODE2
);
3328 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3329 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3332 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3334 writel(0x00000060, mmio
+ GPIO_PORT_CTL
);
3337 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3340 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3342 u32 hp_flags
= hpriv
->hp_flags
;
3344 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3346 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3349 if (fix_phy_mode2
) {
3350 m2
= readl(port_mmio
+ PHY_MODE2
);
3353 writel(m2
, port_mmio
+ PHY_MODE2
);
3357 m2
= readl(port_mmio
+ PHY_MODE2
);
3358 m2
&= ~((1 << 16) | (1 << 31));
3359 writel(m2
, port_mmio
+ PHY_MODE2
);
3365 * Gen-II/IIe PHY_MODE3 errata RM#2:
3366 * Achieves better receiver noise performance than the h/w default:
3368 m3
= readl(port_mmio
+ PHY_MODE3
);
3369 m3
= (m3
& 0x1f) | (0x5555601 << 5);
3371 /* Guideline 88F5182 (GL# SATA-S11) */
3375 if (fix_phy_mode4
) {
3376 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
3378 * Enforce reserved-bit restrictions on GenIIe devices only.
3379 * For earlier chipsets, force only the internal config field
3380 * (workaround for errata FEr SATA#10 part 1).
3382 if (IS_GEN_IIE(hpriv
))
3383 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
3385 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
3386 writel(m4
, port_mmio
+ PHY_MODE4
);
3389 * Workaround for 60x1-B2 errata SATA#13:
3390 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3391 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3392 * Or ensure we use writelfl() when writing PHY_MODE4.
3394 writel(m3
, port_mmio
+ PHY_MODE3
);
3396 /* Revert values of pre-emphasis and signal amps to the saved ones */
3397 m2
= readl(port_mmio
+ PHY_MODE2
);
3399 m2
&= ~MV_M2_PREAMP_MASK
;
3400 m2
|= hpriv
->signal
[port
].amps
;
3401 m2
|= hpriv
->signal
[port
].pre
;
3404 /* according to mvSata 3.6.1, some IIE values are fixed */
3405 if (IS_GEN_IIE(hpriv
)) {
3410 writel(m2
, port_mmio
+ PHY_MODE2
);
3413 /* TODO: use the generic LED interface to configure the SATA Presence */
3414 /* & Acitivy LEDs on the board */
3415 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
3421 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3424 void __iomem
*port_mmio
;
3427 port_mmio
= mv_port_base(mmio
, idx
);
3428 tmp
= readl(port_mmio
+ PHY_MODE2
);
3430 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3431 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3435 #define ZERO(reg) writel(0, port_mmio + (reg))
3436 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
3437 void __iomem
*mmio
, unsigned int port
)
3439 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3441 mv_reset_channel(hpriv
, mmio
, port
);
3443 ZERO(0x028); /* command */
3444 writel(0x101f, port_mmio
+ EDMA_CFG
);
3445 ZERO(0x004); /* timer */
3446 ZERO(0x008); /* irq err cause */
3447 ZERO(0x00c); /* irq err mask */
3448 ZERO(0x010); /* rq bah */
3449 ZERO(0x014); /* rq inp */
3450 ZERO(0x018); /* rq outp */
3451 ZERO(0x01c); /* respq bah */
3452 ZERO(0x024); /* respq outp */
3453 ZERO(0x020); /* respq inp */
3454 ZERO(0x02c); /* test control */
3455 writel(0x800, port_mmio
+ EDMA_IORDY_TMOUT
);
3460 #define ZERO(reg) writel(0, hc_mmio + (reg))
3461 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
3464 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
3474 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
3475 void __iomem
*mmio
, unsigned int n_hc
)
3479 for (port
= 0; port
< hpriv
->n_ports
; port
++)
3480 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
3482 mv_soc_reset_one_hc(hpriv
, mmio
);
3487 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
3493 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3498 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
3499 void __iomem
*mmio
, unsigned int port
)
3501 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3504 reg
= readl(port_mmio
+ PHY_MODE3
);
3505 reg
&= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3507 reg
&= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3509 writel(reg
, port_mmio
+ PHY_MODE3
);
3511 reg
= readl(port_mmio
+ PHY_MODE4
);
3512 reg
&= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3514 writel(reg
, port_mmio
+ PHY_MODE4
);
3516 reg
= readl(port_mmio
+ PHY_MODE9_GEN2
);
3517 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3519 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3520 writel(reg
, port_mmio
+ PHY_MODE9_GEN2
);
3522 reg
= readl(port_mmio
+ PHY_MODE9_GEN1
);
3523 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3525 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3526 writel(reg
, port_mmio
+ PHY_MODE9_GEN1
);
3530 * soc_is_65 - check if the soc is 65 nano device
3532 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3533 * register, this register should contain non-zero value and it exists only
3534 * in the 65 nano devices, when reading it from older devices we get 0.
3536 static bool soc_is_65n(struct mv_host_priv
*hpriv
)
3538 void __iomem
*port0_mmio
= mv_port_base(hpriv
->base
, 0);
3540 if (readl(port0_mmio
+ PHYCFG_OFS
))
3545 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
3547 u32 ifcfg
= readl(port_mmio
+ SATA_IFCFG
);
3549 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
3551 ifcfg
|= (1 << 7); /* enable gen2i speed */
3552 writelfl(ifcfg
, port_mmio
+ SATA_IFCFG
);
3555 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3556 unsigned int port_no
)
3558 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
3561 * The datasheet warns against setting EDMA_RESET when EDMA is active
3562 * (but doesn't say what the problem might be). So we first try
3563 * to disable the EDMA engine before doing the EDMA_RESET operation.
3565 mv_stop_edma_engine(port_mmio
);
3566 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3568 if (!IS_GEN_I(hpriv
)) {
3569 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3570 mv_setup_ifcfg(port_mmio
, 1);
3573 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3574 * link, and physical layers. It resets all SATA interface registers
3575 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3577 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3578 udelay(25); /* allow reset propagation */
3579 writelfl(0, port_mmio
+ EDMA_CMD
);
3581 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
3583 if (IS_GEN_I(hpriv
))
3587 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
3589 if (sata_pmp_supported(ap
)) {
3590 void __iomem
*port_mmio
= mv_ap_base(ap
);
3591 u32 reg
= readl(port_mmio
+ SATA_IFCTL
);
3592 int old
= reg
& 0xf;
3595 reg
= (reg
& ~0xf) | pmp
;
3596 writelfl(reg
, port_mmio
+ SATA_IFCTL
);
3601 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
3602 unsigned long deadline
)
3604 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3605 return sata_std_hardreset(link
, class, deadline
);
3608 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
3609 unsigned long deadline
)
3611 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3612 return ata_sff_softreset(link
, class, deadline
);
3615 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
3616 unsigned long deadline
)
3618 struct ata_port
*ap
= link
->ap
;
3619 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3620 struct mv_port_priv
*pp
= ap
->private_data
;
3621 void __iomem
*mmio
= hpriv
->base
;
3622 int rc
, attempts
= 0, extra
= 0;
3626 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
3627 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
3629 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
3631 /* Workaround for errata FEr SATA#10 (part 2) */
3633 const unsigned long *timing
=
3634 sata_ehc_deb_timing(&link
->eh_context
);
3636 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
3638 rc
= online
? -EAGAIN
: rc
;
3641 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3642 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
3643 /* Force 1.5gb/s link speed and try again */
3644 mv_setup_ifcfg(mv_ap_base(ap
), 0);
3645 if (time_after(jiffies
+ HZ
, deadline
))
3646 extra
= HZ
; /* only extend it once, max */
3648 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
3649 mv_save_cached_regs(ap
);
3650 mv_edma_cfg(ap
, 0, 0);
3655 static void mv_eh_freeze(struct ata_port
*ap
)
3658 mv_enable_port_irqs(ap
, 0);
3661 static void mv_eh_thaw(struct ata_port
*ap
)
3663 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3664 unsigned int port
= ap
->port_no
;
3665 unsigned int hardport
= mv_hardport_from_port(port
);
3666 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
3667 void __iomem
*port_mmio
= mv_ap_base(ap
);
3670 /* clear EDMA errors on this port */
3671 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3673 /* clear pending irq events */
3674 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
3675 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
3677 mv_enable_port_irqs(ap
, ERR_IRQ
);
3681 * mv_port_init - Perform some early initialization on a single port.
3682 * @port: libata data structure storing shadow register addresses
3683 * @port_mmio: base address of the port
3685 * Initialize shadow register mmio addresses, clear outstanding
3686 * interrupts on the port, and unmask interrupts for the future
3687 * start of the port.
3690 * Inherited from caller.
3692 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
3694 void __iomem
*serr
, *shd_base
= port_mmio
+ SHD_BLK
;
3696 /* PIO related setup
3698 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
3700 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
3701 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
3702 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
3703 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
3704 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
3705 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
3707 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
3708 /* special case: control/altstatus doesn't have ATA_REG_ address */
3709 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST
;
3711 /* Clear any currently outstanding port interrupt conditions */
3712 serr
= port_mmio
+ mv_scr_offset(SCR_ERROR
);
3713 writelfl(readl(serr
), serr
);
3714 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3716 /* unmask all non-transient EDMA error interrupts */
3717 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK
);
3719 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3720 readl(port_mmio
+ EDMA_CFG
),
3721 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
),
3722 readl(port_mmio
+ EDMA_ERR_IRQ_MASK
));
3725 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
3727 struct mv_host_priv
*hpriv
= host
->private_data
;
3728 void __iomem
*mmio
= hpriv
->base
;
3731 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
3732 return 0; /* not PCI-X capable */
3733 reg
= readl(mmio
+ MV_PCI_MODE
);
3734 if ((reg
& MV_PCI_MODE_MASK
) == 0)
3735 return 0; /* conventional PCI mode */
3736 return 1; /* chip is in PCI-X mode */
3739 static int mv_pci_cut_through_okay(struct ata_host
*host
)
3741 struct mv_host_priv
*hpriv
= host
->private_data
;
3742 void __iomem
*mmio
= hpriv
->base
;
3745 if (!mv_in_pcix_mode(host
)) {
3746 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3747 if (reg
& MV_PCI_COMMAND_MRDTRIG
)
3748 return 0; /* not okay */
3750 return 1; /* okay */
3753 static void mv_60x1b2_errata_pci7(struct ata_host
*host
)
3755 struct mv_host_priv
*hpriv
= host
->private_data
;
3756 void __iomem
*mmio
= hpriv
->base
;
3758 /* workaround for 60x1-B2 errata PCI#7 */
3759 if (mv_in_pcix_mode(host
)) {
3760 u32 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3761 writelfl(reg
& ~MV_PCI_COMMAND_MWRCOM
, mmio
+ MV_PCI_COMMAND
);
3765 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
3767 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3768 struct mv_host_priv
*hpriv
= host
->private_data
;
3769 u32 hp_flags
= hpriv
->hp_flags
;
3771 switch (board_idx
) {
3773 hpriv
->ops
= &mv5xxx_ops
;
3774 hp_flags
|= MV_HP_GEN_I
;
3776 switch (pdev
->revision
) {
3778 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3781 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3784 dev_warn(&pdev
->dev
,
3785 "Applying 50XXB2 workarounds to unknown rev\n");
3786 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3793 hpriv
->ops
= &mv5xxx_ops
;
3794 hp_flags
|= MV_HP_GEN_I
;
3796 switch (pdev
->revision
) {
3798 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3801 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3804 dev_warn(&pdev
->dev
,
3805 "Applying B2 workarounds to unknown rev\n");
3806 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3813 hpriv
->ops
= &mv6xxx_ops
;
3814 hp_flags
|= MV_HP_GEN_II
;
3816 switch (pdev
->revision
) {
3818 mv_60x1b2_errata_pci7(host
);
3819 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3822 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3825 dev_warn(&pdev
->dev
,
3826 "Applying B2 workarounds to unknown rev\n");
3827 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3833 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
3834 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
3835 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
3838 * Highpoint RocketRAID PCIe 23xx series cards:
3840 * Unconfigured drives are treated as "Legacy"
3841 * by the BIOS, and it overwrites sector 8 with
3842 * a "Lgcy" metadata block prior to Linux boot.
3844 * Configured drives (RAID or JBOD) leave sector 8
3845 * alone, but instead overwrite a high numbered
3846 * sector for the RAID metadata. This sector can
3847 * be determined exactly, by truncating the physical
3848 * drive capacity to a nice even GB value.
3850 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3852 * Warn the user, lest they think we're just buggy.
3854 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3855 " BIOS CORRUPTS DATA on all attached drives,"
3856 " regardless of if/how they are configured."
3858 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3859 " use sectors 8-9 on \"Legacy\" drives,"
3860 " and avoid the final two gigabytes on"
3861 " all RocketRAID BIOS initialized drives.\n");
3865 hpriv
->ops
= &mv6xxx_ops
;
3866 hp_flags
|= MV_HP_GEN_IIE
;
3867 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3868 hp_flags
|= MV_HP_CUT_THROUGH
;
3870 switch (pdev
->revision
) {
3871 case 0x2: /* Rev.B0: the first/only public release */
3872 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3875 dev_warn(&pdev
->dev
,
3876 "Applying 60X1C0 workarounds to unknown rev\n");
3877 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3882 if (soc_is_65n(hpriv
))
3883 hpriv
->ops
= &mv_soc_65n_ops
;
3885 hpriv
->ops
= &mv_soc_ops
;
3886 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3887 MV_HP_ERRATA_60X1C0
;
3891 dev_err(host
->dev
, "BUG: invalid board index %u\n", board_idx
);
3895 hpriv
->hp_flags
= hp_flags
;
3896 if (hp_flags
& MV_HP_PCIE
) {
3897 hpriv
->irq_cause_offset
= PCIE_IRQ_CAUSE
;
3898 hpriv
->irq_mask_offset
= PCIE_IRQ_MASK
;
3899 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3901 hpriv
->irq_cause_offset
= PCI_IRQ_CAUSE
;
3902 hpriv
->irq_mask_offset
= PCI_IRQ_MASK
;
3903 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3910 * mv_init_host - Perform some early initialization of the host.
3911 * @host: ATA host to initialize
3913 * If possible, do an early global reset of the host. Then do
3914 * our port init and clear/unmask all/relevant host interrupts.
3917 * Inherited from caller.
3919 static int mv_init_host(struct ata_host
*host
)
3921 int rc
= 0, n_hc
, port
, hc
;
3922 struct mv_host_priv
*hpriv
= host
->private_data
;
3923 void __iomem
*mmio
= hpriv
->base
;
3925 rc
= mv_chip_id(host
, hpriv
->board_idx
);
3929 if (IS_SOC(hpriv
)) {
3930 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE
;
3931 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK
;
3933 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE
;
3934 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK
;
3937 /* initialize shadow irq mask with register's value */
3938 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3940 /* global interrupt mask: 0 == mask everything */
3941 mv_set_main_irq_mask(host
, ~0, 0);
3943 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3945 for (port
= 0; port
< host
->n_ports
; port
++)
3946 if (hpriv
->ops
->read_preamp
)
3947 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3949 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3953 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3954 hpriv
->ops
->reset_bus(host
, mmio
);
3955 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3957 for (port
= 0; port
< host
->n_ports
; port
++) {
3958 struct ata_port
*ap
= host
->ports
[port
];
3959 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3961 mv_port_init(&ap
->ioaddr
, port_mmio
);
3964 for (hc
= 0; hc
< n_hc
; hc
++) {
3965 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3967 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3968 "(before clear)=0x%08x\n", hc
,
3969 readl(hc_mmio
+ HC_CFG
),
3970 readl(hc_mmio
+ HC_IRQ_CAUSE
));
3972 /* Clear any currently outstanding hc interrupt conditions */
3973 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE
);
3976 if (!IS_SOC(hpriv
)) {
3977 /* Clear any currently outstanding host interrupt conditions */
3978 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
3980 /* and unmask interrupt generation for host regs */
3981 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_offset
);
3985 * enable only global host interrupts for now.
3986 * The per-port interrupts get done later as ports are set up.
3988 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3989 mv_set_irq_coalescing(host
, irq_coalescing_io_count
,
3990 irq_coalescing_usecs
);
3995 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3997 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3999 if (!hpriv
->crqb_pool
)
4002 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
4004 if (!hpriv
->crpb_pool
)
4007 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
4009 if (!hpriv
->sg_tbl_pool
)
4015 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
4016 const struct mbus_dram_target_info
*dram
)
4020 for (i
= 0; i
< 4; i
++) {
4021 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
4022 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
4025 for (i
= 0; i
< dram
->num_cs
; i
++) {
4026 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4028 writel(((cs
->size
- 1) & 0xffff0000) |
4029 (cs
->mbus_attr
<< 8) |
4030 (dram
->mbus_dram_target_id
<< 4) | 1,
4031 hpriv
->base
+ WINDOW_CTRL(i
));
4032 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
4037 * mv_platform_probe - handle a positive probe of an soc Marvell
4039 * @pdev: platform device found
4042 * Inherited from caller.
4044 static int mv_platform_probe(struct platform_device
*pdev
)
4046 const struct mv_sata_platform_data
*mv_platform_data
;
4047 const struct mbus_dram_target_info
*dram
;
4048 const struct ata_port_info
*ppi
[] =
4049 { &mv_port_info
[chip_soc
], NULL
};
4050 struct ata_host
*host
;
4051 struct mv_host_priv
*hpriv
;
4052 struct resource
*res
;
4053 int n_ports
= 0, irq
= 0;
4057 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4060 * Simple resource validation ..
4062 if (unlikely(pdev
->num_resources
!= 2)) {
4063 dev_err(&pdev
->dev
, "invalid number of resources\n");
4068 * Get the register base first
4070 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4075 if (pdev
->dev
.of_node
) {
4076 of_property_read_u32(pdev
->dev
.of_node
, "nr-ports", &n_ports
);
4077 irq
= irq_of_parse_and_map(pdev
->dev
.of_node
, 0);
4079 mv_platform_data
= dev_get_platdata(&pdev
->dev
);
4080 n_ports
= mv_platform_data
->n_ports
;
4081 irq
= platform_get_irq(pdev
, 0);
4084 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4085 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4087 if (!host
|| !hpriv
)
4089 hpriv
->port_clks
= devm_kzalloc(&pdev
->dev
,
4090 sizeof(struct clk
*) * n_ports
,
4092 if (!hpriv
->port_clks
)
4094 host
->private_data
= hpriv
;
4095 hpriv
->n_ports
= n_ports
;
4096 hpriv
->board_idx
= chip_soc
;
4099 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
4100 resource_size(res
));
4101 hpriv
->base
-= SATAHC0_REG_BASE
;
4103 hpriv
->clk
= clk_get(&pdev
->dev
, NULL
);
4104 if (IS_ERR(hpriv
->clk
))
4105 dev_notice(&pdev
->dev
, "cannot get optional clkdev\n");
4107 clk_prepare_enable(hpriv
->clk
);
4109 for (port
= 0; port
< n_ports
; port
++) {
4110 char port_number
[16];
4111 sprintf(port_number
, "%d", port
);
4112 hpriv
->port_clks
[port
] = clk_get(&pdev
->dev
, port_number
);
4113 if (!IS_ERR(hpriv
->port_clks
[port
]))
4114 clk_prepare_enable(hpriv
->port_clks
[port
]);
4118 * (Re-)program MBUS remapping windows if we are asked to.
4120 dram
= mv_mbus_dram_info();
4122 mv_conf_mbus_windows(hpriv
, dram
);
4124 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4129 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4130 * updated in the LP_PHY_CTL register.
4132 if (pdev
->dev
.of_node
&&
4133 of_device_is_compatible(pdev
->dev
.of_node
,
4134 "marvell,armada-370-sata"))
4135 hpriv
->hp_flags
|= MV_HP_FIX_LP_PHY_CTL
;
4137 /* initialize adapter */
4138 rc
= mv_init_host(host
);
4142 dev_info(&pdev
->dev
, "slots %u ports %d\n",
4143 (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
);
4145 rc
= ata_host_activate(host
, irq
, mv_interrupt
, IRQF_SHARED
, &mv6_sht
);
4150 if (!IS_ERR(hpriv
->clk
)) {
4151 clk_disable_unprepare(hpriv
->clk
);
4152 clk_put(hpriv
->clk
);
4154 for (port
= 0; port
< n_ports
; port
++) {
4155 if (!IS_ERR(hpriv
->port_clks
[port
])) {
4156 clk_disable_unprepare(hpriv
->port_clks
[port
]);
4157 clk_put(hpriv
->port_clks
[port
]);
4166 * mv_platform_remove - unplug a platform interface
4167 * @pdev: platform device
4169 * A platform bus SATA device has been unplugged. Perform the needed
4170 * cleanup. Also called on module unload for any active devices.
4172 static int mv_platform_remove(struct platform_device
*pdev
)
4174 struct ata_host
*host
= platform_get_drvdata(pdev
);
4175 struct mv_host_priv
*hpriv
= host
->private_data
;
4177 ata_host_detach(host
);
4179 if (!IS_ERR(hpriv
->clk
)) {
4180 clk_disable_unprepare(hpriv
->clk
);
4181 clk_put(hpriv
->clk
);
4183 for (port
= 0; port
< host
->n_ports
; port
++) {
4184 if (!IS_ERR(hpriv
->port_clks
[port
])) {
4185 clk_disable_unprepare(hpriv
->port_clks
[port
]);
4186 clk_put(hpriv
->port_clks
[port
]);
4193 static int mv_platform_suspend(struct platform_device
*pdev
, pm_message_t state
)
4195 struct ata_host
*host
= platform_get_drvdata(pdev
);
4197 return ata_host_suspend(host
, state
);
4202 static int mv_platform_resume(struct platform_device
*pdev
)
4204 struct ata_host
*host
= platform_get_drvdata(pdev
);
4205 const struct mbus_dram_target_info
*dram
;
4209 struct mv_host_priv
*hpriv
= host
->private_data
;
4212 * (Re-)program MBUS remapping windows if we are asked to.
4214 dram
= mv_mbus_dram_info();
4216 mv_conf_mbus_windows(hpriv
, dram
);
4218 /* initialize adapter */
4219 ret
= mv_init_host(host
);
4221 printk(KERN_ERR DRV_NAME
": Error during HW init\n");
4224 ata_host_resume(host
);
4230 #define mv_platform_suspend NULL
4231 #define mv_platform_resume NULL
4235 static struct of_device_id mv_sata_dt_ids
[] = {
4236 { .compatible
= "marvell,armada-370-sata", },
4237 { .compatible
= "marvell,orion-sata", },
4240 MODULE_DEVICE_TABLE(of
, mv_sata_dt_ids
);
4243 static struct platform_driver mv_platform_driver
= {
4244 .probe
= mv_platform_probe
,
4245 .remove
= mv_platform_remove
,
4246 .suspend
= mv_platform_suspend
,
4247 .resume
= mv_platform_resume
,
4250 .owner
= THIS_MODULE
,
4251 .of_match_table
= of_match_ptr(mv_sata_dt_ids
),
4257 static int mv_pci_init_one(struct pci_dev
*pdev
,
4258 const struct pci_device_id
*ent
);
4260 static int mv_pci_device_resume(struct pci_dev
*pdev
);
4264 static struct pci_driver mv_pci_driver
= {
4266 .id_table
= mv_pci_tbl
,
4267 .probe
= mv_pci_init_one
,
4268 .remove
= ata_pci_remove_one
,
4270 .suspend
= ata_pci_device_suspend
,
4271 .resume
= mv_pci_device_resume
,
4276 /* move to PCI layer or libata core? */
4277 static int pci_go_64(struct pci_dev
*pdev
)
4281 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4282 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4284 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4287 "64-bit DMA enable failed\n");
4292 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4294 dev_err(&pdev
->dev
, "32-bit DMA enable failed\n");
4297 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4300 "32-bit consistent DMA enable failed\n");
4309 * mv_print_info - Dump key info to kernel log for perusal.
4310 * @host: ATA host to print info about
4312 * FIXME: complete this.
4315 * Inherited from caller.
4317 static void mv_print_info(struct ata_host
*host
)
4319 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
4320 struct mv_host_priv
*hpriv
= host
->private_data
;
4322 const char *scc_s
, *gen
;
4324 /* Use this to determine the HW stepping of the chip so we know
4325 * what errata to workaround
4327 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
4330 else if (scc
== 0x01)
4335 if (IS_GEN_I(hpriv
))
4337 else if (IS_GEN_II(hpriv
))
4339 else if (IS_GEN_IIE(hpriv
))
4344 dev_info(&pdev
->dev
, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4345 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
4346 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
4350 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4351 * @pdev: PCI device found
4352 * @ent: PCI device ID entry for the matched host
4355 * Inherited from caller.
4357 static int mv_pci_init_one(struct pci_dev
*pdev
,
4358 const struct pci_device_id
*ent
)
4360 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
4361 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
4362 struct ata_host
*host
;
4363 struct mv_host_priv
*hpriv
;
4364 int n_ports
, port
, rc
;
4366 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4369 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
4371 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4372 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4373 if (!host
|| !hpriv
)
4375 host
->private_data
= hpriv
;
4376 hpriv
->n_ports
= n_ports
;
4377 hpriv
->board_idx
= board_idx
;
4379 /* acquire resources */
4380 rc
= pcim_enable_device(pdev
);
4384 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
4386 pcim_pin_device(pdev
);
4389 host
->iomap
= pcim_iomap_table(pdev
);
4390 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
4392 rc
= pci_go_64(pdev
);
4396 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4400 for (port
= 0; port
< host
->n_ports
; port
++) {
4401 struct ata_port
*ap
= host
->ports
[port
];
4402 void __iomem
*port_mmio
= mv_port_base(hpriv
->base
, port
);
4403 unsigned int offset
= port_mmio
- hpriv
->base
;
4405 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
4406 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
4409 /* initialize adapter */
4410 rc
= mv_init_host(host
);
4414 /* Enable message-switched interrupts, if requested */
4415 if (msi
&& pci_enable_msi(pdev
) == 0)
4416 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
4418 mv_dump_pci_cfg(pdev
, 0x68);
4419 mv_print_info(host
);
4421 pci_set_master(pdev
);
4422 pci_try_set_mwi(pdev
);
4423 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
4424 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
4428 static int mv_pci_device_resume(struct pci_dev
*pdev
)
4430 struct ata_host
*host
= pci_get_drvdata(pdev
);
4433 rc
= ata_pci_device_do_resume(pdev
);
4437 /* initialize adapter */
4438 rc
= mv_init_host(host
);
4442 ata_host_resume(host
);
4449 static int __init
mv_init(void)
4453 rc
= pci_register_driver(&mv_pci_driver
);
4457 rc
= platform_driver_register(&mv_platform_driver
);
4461 pci_unregister_driver(&mv_pci_driver
);
4466 static void __exit
mv_exit(void)
4469 pci_unregister_driver(&mv_pci_driver
);
4471 platform_driver_unregister(&mv_platform_driver
);
4474 MODULE_AUTHOR("Brett Russ");
4475 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4476 MODULE_LICENSE("GPL");
4477 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
4478 MODULE_VERSION(DRV_VERSION
);
4479 MODULE_ALIAS("platform:" DRV_NAME
);
4481 module_init(mv_init
);
4482 module_exit(mv_exit
);