2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
49 #define NVME_MINORS 64
50 #define ADMIN_TIMEOUT (60 * HZ)
52 static int nvme_major
;
53 module_param(nvme_major
, int, 0);
55 static int use_threaded_interrupts
;
56 module_param(use_threaded_interrupts
, int, 0);
58 static DEFINE_SPINLOCK(dev_list_lock
);
59 static LIST_HEAD(dev_list
);
60 static struct task_struct
*nvme_thread
;
63 * An NVM Express queue. Each device has at least two (one for admin
64 * commands and one for I/O commands).
67 struct device
*q_dmadev
;
70 struct nvme_command
*sq_cmds
;
71 volatile struct nvme_completion
*cqes
;
72 dma_addr_t sq_dma_addr
;
73 dma_addr_t cq_dma_addr
;
74 wait_queue_head_t sq_full
;
75 wait_queue_t sq_cong_wait
;
76 struct bio_list sq_cong
;
86 unsigned long cmdid_data
[];
90 * Check we didin't inadvertently grow the command struct
92 static inline void _nvme_check_size(void)
94 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
97 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
98 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
99 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
100 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
101 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != 4096);
102 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != 4096);
103 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
104 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
107 typedef void (*nvme_completion_fn
)(struct nvme_dev
*, void *,
108 struct nvme_completion
*);
110 struct nvme_cmd_info
{
111 nvme_completion_fn fn
;
113 unsigned long timeout
;
116 static struct nvme_cmd_info
*nvme_cmd_info(struct nvme_queue
*nvmeq
)
118 return (void *)&nvmeq
->cmdid_data
[BITS_TO_LONGS(nvmeq
->q_depth
)];
121 static unsigned nvme_queue_extra(int depth
)
123 return DIV_ROUND_UP(depth
, 8) + (depth
* sizeof(struct nvme_cmd_info
));
127 * alloc_cmdid() - Allocate a Command ID
128 * @nvmeq: The queue that will be used for this command
129 * @ctx: A pointer that will be passed to the handler
130 * @handler: The function to call on completion
132 * Allocate a Command ID for a queue. The data passed in will
133 * be passed to the completion handler. This is implemented by using
134 * the bottom two bits of the ctx pointer to store the handler ID.
135 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
136 * We can change this if it becomes a problem.
138 * May be called with local interrupts disabled and the q_lock held,
139 * or with interrupts enabled and no locks held.
141 static int alloc_cmdid(struct nvme_queue
*nvmeq
, void *ctx
,
142 nvme_completion_fn handler
, unsigned timeout
)
144 int depth
= nvmeq
->q_depth
- 1;
145 struct nvme_cmd_info
*info
= nvme_cmd_info(nvmeq
);
149 cmdid
= find_first_zero_bit(nvmeq
->cmdid_data
, depth
);
152 } while (test_and_set_bit(cmdid
, nvmeq
->cmdid_data
));
154 info
[cmdid
].fn
= handler
;
155 info
[cmdid
].ctx
= ctx
;
156 info
[cmdid
].timeout
= jiffies
+ timeout
;
160 static int alloc_cmdid_killable(struct nvme_queue
*nvmeq
, void *ctx
,
161 nvme_completion_fn handler
, unsigned timeout
)
164 wait_event_killable(nvmeq
->sq_full
,
165 (cmdid
= alloc_cmdid(nvmeq
, ctx
, handler
, timeout
)) >= 0);
166 return (cmdid
< 0) ? -EINTR
: cmdid
;
169 /* Special values must be less than 0x1000 */
170 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
171 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
172 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
173 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
174 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
176 static void special_completion(struct nvme_dev
*dev
, void *ctx
,
177 struct nvme_completion
*cqe
)
179 if (ctx
== CMD_CTX_CANCELLED
)
181 if (ctx
== CMD_CTX_FLUSH
)
183 if (ctx
== CMD_CTX_COMPLETED
) {
184 dev_warn(&dev
->pci_dev
->dev
,
185 "completed id %d twice on queue %d\n",
186 cqe
->command_id
, le16_to_cpup(&cqe
->sq_id
));
189 if (ctx
== CMD_CTX_INVALID
) {
190 dev_warn(&dev
->pci_dev
->dev
,
191 "invalid id %d completed on queue %d\n",
192 cqe
->command_id
, le16_to_cpup(&cqe
->sq_id
));
196 dev_warn(&dev
->pci_dev
->dev
, "Unknown special completion %p\n", ctx
);
200 * Called with local interrupts disabled and the q_lock held. May not sleep.
202 static void *free_cmdid(struct nvme_queue
*nvmeq
, int cmdid
,
203 nvme_completion_fn
*fn
)
206 struct nvme_cmd_info
*info
= nvme_cmd_info(nvmeq
);
208 if (cmdid
>= nvmeq
->q_depth
) {
209 *fn
= special_completion
;
210 return CMD_CTX_INVALID
;
213 *fn
= info
[cmdid
].fn
;
214 ctx
= info
[cmdid
].ctx
;
215 info
[cmdid
].fn
= special_completion
;
216 info
[cmdid
].ctx
= CMD_CTX_COMPLETED
;
217 clear_bit(cmdid
, nvmeq
->cmdid_data
);
218 wake_up(&nvmeq
->sq_full
);
222 static void *cancel_cmdid(struct nvme_queue
*nvmeq
, int cmdid
,
223 nvme_completion_fn
*fn
)
226 struct nvme_cmd_info
*info
= nvme_cmd_info(nvmeq
);
228 *fn
= info
[cmdid
].fn
;
229 ctx
= info
[cmdid
].ctx
;
230 info
[cmdid
].fn
= special_completion
;
231 info
[cmdid
].ctx
= CMD_CTX_CANCELLED
;
235 struct nvme_queue
*get_nvmeq(struct nvme_dev
*dev
)
237 return dev
->queues
[get_cpu() + 1];
240 void put_nvmeq(struct nvme_queue
*nvmeq
)
246 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
247 * @nvmeq: The queue to use
248 * @cmd: The command to send
250 * Safe to use from interrupt context
252 static int nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
)
256 spin_lock_irqsave(&nvmeq
->q_lock
, flags
);
257 tail
= nvmeq
->sq_tail
;
258 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
259 if (++tail
== nvmeq
->q_depth
)
261 writel(tail
, nvmeq
->q_db
);
262 nvmeq
->sq_tail
= tail
;
263 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
268 static __le64
**iod_list(struct nvme_iod
*iod
)
270 return ((void *)iod
) + iod
->offset
;
274 * Will slightly overestimate the number of pages needed. This is OK
275 * as it only leads to a small amount of wasted memory for the lifetime of
278 static int nvme_npages(unsigned size
)
280 unsigned nprps
= DIV_ROUND_UP(size
+ PAGE_SIZE
, PAGE_SIZE
);
281 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
284 static struct nvme_iod
*
285 nvme_alloc_iod(unsigned nseg
, unsigned nbytes
, gfp_t gfp
)
287 struct nvme_iod
*iod
= kmalloc(sizeof(struct nvme_iod
) +
288 sizeof(__le64
*) * nvme_npages(nbytes
) +
289 sizeof(struct scatterlist
) * nseg
, gfp
);
292 iod
->offset
= offsetof(struct nvme_iod
, sg
[nseg
]);
294 iod
->length
= nbytes
;
296 iod
->start_time
= jiffies
;
302 void nvme_free_iod(struct nvme_dev
*dev
, struct nvme_iod
*iod
)
304 const int last_prp
= PAGE_SIZE
/ 8 - 1;
306 __le64
**list
= iod_list(iod
);
307 dma_addr_t prp_dma
= iod
->first_dma
;
309 if (iod
->npages
== 0)
310 dma_pool_free(dev
->prp_small_pool
, list
[0], prp_dma
);
311 for (i
= 0; i
< iod
->npages
; i
++) {
312 __le64
*prp_list
= list
[i
];
313 dma_addr_t next_prp_dma
= le64_to_cpu(prp_list
[last_prp
]);
314 dma_pool_free(dev
->prp_page_pool
, prp_list
, prp_dma
);
315 prp_dma
= next_prp_dma
;
320 static void nvme_start_io_acct(struct bio
*bio
)
322 struct gendisk
*disk
= bio
->bi_bdev
->bd_disk
;
323 const int rw
= bio_data_dir(bio
);
324 int cpu
= part_stat_lock();
325 part_round_stats(cpu
, &disk
->part0
);
326 part_stat_inc(cpu
, &disk
->part0
, ios
[rw
]);
327 part_stat_add(cpu
, &disk
->part0
, sectors
[rw
], bio_sectors(bio
));
328 part_inc_in_flight(&disk
->part0
, rw
);
332 static void nvme_end_io_acct(struct bio
*bio
, unsigned long start_time
)
334 struct gendisk
*disk
= bio
->bi_bdev
->bd_disk
;
335 const int rw
= bio_data_dir(bio
);
336 unsigned long duration
= jiffies
- start_time
;
337 int cpu
= part_stat_lock();
338 part_stat_add(cpu
, &disk
->part0
, ticks
[rw
], duration
);
339 part_round_stats(cpu
, &disk
->part0
);
340 part_dec_in_flight(&disk
->part0
, rw
);
344 static void bio_completion(struct nvme_dev
*dev
, void *ctx
,
345 struct nvme_completion
*cqe
)
347 struct nvme_iod
*iod
= ctx
;
348 struct bio
*bio
= iod
->private;
349 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
352 dma_unmap_sg(&dev
->pci_dev
->dev
, iod
->sg
, iod
->nents
,
353 bio_data_dir(bio
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
354 nvme_end_io_acct(bio
, iod
->start_time
);
356 nvme_free_iod(dev
, iod
);
358 bio_endio(bio
, -EIO
);
363 /* length is in bytes. gfp flags indicates whether we may sleep. */
364 int nvme_setup_prps(struct nvme_dev
*dev
, struct nvme_common_command
*cmd
,
365 struct nvme_iod
*iod
, int total_len
, gfp_t gfp
)
367 struct dma_pool
*pool
;
368 int length
= total_len
;
369 struct scatterlist
*sg
= iod
->sg
;
370 int dma_len
= sg_dma_len(sg
);
371 u64 dma_addr
= sg_dma_address(sg
);
372 int offset
= offset_in_page(dma_addr
);
374 __le64
**list
= iod_list(iod
);
378 cmd
->prp1
= cpu_to_le64(dma_addr
);
379 length
-= (PAGE_SIZE
- offset
);
383 dma_len
-= (PAGE_SIZE
- offset
);
385 dma_addr
+= (PAGE_SIZE
- offset
);
388 dma_addr
= sg_dma_address(sg
);
389 dma_len
= sg_dma_len(sg
);
392 if (length
<= PAGE_SIZE
) {
393 cmd
->prp2
= cpu_to_le64(dma_addr
);
397 nprps
= DIV_ROUND_UP(length
, PAGE_SIZE
);
398 if (nprps
<= (256 / 8)) {
399 pool
= dev
->prp_small_pool
;
402 pool
= dev
->prp_page_pool
;
406 prp_list
= dma_pool_alloc(pool
, gfp
, &prp_dma
);
408 cmd
->prp2
= cpu_to_le64(dma_addr
);
410 return (total_len
- length
) + PAGE_SIZE
;
413 iod
->first_dma
= prp_dma
;
414 cmd
->prp2
= cpu_to_le64(prp_dma
);
417 if (i
== PAGE_SIZE
/ 8) {
418 __le64
*old_prp_list
= prp_list
;
419 prp_list
= dma_pool_alloc(pool
, gfp
, &prp_dma
);
421 return total_len
- length
;
422 list
[iod
->npages
++] = prp_list
;
423 prp_list
[0] = old_prp_list
[i
- 1];
424 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
427 prp_list
[i
++] = cpu_to_le64(dma_addr
);
428 dma_len
-= PAGE_SIZE
;
429 dma_addr
+= PAGE_SIZE
;
437 dma_addr
= sg_dma_address(sg
);
438 dma_len
= sg_dma_len(sg
);
444 struct nvme_bio_pair
{
445 struct bio b1
, b2
, *parent
;
446 struct bio_vec
*bv1
, *bv2
;
451 static void nvme_bio_pair_endio(struct bio
*bio
, int err
)
453 struct nvme_bio_pair
*bp
= bio
->bi_private
;
458 if (atomic_dec_and_test(&bp
->cnt
)) {
459 bio_endio(bp
->parent
, bp
->err
);
466 static struct nvme_bio_pair
*nvme_bio_split(struct bio
*bio
, int idx
,
469 struct nvme_bio_pair
*bp
;
471 BUG_ON(len
> bio
->bi_size
);
472 BUG_ON(idx
> bio
->bi_vcnt
);
474 bp
= kmalloc(sizeof(*bp
), GFP_ATOMIC
);
482 bp
->b1
.bi_size
= len
;
483 bp
->b2
.bi_size
-= len
;
484 bp
->b1
.bi_vcnt
= idx
;
486 bp
->b2
.bi_sector
+= len
>> 9;
489 bp
->bv1
= kmalloc(bio
->bi_max_vecs
* sizeof(struct bio_vec
),
494 bp
->bv2
= kmalloc(bio
->bi_max_vecs
* sizeof(struct bio_vec
),
499 memcpy(bp
->bv1
, bio
->bi_io_vec
,
500 bio
->bi_max_vecs
* sizeof(struct bio_vec
));
501 memcpy(bp
->bv2
, bio
->bi_io_vec
,
502 bio
->bi_max_vecs
* sizeof(struct bio_vec
));
504 bp
->b1
.bi_io_vec
= bp
->bv1
;
505 bp
->b2
.bi_io_vec
= bp
->bv2
;
506 bp
->b2
.bi_io_vec
[idx
].bv_offset
+= offset
;
507 bp
->b2
.bi_io_vec
[idx
].bv_len
-= offset
;
508 bp
->b1
.bi_io_vec
[idx
].bv_len
= offset
;
511 bp
->bv1
= bp
->bv2
= NULL
;
513 bp
->b1
.bi_private
= bp
;
514 bp
->b2
.bi_private
= bp
;
516 bp
->b1
.bi_end_io
= nvme_bio_pair_endio
;
517 bp
->b2
.bi_end_io
= nvme_bio_pair_endio
;
520 atomic_set(&bp
->cnt
, 2);
531 static int nvme_split_and_submit(struct bio
*bio
, struct nvme_queue
*nvmeq
,
532 int idx
, int len
, int offset
)
534 struct nvme_bio_pair
*bp
= nvme_bio_split(bio
, idx
, len
, offset
);
538 if (bio_list_empty(&nvmeq
->sq_cong
))
539 add_wait_queue(&nvmeq
->sq_full
, &nvmeq
->sq_cong_wait
);
540 bio_list_add(&nvmeq
->sq_cong
, &bp
->b1
);
541 bio_list_add(&nvmeq
->sq_cong
, &bp
->b2
);
546 /* NVMe scatterlists require no holes in the virtual address */
547 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
548 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
550 static int nvme_map_bio(struct nvme_queue
*nvmeq
, struct nvme_iod
*iod
,
551 struct bio
*bio
, enum dma_data_direction dma_dir
, int psegs
)
553 struct bio_vec
*bvec
, *bvprv
= NULL
;
554 struct scatterlist
*sg
= NULL
;
555 int i
, length
= 0, nsegs
= 0, split_len
= bio
->bi_size
;
557 if (nvmeq
->dev
->stripe_size
)
558 split_len
= nvmeq
->dev
->stripe_size
-
559 ((bio
->bi_sector
<< 9) & (nvmeq
->dev
->stripe_size
- 1));
561 sg_init_table(iod
->sg
, psegs
);
562 bio_for_each_segment(bvec
, bio
, i
) {
563 if (bvprv
&& BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
)) {
564 sg
->length
+= bvec
->bv_len
;
566 if (bvprv
&& BIOVEC_NOT_VIRT_MERGEABLE(bvprv
, bvec
))
567 return nvme_split_and_submit(bio
, nvmeq
, i
,
570 sg
= sg
? sg
+ 1 : iod
->sg
;
571 sg_set_page(sg
, bvec
->bv_page
, bvec
->bv_len
,
576 if (split_len
- length
< bvec
->bv_len
)
577 return nvme_split_and_submit(bio
, nvmeq
, i
, split_len
,
579 length
+= bvec
->bv_len
;
584 if (dma_map_sg(nvmeq
->q_dmadev
, iod
->sg
, iod
->nents
, dma_dir
) == 0)
587 BUG_ON(length
!= bio
->bi_size
);
592 * We reuse the small pool to allocate the 16-byte range here as it is not
593 * worth having a special pool for these or additional cases to handle freeing
596 static int nvme_submit_discard(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
597 struct bio
*bio
, struct nvme_iod
*iod
, int cmdid
)
599 struct nvme_dsm_range
*range
;
600 struct nvme_command
*cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
602 range
= dma_pool_alloc(nvmeq
->dev
->prp_small_pool
, GFP_ATOMIC
,
607 iod_list(iod
)[0] = (__le64
*)range
;
610 range
->cattr
= cpu_to_le32(0);
611 range
->nlb
= cpu_to_le32(bio
->bi_size
>> ns
->lba_shift
);
612 range
->slba
= cpu_to_le64(nvme_block_nr(ns
, bio
->bi_sector
));
614 memset(cmnd
, 0, sizeof(*cmnd
));
615 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
616 cmnd
->dsm
.command_id
= cmdid
;
617 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->ns_id
);
618 cmnd
->dsm
.prp1
= cpu_to_le64(iod
->first_dma
);
620 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
622 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
624 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
629 static int nvme_submit_flush(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
632 struct nvme_command
*cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
634 memset(cmnd
, 0, sizeof(*cmnd
));
635 cmnd
->common
.opcode
= nvme_cmd_flush
;
636 cmnd
->common
.command_id
= cmdid
;
637 cmnd
->common
.nsid
= cpu_to_le32(ns
->ns_id
);
639 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
641 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
646 int nvme_submit_flush_data(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
)
648 int cmdid
= alloc_cmdid(nvmeq
, (void *)CMD_CTX_FLUSH
,
649 special_completion
, NVME_IO_TIMEOUT
);
650 if (unlikely(cmdid
< 0))
653 return nvme_submit_flush(nvmeq
, ns
, cmdid
);
657 * Called with local interrupts disabled and the q_lock held. May not sleep.
659 static int nvme_submit_bio_queue(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
662 struct nvme_command
*cmnd
;
663 struct nvme_iod
*iod
;
664 enum dma_data_direction dma_dir
;
665 int cmdid
, length
, result
;
668 int psegs
= bio_phys_segments(ns
->queue
, bio
);
670 if ((bio
->bi_rw
& REQ_FLUSH
) && psegs
) {
671 result
= nvme_submit_flush_data(nvmeq
, ns
);
677 iod
= nvme_alloc_iod(psegs
, bio
->bi_size
, GFP_ATOMIC
);
683 cmdid
= alloc_cmdid(nvmeq
, iod
, bio_completion
, NVME_IO_TIMEOUT
);
684 if (unlikely(cmdid
< 0))
687 if (bio
->bi_rw
& REQ_DISCARD
) {
688 result
= nvme_submit_discard(nvmeq
, ns
, bio
, iod
, cmdid
);
693 if ((bio
->bi_rw
& REQ_FLUSH
) && !psegs
)
694 return nvme_submit_flush(nvmeq
, ns
, cmdid
);
697 if (bio
->bi_rw
& REQ_FUA
)
698 control
|= NVME_RW_FUA
;
699 if (bio
->bi_rw
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
700 control
|= NVME_RW_LR
;
703 if (bio
->bi_rw
& REQ_RAHEAD
)
704 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
706 cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
708 memset(cmnd
, 0, sizeof(*cmnd
));
709 if (bio_data_dir(bio
)) {
710 cmnd
->rw
.opcode
= nvme_cmd_write
;
711 dma_dir
= DMA_TO_DEVICE
;
713 cmnd
->rw
.opcode
= nvme_cmd_read
;
714 dma_dir
= DMA_FROM_DEVICE
;
717 result
= nvme_map_bio(nvmeq
, iod
, bio
, dma_dir
, psegs
);
722 cmnd
->rw
.command_id
= cmdid
;
723 cmnd
->rw
.nsid
= cpu_to_le32(ns
->ns_id
);
724 length
= nvme_setup_prps(nvmeq
->dev
, &cmnd
->common
, iod
, length
,
726 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, bio
->bi_sector
));
727 cmnd
->rw
.length
= cpu_to_le16((length
>> ns
->lba_shift
) - 1);
728 cmnd
->rw
.control
= cpu_to_le16(control
);
729 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
731 nvme_start_io_acct(bio
);
732 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
734 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
739 free_cmdid(nvmeq
, cmdid
, NULL
);
741 nvme_free_iod(nvmeq
->dev
, iod
);
746 static int nvme_process_cq(struct nvme_queue
*nvmeq
)
750 head
= nvmeq
->cq_head
;
751 phase
= nvmeq
->cq_phase
;
755 nvme_completion_fn fn
;
756 struct nvme_completion cqe
= nvmeq
->cqes
[head
];
757 if ((le16_to_cpu(cqe
.status
) & 1) != phase
)
759 nvmeq
->sq_head
= le16_to_cpu(cqe
.sq_head
);
760 if (++head
== nvmeq
->q_depth
) {
765 ctx
= free_cmdid(nvmeq
, cqe
.command_id
, &fn
);
766 fn(nvmeq
->dev
, ctx
, &cqe
);
769 /* If the controller ignores the cq head doorbell and continuously
770 * writes to the queue, it is theoretically possible to wrap around
771 * the queue twice and mistakenly return IRQ_NONE. Linux only
772 * requires that 0.1% of your interrupts are handled, so this isn't
775 if (head
== nvmeq
->cq_head
&& phase
== nvmeq
->cq_phase
)
778 writel(head
, nvmeq
->q_db
+ (1 << nvmeq
->dev
->db_stride
));
779 nvmeq
->cq_head
= head
;
780 nvmeq
->cq_phase
= phase
;
786 static void nvme_make_request(struct request_queue
*q
, struct bio
*bio
)
788 struct nvme_ns
*ns
= q
->queuedata
;
789 struct nvme_queue
*nvmeq
= get_nvmeq(ns
->dev
);
794 bio_endio(bio
, -EIO
);
798 spin_lock_irq(&nvmeq
->q_lock
);
799 if (!nvmeq
->q_suspended
&& bio_list_empty(&nvmeq
->sq_cong
))
800 result
= nvme_submit_bio_queue(nvmeq
, ns
, bio
);
801 if (unlikely(result
)) {
802 if (bio_list_empty(&nvmeq
->sq_cong
))
803 add_wait_queue(&nvmeq
->sq_full
, &nvmeq
->sq_cong_wait
);
804 bio_list_add(&nvmeq
->sq_cong
, bio
);
807 nvme_process_cq(nvmeq
);
808 spin_unlock_irq(&nvmeq
->q_lock
);
812 static irqreturn_t
nvme_irq(int irq
, void *data
)
815 struct nvme_queue
*nvmeq
= data
;
816 spin_lock(&nvmeq
->q_lock
);
817 nvme_process_cq(nvmeq
);
818 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
820 spin_unlock(&nvmeq
->q_lock
);
824 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
826 struct nvme_queue
*nvmeq
= data
;
827 struct nvme_completion cqe
= nvmeq
->cqes
[nvmeq
->cq_head
];
828 if ((le16_to_cpu(cqe
.status
) & 1) != nvmeq
->cq_phase
)
830 return IRQ_WAKE_THREAD
;
833 static void nvme_abort_command(struct nvme_queue
*nvmeq
, int cmdid
)
835 spin_lock_irq(&nvmeq
->q_lock
);
836 cancel_cmdid(nvmeq
, cmdid
, NULL
);
837 spin_unlock_irq(&nvmeq
->q_lock
);
840 struct sync_cmd_info
{
841 struct task_struct
*task
;
846 static void sync_completion(struct nvme_dev
*dev
, void *ctx
,
847 struct nvme_completion
*cqe
)
849 struct sync_cmd_info
*cmdinfo
= ctx
;
850 cmdinfo
->result
= le32_to_cpup(&cqe
->result
);
851 cmdinfo
->status
= le16_to_cpup(&cqe
->status
) >> 1;
852 wake_up_process(cmdinfo
->task
);
856 * Returns 0 on success. If the result is negative, it's a Linux error code;
857 * if the result is positive, it's an NVM Express status code
859 int nvme_submit_sync_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
,
860 u32
*result
, unsigned timeout
)
863 struct sync_cmd_info cmdinfo
;
865 cmdinfo
.task
= current
;
866 cmdinfo
.status
= -EINTR
;
868 cmdid
= alloc_cmdid_killable(nvmeq
, &cmdinfo
, sync_completion
,
872 cmd
->common
.command_id
= cmdid
;
874 set_current_state(TASK_KILLABLE
);
875 nvme_submit_cmd(nvmeq
, cmd
);
876 schedule_timeout(timeout
);
878 if (cmdinfo
.status
== -EINTR
) {
879 nvme_abort_command(nvmeq
, cmdid
);
884 *result
= cmdinfo
.result
;
886 return cmdinfo
.status
;
889 int nvme_submit_admin_cmd(struct nvme_dev
*dev
, struct nvme_command
*cmd
,
892 return nvme_submit_sync_cmd(dev
->queues
[0], cmd
, result
, ADMIN_TIMEOUT
);
895 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
898 struct nvme_command c
;
900 memset(&c
, 0, sizeof(c
));
901 c
.delete_queue
.opcode
= opcode
;
902 c
.delete_queue
.qid
= cpu_to_le16(id
);
904 status
= nvme_submit_admin_cmd(dev
, &c
, NULL
);
910 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
911 struct nvme_queue
*nvmeq
)
914 struct nvme_command c
;
915 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
917 memset(&c
, 0, sizeof(c
));
918 c
.create_cq
.opcode
= nvme_admin_create_cq
;
919 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
920 c
.create_cq
.cqid
= cpu_to_le16(qid
);
921 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
922 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
923 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
925 status
= nvme_submit_admin_cmd(dev
, &c
, NULL
);
931 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
932 struct nvme_queue
*nvmeq
)
935 struct nvme_command c
;
936 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_SQ_PRIO_MEDIUM
;
938 memset(&c
, 0, sizeof(c
));
939 c
.create_sq
.opcode
= nvme_admin_create_sq
;
940 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
941 c
.create_sq
.sqid
= cpu_to_le16(qid
);
942 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
943 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
944 c
.create_sq
.cqid
= cpu_to_le16(qid
);
946 status
= nvme_submit_admin_cmd(dev
, &c
, NULL
);
952 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
954 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
957 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
959 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
962 int nvme_identify(struct nvme_dev
*dev
, unsigned nsid
, unsigned cns
,
965 struct nvme_command c
;
967 memset(&c
, 0, sizeof(c
));
968 c
.identify
.opcode
= nvme_admin_identify
;
969 c
.identify
.nsid
= cpu_to_le32(nsid
);
970 c
.identify
.prp1
= cpu_to_le64(dma_addr
);
971 c
.identify
.cns
= cpu_to_le32(cns
);
973 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
976 int nvme_get_features(struct nvme_dev
*dev
, unsigned fid
, unsigned nsid
,
977 dma_addr_t dma_addr
, u32
*result
)
979 struct nvme_command c
;
981 memset(&c
, 0, sizeof(c
));
982 c
.features
.opcode
= nvme_admin_get_features
;
983 c
.features
.nsid
= cpu_to_le32(nsid
);
984 c
.features
.prp1
= cpu_to_le64(dma_addr
);
985 c
.features
.fid
= cpu_to_le32(fid
);
987 return nvme_submit_admin_cmd(dev
, &c
, result
);
990 int nvme_set_features(struct nvme_dev
*dev
, unsigned fid
, unsigned dword11
,
991 dma_addr_t dma_addr
, u32
*result
)
993 struct nvme_command c
;
995 memset(&c
, 0, sizeof(c
));
996 c
.features
.opcode
= nvme_admin_set_features
;
997 c
.features
.prp1
= cpu_to_le64(dma_addr
);
998 c
.features
.fid
= cpu_to_le32(fid
);
999 c
.features
.dword11
= cpu_to_le32(dword11
);
1001 return nvme_submit_admin_cmd(dev
, &c
, result
);
1005 * nvme_cancel_ios - Cancel outstanding I/Os
1006 * @queue: The queue to cancel I/Os on
1007 * @timeout: True to only cancel I/Os which have timed out
1009 static void nvme_cancel_ios(struct nvme_queue
*nvmeq
, bool timeout
)
1011 int depth
= nvmeq
->q_depth
- 1;
1012 struct nvme_cmd_info
*info
= nvme_cmd_info(nvmeq
);
1013 unsigned long now
= jiffies
;
1016 for_each_set_bit(cmdid
, nvmeq
->cmdid_data
, depth
) {
1018 nvme_completion_fn fn
;
1019 static struct nvme_completion cqe
= {
1020 .status
= cpu_to_le16(NVME_SC_ABORT_REQ
<< 1),
1023 if (timeout
&& !time_after(now
, info
[cmdid
].timeout
))
1025 if (info
[cmdid
].ctx
== CMD_CTX_CANCELLED
)
1027 dev_warn(nvmeq
->q_dmadev
, "Cancelling I/O %d\n", cmdid
);
1028 ctx
= cancel_cmdid(nvmeq
, cmdid
, &fn
);
1029 fn(nvmeq
->dev
, ctx
, &cqe
);
1033 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1035 spin_lock_irq(&nvmeq
->q_lock
);
1036 while (bio_list_peek(&nvmeq
->sq_cong
)) {
1037 struct bio
*bio
= bio_list_pop(&nvmeq
->sq_cong
);
1038 bio_endio(bio
, -EIO
);
1040 spin_unlock_irq(&nvmeq
->q_lock
);
1042 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
1043 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1044 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
1045 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1049 static void nvme_free_queues(struct nvme_dev
*dev
)
1053 for (i
= dev
->queue_count
- 1; i
>= 0; i
--) {
1054 nvme_free_queue(dev
->queues
[i
]);
1056 dev
->queues
[i
] = NULL
;
1060 static void nvme_disable_queue(struct nvme_dev
*dev
, int qid
)
1062 struct nvme_queue
*nvmeq
= dev
->queues
[qid
];
1063 int vector
= dev
->entry
[nvmeq
->cq_vector
].vector
;
1065 spin_lock_irq(&nvmeq
->q_lock
);
1066 if (nvmeq
->q_suspended
) {
1067 spin_unlock_irq(&nvmeq
->q_lock
);
1070 nvmeq
->q_suspended
= 1;
1071 spin_unlock_irq(&nvmeq
->q_lock
);
1073 irq_set_affinity_hint(vector
, NULL
);
1074 free_irq(vector
, nvmeq
);
1076 /* Don't tell the adapter to delete the admin queue */
1078 adapter_delete_sq(dev
, qid
);
1079 adapter_delete_cq(dev
, qid
);
1082 spin_lock_irq(&nvmeq
->q_lock
);
1083 nvme_process_cq(nvmeq
);
1084 nvme_cancel_ios(nvmeq
, false);
1085 spin_unlock_irq(&nvmeq
->q_lock
);
1088 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1089 int depth
, int vector
)
1091 struct device
*dmadev
= &dev
->pci_dev
->dev
;
1092 unsigned extra
= nvme_queue_extra(depth
);
1093 struct nvme_queue
*nvmeq
= kzalloc(sizeof(*nvmeq
) + extra
, GFP_KERNEL
);
1097 nvmeq
->cqes
= dma_alloc_coherent(dmadev
, CQ_SIZE(depth
),
1098 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1101 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(depth
));
1103 nvmeq
->sq_cmds
= dma_alloc_coherent(dmadev
, SQ_SIZE(depth
),
1104 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1105 if (!nvmeq
->sq_cmds
)
1108 nvmeq
->q_dmadev
= dmadev
;
1110 spin_lock_init(&nvmeq
->q_lock
);
1112 nvmeq
->cq_phase
= 1;
1113 init_waitqueue_head(&nvmeq
->sq_full
);
1114 init_waitqueue_entry(&nvmeq
->sq_cong_wait
, nvme_thread
);
1115 bio_list_init(&nvmeq
->sq_cong
);
1116 nvmeq
->q_db
= &dev
->dbs
[qid
<< (dev
->db_stride
+ 1)];
1117 nvmeq
->q_depth
= depth
;
1118 nvmeq
->cq_vector
= vector
;
1119 nvmeq
->q_suspended
= 1;
1125 dma_free_coherent(dmadev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1126 nvmeq
->cq_dma_addr
);
1132 static int queue_request_irq(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1135 if (use_threaded_interrupts
)
1136 return request_threaded_irq(dev
->entry
[nvmeq
->cq_vector
].vector
,
1137 nvme_irq_check
, nvme_irq
,
1138 IRQF_DISABLED
| IRQF_SHARED
,
1140 return request_irq(dev
->entry
[nvmeq
->cq_vector
].vector
, nvme_irq
,
1141 IRQF_DISABLED
| IRQF_SHARED
, name
, nvmeq
);
1144 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1146 struct nvme_dev
*dev
= nvmeq
->dev
;
1147 unsigned extra
= nvme_queue_extra(nvmeq
->q_depth
);
1151 nvmeq
->cq_phase
= 1;
1152 nvmeq
->q_db
= &dev
->dbs
[qid
<< (dev
->db_stride
+ 1)];
1153 memset(nvmeq
->cmdid_data
, 0, extra
);
1154 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1155 nvme_cancel_ios(nvmeq
, false);
1156 nvmeq
->q_suspended
= 0;
1159 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1161 struct nvme_dev
*dev
= nvmeq
->dev
;
1164 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1168 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1172 result
= queue_request_irq(dev
, nvmeq
, "nvme");
1176 spin_lock(&nvmeq
->q_lock
);
1177 nvme_init_queue(nvmeq
, qid
);
1178 spin_unlock(&nvmeq
->q_lock
);
1183 adapter_delete_sq(dev
, qid
);
1185 adapter_delete_cq(dev
, qid
);
1189 static int nvme_wait_ready(struct nvme_dev
*dev
, u64 cap
, bool enabled
)
1191 unsigned long timeout
;
1192 u32 bit
= enabled
? NVME_CSTS_RDY
: 0;
1194 timeout
= ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1196 while ((readl(&dev
->bar
->csts
) & NVME_CSTS_RDY
) != bit
) {
1198 if (fatal_signal_pending(current
))
1200 if (time_after(jiffies
, timeout
)) {
1201 dev_err(&dev
->pci_dev
->dev
,
1202 "Device not ready; aborting initialisation\n");
1211 * If the device has been passed off to us in an enabled state, just clear
1212 * the enabled bit. The spec says we should set the 'shutdown notification
1213 * bits', but doing so may cause the device to complete commands to the
1214 * admin queue ... and we don't know what memory that might be pointing at!
1216 static int nvme_disable_ctrl(struct nvme_dev
*dev
, u64 cap
)
1218 u32 cc
= readl(&dev
->bar
->cc
);
1220 if (cc
& NVME_CC_ENABLE
)
1221 writel(cc
& ~NVME_CC_ENABLE
, &dev
->bar
->cc
);
1222 return nvme_wait_ready(dev
, cap
, false);
1225 static int nvme_enable_ctrl(struct nvme_dev
*dev
, u64 cap
)
1227 return nvme_wait_ready(dev
, cap
, true);
1230 static int nvme_shutdown_ctrl(struct nvme_dev
*dev
)
1232 unsigned long timeout
;
1235 cc
= (readl(&dev
->bar
->cc
) & ~NVME_CC_SHN_MASK
) | NVME_CC_SHN_NORMAL
;
1236 writel(cc
, &dev
->bar
->cc
);
1238 timeout
= 2 * HZ
+ jiffies
;
1239 while ((readl(&dev
->bar
->csts
) & NVME_CSTS_SHST_MASK
) !=
1240 NVME_CSTS_SHST_CMPLT
) {
1242 if (fatal_signal_pending(current
))
1244 if (time_after(jiffies
, timeout
)) {
1245 dev_err(&dev
->pci_dev
->dev
,
1246 "Device shutdown incomplete; abort shutdown\n");
1254 static int nvme_configure_admin_queue(struct nvme_dev
*dev
)
1258 u64 cap
= readq(&dev
->bar
->cap
);
1259 struct nvme_queue
*nvmeq
;
1261 result
= nvme_disable_ctrl(dev
, cap
);
1265 nvmeq
= dev
->queues
[0];
1267 nvmeq
= nvme_alloc_queue(dev
, 0, 64, 0);
1270 dev
->queues
[0] = nvmeq
;
1273 aqa
= nvmeq
->q_depth
- 1;
1276 dev
->ctrl_config
= NVME_CC_ENABLE
| NVME_CC_CSS_NVM
;
1277 dev
->ctrl_config
|= (PAGE_SHIFT
- 12) << NVME_CC_MPS_SHIFT
;
1278 dev
->ctrl_config
|= NVME_CC_ARB_RR
| NVME_CC_SHN_NONE
;
1279 dev
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1281 writel(aqa
, &dev
->bar
->aqa
);
1282 writeq(nvmeq
->sq_dma_addr
, &dev
->bar
->asq
);
1283 writeq(nvmeq
->cq_dma_addr
, &dev
->bar
->acq
);
1284 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1286 result
= nvme_enable_ctrl(dev
, cap
);
1290 result
= queue_request_irq(dev
, nvmeq
, "nvme admin");
1294 spin_lock(&nvmeq
->q_lock
);
1295 nvme_init_queue(nvmeq
, 0);
1296 spin_unlock(&nvmeq
->q_lock
);
1300 struct nvme_iod
*nvme_map_user_pages(struct nvme_dev
*dev
, int write
,
1301 unsigned long addr
, unsigned length
)
1303 int i
, err
, count
, nents
, offset
;
1304 struct scatterlist
*sg
;
1305 struct page
**pages
;
1306 struct nvme_iod
*iod
;
1309 return ERR_PTR(-EINVAL
);
1310 if (!length
|| length
> INT_MAX
- PAGE_SIZE
)
1311 return ERR_PTR(-EINVAL
);
1313 offset
= offset_in_page(addr
);
1314 count
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1315 pages
= kcalloc(count
, sizeof(*pages
), GFP_KERNEL
);
1317 return ERR_PTR(-ENOMEM
);
1319 err
= get_user_pages_fast(addr
, count
, 1, pages
);
1326 iod
= nvme_alloc_iod(count
, length
, GFP_KERNEL
);
1328 sg_init_table(sg
, count
);
1329 for (i
= 0; i
< count
; i
++) {
1330 sg_set_page(&sg
[i
], pages
[i
],
1331 min_t(unsigned, length
, PAGE_SIZE
- offset
),
1333 length
-= (PAGE_SIZE
- offset
);
1336 sg_mark_end(&sg
[i
- 1]);
1340 nents
= dma_map_sg(&dev
->pci_dev
->dev
, sg
, count
,
1341 write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1351 for (i
= 0; i
< count
; i
++)
1354 return ERR_PTR(err
);
1357 void nvme_unmap_user_pages(struct nvme_dev
*dev
, int write
,
1358 struct nvme_iod
*iod
)
1362 dma_unmap_sg(&dev
->pci_dev
->dev
, iod
->sg
, iod
->nents
,
1363 write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1365 for (i
= 0; i
< iod
->nents
; i
++)
1366 put_page(sg_page(&iod
->sg
[i
]));
1369 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
1371 struct nvme_dev
*dev
= ns
->dev
;
1372 struct nvme_queue
*nvmeq
;
1373 struct nvme_user_io io
;
1374 struct nvme_command c
;
1375 unsigned length
, meta_len
;
1377 struct nvme_iod
*iod
, *meta_iod
= NULL
;
1378 dma_addr_t meta_dma_addr
;
1379 void *meta
, *uninitialized_var(meta_mem
);
1381 if (copy_from_user(&io
, uio
, sizeof(io
)))
1383 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
1384 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1386 if (meta_len
&& ((io
.metadata
& 3) || !io
.metadata
))
1389 switch (io
.opcode
) {
1390 case nvme_cmd_write
:
1392 case nvme_cmd_compare
:
1393 iod
= nvme_map_user_pages(dev
, io
.opcode
& 1, io
.addr
, length
);
1400 return PTR_ERR(iod
);
1402 memset(&c
, 0, sizeof(c
));
1403 c
.rw
.opcode
= io
.opcode
;
1404 c
.rw
.flags
= io
.flags
;
1405 c
.rw
.nsid
= cpu_to_le32(ns
->ns_id
);
1406 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1407 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1408 c
.rw
.control
= cpu_to_le16(io
.control
);
1409 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1410 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1411 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1412 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1415 meta_iod
= nvme_map_user_pages(dev
, io
.opcode
& 1, io
.metadata
,
1417 if (IS_ERR(meta_iod
)) {
1418 status
= PTR_ERR(meta_iod
);
1423 meta_mem
= dma_alloc_coherent(&dev
->pci_dev
->dev
, meta_len
,
1424 &meta_dma_addr
, GFP_KERNEL
);
1430 if (io
.opcode
& 1) {
1431 int meta_offset
= 0;
1433 for (i
= 0; i
< meta_iod
->nents
; i
++) {
1434 meta
= kmap_atomic(sg_page(&meta_iod
->sg
[i
])) +
1435 meta_iod
->sg
[i
].offset
;
1436 memcpy(meta_mem
+ meta_offset
, meta
,
1437 meta_iod
->sg
[i
].length
);
1438 kunmap_atomic(meta
);
1439 meta_offset
+= meta_iod
->sg
[i
].length
;
1443 c
.rw
.metadata
= cpu_to_le64(meta_dma_addr
);
1446 length
= nvme_setup_prps(dev
, &c
.common
, iod
, length
, GFP_KERNEL
);
1448 nvmeq
= get_nvmeq(dev
);
1450 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1451 * disabled. We may be preempted at any point, and be rescheduled
1452 * to a different CPU. That will cause cacheline bouncing, but no
1453 * additional races since q_lock already protects against other CPUs.
1456 if (length
!= (io
.nblocks
+ 1) << ns
->lba_shift
)
1458 else if (!nvmeq
|| nvmeq
->q_suspended
)
1461 status
= nvme_submit_sync_cmd(nvmeq
, &c
, NULL
, NVME_IO_TIMEOUT
);
1464 if (status
== NVME_SC_SUCCESS
&& !(io
.opcode
& 1)) {
1465 int meta_offset
= 0;
1467 for (i
= 0; i
< meta_iod
->nents
; i
++) {
1468 meta
= kmap_atomic(sg_page(&meta_iod
->sg
[i
])) +
1469 meta_iod
->sg
[i
].offset
;
1470 memcpy(meta
, meta_mem
+ meta_offset
,
1471 meta_iod
->sg
[i
].length
);
1472 kunmap_atomic(meta
);
1473 meta_offset
+= meta_iod
->sg
[i
].length
;
1477 dma_free_coherent(&dev
->pci_dev
->dev
, meta_len
, meta_mem
,
1482 nvme_unmap_user_pages(dev
, io
.opcode
& 1, iod
);
1483 nvme_free_iod(dev
, iod
);
1486 nvme_unmap_user_pages(dev
, io
.opcode
& 1, meta_iod
);
1487 nvme_free_iod(dev
, meta_iod
);
1493 static int nvme_user_admin_cmd(struct nvme_dev
*dev
,
1494 struct nvme_admin_cmd __user
*ucmd
)
1496 struct nvme_admin_cmd cmd
;
1497 struct nvme_command c
;
1499 struct nvme_iod
*uninitialized_var(iod
);
1502 if (!capable(CAP_SYS_ADMIN
))
1504 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1507 memset(&c
, 0, sizeof(c
));
1508 c
.common
.opcode
= cmd
.opcode
;
1509 c
.common
.flags
= cmd
.flags
;
1510 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1511 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1512 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1513 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1514 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1515 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1516 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1517 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1518 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1520 length
= cmd
.data_len
;
1522 iod
= nvme_map_user_pages(dev
, cmd
.opcode
& 1, cmd
.addr
,
1525 return PTR_ERR(iod
);
1526 length
= nvme_setup_prps(dev
, &c
.common
, iod
, length
,
1530 timeout
= cmd
.timeout_ms
? msecs_to_jiffies(cmd
.timeout_ms
) :
1532 if (length
!= cmd
.data_len
)
1535 status
= nvme_submit_sync_cmd(dev
->queues
[0], &c
, &cmd
.result
,
1539 nvme_unmap_user_pages(dev
, cmd
.opcode
& 1, iod
);
1540 nvme_free_iod(dev
, iod
);
1543 if ((status
>= 0) && copy_to_user(&ucmd
->result
, &cmd
.result
,
1544 sizeof(cmd
.result
)))
1550 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
, unsigned int cmd
,
1553 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1557 force_successful_syscall_return();
1559 case NVME_IOCTL_ADMIN_CMD
:
1560 return nvme_user_admin_cmd(ns
->dev
, (void __user
*)arg
);
1561 case NVME_IOCTL_SUBMIT_IO
:
1562 return nvme_submit_io(ns
, (void __user
*)arg
);
1563 case SG_GET_VERSION_NUM
:
1564 return nvme_sg_get_version_num((void __user
*)arg
);
1566 return nvme_sg_io(ns
, (void __user
*)arg
);
1572 static const struct block_device_operations nvme_fops
= {
1573 .owner
= THIS_MODULE
,
1574 .ioctl
= nvme_ioctl
,
1575 .compat_ioctl
= nvme_ioctl
,
1578 static void nvme_resubmit_bios(struct nvme_queue
*nvmeq
)
1580 while (bio_list_peek(&nvmeq
->sq_cong
)) {
1581 struct bio
*bio
= bio_list_pop(&nvmeq
->sq_cong
);
1582 struct nvme_ns
*ns
= bio
->bi_bdev
->bd_disk
->private_data
;
1584 if (bio_list_empty(&nvmeq
->sq_cong
))
1585 remove_wait_queue(&nvmeq
->sq_full
,
1586 &nvmeq
->sq_cong_wait
);
1587 if (nvme_submit_bio_queue(nvmeq
, ns
, bio
)) {
1588 if (bio_list_empty(&nvmeq
->sq_cong
))
1589 add_wait_queue(&nvmeq
->sq_full
,
1590 &nvmeq
->sq_cong_wait
);
1591 bio_list_add_head(&nvmeq
->sq_cong
, bio
);
1597 static int nvme_kthread(void *data
)
1599 struct nvme_dev
*dev
;
1601 while (!kthread_should_stop()) {
1602 set_current_state(TASK_INTERRUPTIBLE
);
1603 spin_lock(&dev_list_lock
);
1604 list_for_each_entry(dev
, &dev_list
, node
) {
1606 for (i
= 0; i
< dev
->queue_count
; i
++) {
1607 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
1610 spin_lock_irq(&nvmeq
->q_lock
);
1611 if (nvmeq
->q_suspended
)
1613 nvme_process_cq(nvmeq
);
1614 nvme_cancel_ios(nvmeq
, true);
1615 nvme_resubmit_bios(nvmeq
);
1617 spin_unlock_irq(&nvmeq
->q_lock
);
1620 spin_unlock(&dev_list_lock
);
1621 schedule_timeout(round_jiffies_relative(HZ
));
1626 static DEFINE_IDA(nvme_index_ida
);
1628 static int nvme_get_ns_idx(void)
1633 if (!ida_pre_get(&nvme_index_ida
, GFP_KERNEL
))
1636 spin_lock(&dev_list_lock
);
1637 error
= ida_get_new(&nvme_index_ida
, &index
);
1638 spin_unlock(&dev_list_lock
);
1639 } while (error
== -EAGAIN
);
1646 static void nvme_put_ns_idx(int index
)
1648 spin_lock(&dev_list_lock
);
1649 ida_remove(&nvme_index_ida
, index
);
1650 spin_unlock(&dev_list_lock
);
1653 static void nvme_config_discard(struct nvme_ns
*ns
)
1655 u32 logical_block_size
= queue_logical_block_size(ns
->queue
);
1656 ns
->queue
->limits
.discard_zeroes_data
= 0;
1657 ns
->queue
->limits
.discard_alignment
= logical_block_size
;
1658 ns
->queue
->limits
.discard_granularity
= logical_block_size
;
1659 ns
->queue
->limits
.max_discard_sectors
= 0xffffffff;
1660 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, ns
->queue
);
1663 static struct nvme_ns
*nvme_alloc_ns(struct nvme_dev
*dev
, unsigned nsid
,
1664 struct nvme_id_ns
*id
, struct nvme_lba_range_type
*rt
)
1667 struct gendisk
*disk
;
1670 if (rt
->attributes
& NVME_LBART_ATTRIB_HIDE
)
1673 ns
= kzalloc(sizeof(*ns
), GFP_KERNEL
);
1676 ns
->queue
= blk_alloc_queue(GFP_KERNEL
);
1679 ns
->queue
->queue_flags
= QUEUE_FLAG_DEFAULT
;
1680 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES
, ns
->queue
);
1681 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, ns
->queue
);
1682 blk_queue_make_request(ns
->queue
, nvme_make_request
);
1684 ns
->queue
->queuedata
= ns
;
1686 disk
= alloc_disk(NVME_MINORS
);
1688 goto out_free_queue
;
1691 lbaf
= id
->flbas
& 0xf;
1692 ns
->lba_shift
= id
->lbaf
[lbaf
].ds
;
1693 ns
->ms
= le16_to_cpu(id
->lbaf
[lbaf
].ms
);
1694 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
1695 if (dev
->max_hw_sectors
)
1696 blk_queue_max_hw_sectors(ns
->queue
, dev
->max_hw_sectors
);
1698 disk
->major
= nvme_major
;
1699 disk
->minors
= NVME_MINORS
;
1700 disk
->first_minor
= NVME_MINORS
* nvme_get_ns_idx();
1701 disk
->fops
= &nvme_fops
;
1702 disk
->private_data
= ns
;
1703 disk
->queue
= ns
->queue
;
1704 disk
->driverfs_dev
= &dev
->pci_dev
->dev
;
1705 sprintf(disk
->disk_name
, "nvme%dn%d", dev
->instance
, nsid
);
1706 set_capacity(disk
, le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9));
1708 if (dev
->oncs
& NVME_CTRL_ONCS_DSM
)
1709 nvme_config_discard(ns
);
1714 blk_cleanup_queue(ns
->queue
);
1720 static void nvme_ns_free(struct nvme_ns
*ns
)
1722 int index
= ns
->disk
->first_minor
/ NVME_MINORS
;
1724 nvme_put_ns_idx(index
);
1725 blk_cleanup_queue(ns
->queue
);
1729 static int set_queue_count(struct nvme_dev
*dev
, int count
)
1733 u32 q_count
= (count
- 1) | ((count
- 1) << 16);
1735 status
= nvme_set_features(dev
, NVME_FEAT_NUM_QUEUES
, q_count
, 0,
1738 return status
< 0 ? -EIO
: -EBUSY
;
1739 return min(result
& 0xffff, result
>> 16) + 1;
1742 static size_t db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1744 return 4096 + ((nr_io_queues
+ 1) << (dev
->db_stride
+ 3));
1747 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1749 struct pci_dev
*pdev
= dev
->pci_dev
;
1750 int result
, cpu
, i
, vecs
, nr_io_queues
, size
, q_depth
;
1752 nr_io_queues
= num_online_cpus();
1753 result
= set_queue_count(dev
, nr_io_queues
);
1756 if (result
< nr_io_queues
)
1757 nr_io_queues
= result
;
1759 size
= db_bar_size(dev
, nr_io_queues
);
1763 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1766 if (!--nr_io_queues
)
1768 size
= db_bar_size(dev
, nr_io_queues
);
1770 dev
->dbs
= ((void __iomem
*)dev
->bar
) + 4096;
1771 dev
->queues
[0]->q_db
= dev
->dbs
;
1774 /* Deregister the admin queue's interrupt */
1775 free_irq(dev
->entry
[0].vector
, dev
->queues
[0]);
1777 vecs
= nr_io_queues
;
1778 for (i
= 0; i
< vecs
; i
++)
1779 dev
->entry
[i
].entry
= i
;
1781 result
= pci_enable_msix(pdev
, dev
->entry
, vecs
);
1788 vecs
= nr_io_queues
;
1792 result
= pci_enable_msi_block(pdev
, vecs
);
1794 for (i
= 0; i
< vecs
; i
++)
1795 dev
->entry
[i
].vector
= i
+ pdev
->irq
;
1797 } else if (result
< 0) {
1806 * Should investigate if there's a performance win from allocating
1807 * more queues than interrupt vectors; it might allow the submission
1808 * path to scale better, even if the receive path is limited by the
1809 * number of interrupts.
1811 nr_io_queues
= vecs
;
1813 result
= queue_request_irq(dev
, dev
->queues
[0], "nvme admin");
1815 dev
->queues
[0]->q_suspended
= 1;
1819 /* Free previously allocated queues that are no longer usable */
1820 spin_lock(&dev_list_lock
);
1821 for (i
= dev
->queue_count
- 1; i
> nr_io_queues
; i
--) {
1822 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
1824 spin_lock(&nvmeq
->q_lock
);
1825 nvme_cancel_ios(nvmeq
, false);
1826 spin_unlock(&nvmeq
->q_lock
);
1828 nvme_free_queue(nvmeq
);
1830 dev
->queues
[i
] = NULL
;
1832 spin_unlock(&dev_list_lock
);
1834 cpu
= cpumask_first(cpu_online_mask
);
1835 for (i
= 0; i
< nr_io_queues
; i
++) {
1836 irq_set_affinity_hint(dev
->entry
[i
].vector
, get_cpu_mask(cpu
));
1837 cpu
= cpumask_next(cpu
, cpu_online_mask
);
1840 q_depth
= min_t(int, NVME_CAP_MQES(readq(&dev
->bar
->cap
)) + 1,
1842 for (i
= dev
->queue_count
- 1; i
< nr_io_queues
; i
++) {
1843 dev
->queues
[i
+ 1] = nvme_alloc_queue(dev
, i
+ 1, q_depth
, i
);
1844 if (!dev
->queues
[i
+ 1]) {
1850 for (; i
< num_possible_cpus(); i
++) {
1851 int target
= i
% rounddown_pow_of_two(dev
->queue_count
- 1);
1852 dev
->queues
[i
+ 1] = dev
->queues
[target
+ 1];
1855 for (i
= 1; i
< dev
->queue_count
; i
++) {
1856 result
= nvme_create_queue(dev
->queues
[i
], i
);
1858 for (--i
; i
> 0; i
--)
1859 nvme_disable_queue(dev
, i
);
1867 nvme_free_queues(dev
);
1872 * Return: error value if an error occurred setting up the queues or calling
1873 * Identify Device. 0 if these succeeded, even if adding some of the
1874 * namespaces failed. At the moment, these failures are silent. TBD which
1875 * failures should be reported.
1877 static int nvme_dev_add(struct nvme_dev
*dev
)
1882 struct nvme_id_ctrl
*ctrl
;
1883 struct nvme_id_ns
*id_ns
;
1885 dma_addr_t dma_addr
;
1886 int shift
= NVME_CAP_MPSMIN(readq(&dev
->bar
->cap
)) + 12;
1888 mem
= dma_alloc_coherent(&dev
->pci_dev
->dev
, 8192, &dma_addr
,
1893 res
= nvme_identify(dev
, 0, 1, dma_addr
);
1900 nn
= le32_to_cpup(&ctrl
->nn
);
1901 dev
->oncs
= le16_to_cpup(&ctrl
->oncs
);
1902 memcpy(dev
->serial
, ctrl
->sn
, sizeof(ctrl
->sn
));
1903 memcpy(dev
->model
, ctrl
->mn
, sizeof(ctrl
->mn
));
1904 memcpy(dev
->firmware_rev
, ctrl
->fr
, sizeof(ctrl
->fr
));
1906 dev
->max_hw_sectors
= 1 << (ctrl
->mdts
+ shift
- 9);
1907 if ((dev
->pci_dev
->vendor
== PCI_VENDOR_ID_INTEL
) &&
1908 (dev
->pci_dev
->device
== 0x0953) && ctrl
->vs
[3])
1909 dev
->stripe_size
= 1 << (ctrl
->vs
[3] + shift
);
1912 for (i
= 1; i
<= nn
; i
++) {
1913 res
= nvme_identify(dev
, i
, 0, dma_addr
);
1917 if (id_ns
->ncap
== 0)
1920 res
= nvme_get_features(dev
, NVME_FEAT_LBA_RANGE
, i
,
1921 dma_addr
+ 4096, NULL
);
1923 memset(mem
+ 4096, 0, 4096);
1925 ns
= nvme_alloc_ns(dev
, i
, mem
, mem
+ 4096);
1927 list_add_tail(&ns
->list
, &dev
->namespaces
);
1929 list_for_each_entry(ns
, &dev
->namespaces
, list
)
1934 dma_free_coherent(&dev
->pci_dev
->dev
, 8192, mem
, dma_addr
);
1938 static int nvme_dev_map(struct nvme_dev
*dev
)
1940 int bars
, result
= -ENOMEM
;
1941 struct pci_dev
*pdev
= dev
->pci_dev
;
1943 if (pci_enable_device_mem(pdev
))
1946 dev
->entry
[0].vector
= pdev
->irq
;
1947 pci_set_master(pdev
);
1948 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1949 if (pci_request_selected_regions(pdev
, bars
, "nvme"))
1952 if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64)))
1953 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1954 else if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32)))
1955 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1959 pci_set_drvdata(pdev
, dev
);
1960 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), 8192);
1964 dev
->db_stride
= NVME_CAP_STRIDE(readq(&dev
->bar
->cap
));
1965 dev
->dbs
= ((void __iomem
*)dev
->bar
) + 4096;
1970 pci_release_regions(pdev
);
1972 pci_disable_device(pdev
);
1976 static void nvme_dev_unmap(struct nvme_dev
*dev
)
1978 if (dev
->pci_dev
->msi_enabled
)
1979 pci_disable_msi(dev
->pci_dev
);
1980 else if (dev
->pci_dev
->msix_enabled
)
1981 pci_disable_msix(dev
->pci_dev
);
1988 pci_release_regions(dev
->pci_dev
);
1989 if (pci_is_enabled(dev
->pci_dev
))
1990 pci_disable_device(dev
->pci_dev
);
1993 static void nvme_dev_shutdown(struct nvme_dev
*dev
)
1997 for (i
= dev
->queue_count
- 1; i
>= 0; i
--)
1998 nvme_disable_queue(dev
, i
);
2000 spin_lock(&dev_list_lock
);
2001 list_del_init(&dev
->node
);
2002 spin_unlock(&dev_list_lock
);
2005 nvme_shutdown_ctrl(dev
);
2006 nvme_dev_unmap(dev
);
2009 static void nvme_dev_remove(struct nvme_dev
*dev
)
2011 struct nvme_ns
*ns
, *next
;
2013 list_for_each_entry_safe(ns
, next
, &dev
->namespaces
, list
) {
2014 list_del(&ns
->list
);
2015 del_gendisk(ns
->disk
);
2020 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2022 struct device
*dmadev
= &dev
->pci_dev
->dev
;
2023 dev
->prp_page_pool
= dma_pool_create("prp list page", dmadev
,
2024 PAGE_SIZE
, PAGE_SIZE
, 0);
2025 if (!dev
->prp_page_pool
)
2028 /* Optimisation for I/Os between 4k and 128k */
2029 dev
->prp_small_pool
= dma_pool_create("prp list 256", dmadev
,
2031 if (!dev
->prp_small_pool
) {
2032 dma_pool_destroy(dev
->prp_page_pool
);
2038 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2040 dma_pool_destroy(dev
->prp_page_pool
);
2041 dma_pool_destroy(dev
->prp_small_pool
);
2044 static DEFINE_IDA(nvme_instance_ida
);
2046 static int nvme_set_instance(struct nvme_dev
*dev
)
2048 int instance
, error
;
2051 if (!ida_pre_get(&nvme_instance_ida
, GFP_KERNEL
))
2054 spin_lock(&dev_list_lock
);
2055 error
= ida_get_new(&nvme_instance_ida
, &instance
);
2056 spin_unlock(&dev_list_lock
);
2057 } while (error
== -EAGAIN
);
2062 dev
->instance
= instance
;
2066 static void nvme_release_instance(struct nvme_dev
*dev
)
2068 spin_lock(&dev_list_lock
);
2069 ida_remove(&nvme_instance_ida
, dev
->instance
);
2070 spin_unlock(&dev_list_lock
);
2073 static void nvme_free_dev(struct kref
*kref
)
2075 struct nvme_dev
*dev
= container_of(kref
, struct nvme_dev
, kref
);
2076 nvme_dev_remove(dev
);
2077 nvme_dev_shutdown(dev
);
2078 nvme_free_queues(dev
);
2079 nvme_release_instance(dev
);
2080 nvme_release_prp_pools(dev
);
2086 static int nvme_dev_open(struct inode
*inode
, struct file
*f
)
2088 struct nvme_dev
*dev
= container_of(f
->private_data
, struct nvme_dev
,
2090 kref_get(&dev
->kref
);
2091 f
->private_data
= dev
;
2095 static int nvme_dev_release(struct inode
*inode
, struct file
*f
)
2097 struct nvme_dev
*dev
= f
->private_data
;
2098 kref_put(&dev
->kref
, nvme_free_dev
);
2102 static long nvme_dev_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
2104 struct nvme_dev
*dev
= f
->private_data
;
2106 case NVME_IOCTL_ADMIN_CMD
:
2107 return nvme_user_admin_cmd(dev
, (void __user
*)arg
);
2113 static const struct file_operations nvme_dev_fops
= {
2114 .owner
= THIS_MODULE
,
2115 .open
= nvme_dev_open
,
2116 .release
= nvme_dev_release
,
2117 .unlocked_ioctl
= nvme_dev_ioctl
,
2118 .compat_ioctl
= nvme_dev_ioctl
,
2121 static int nvme_dev_start(struct nvme_dev
*dev
)
2125 result
= nvme_dev_map(dev
);
2129 result
= nvme_configure_admin_queue(dev
);
2133 spin_lock(&dev_list_lock
);
2134 list_add(&dev
->node
, &dev_list
);
2135 spin_unlock(&dev_list_lock
);
2137 result
= nvme_setup_io_queues(dev
);
2138 if (result
&& result
!= -EBUSY
)
2144 spin_lock(&dev_list_lock
);
2145 list_del_init(&dev
->node
);
2146 spin_unlock(&dev_list_lock
);
2148 nvme_dev_unmap(dev
);
2152 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2154 int result
= -ENOMEM
;
2155 struct nvme_dev
*dev
;
2157 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2160 dev
->entry
= kcalloc(num_possible_cpus(), sizeof(*dev
->entry
),
2164 dev
->queues
= kcalloc(num_possible_cpus() + 1, sizeof(void *),
2169 INIT_LIST_HEAD(&dev
->namespaces
);
2170 dev
->pci_dev
= pdev
;
2171 result
= nvme_set_instance(dev
);
2175 result
= nvme_setup_prp_pools(dev
);
2179 result
= nvme_dev_start(dev
);
2181 if (result
== -EBUSY
)
2186 result
= nvme_dev_add(dev
);
2191 scnprintf(dev
->name
, sizeof(dev
->name
), "nvme%d", dev
->instance
);
2192 dev
->miscdev
.minor
= MISC_DYNAMIC_MINOR
;
2193 dev
->miscdev
.parent
= &pdev
->dev
;
2194 dev
->miscdev
.name
= dev
->name
;
2195 dev
->miscdev
.fops
= &nvme_dev_fops
;
2196 result
= misc_register(&dev
->miscdev
);
2200 kref_init(&dev
->kref
);
2204 nvme_dev_remove(dev
);
2206 nvme_dev_shutdown(dev
);
2208 nvme_free_queues(dev
);
2209 nvme_release_prp_pools(dev
);
2211 nvme_release_instance(dev
);
2219 static void nvme_remove(struct pci_dev
*pdev
)
2221 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2222 misc_deregister(&dev
->miscdev
);
2223 kref_put(&dev
->kref
, nvme_free_dev
);
2226 /* These functions are yet to be implemented */
2227 #define nvme_error_detected NULL
2228 #define nvme_dump_registers NULL
2229 #define nvme_link_reset NULL
2230 #define nvme_slot_reset NULL
2231 #define nvme_error_resume NULL
2233 static int nvme_suspend(struct device
*dev
)
2235 struct pci_dev
*pdev
= to_pci_dev(dev
);
2236 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2238 nvme_dev_shutdown(ndev
);
2242 static int nvme_resume(struct device
*dev
)
2244 struct pci_dev
*pdev
= to_pci_dev(dev
);
2245 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2248 ret
= nvme_dev_start(ndev
);
2249 /* XXX: should remove gendisks if resume fails */
2251 nvme_free_queues(ndev
);
2255 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2257 static const struct pci_error_handlers nvme_err_handler
= {
2258 .error_detected
= nvme_error_detected
,
2259 .mmio_enabled
= nvme_dump_registers
,
2260 .link_reset
= nvme_link_reset
,
2261 .slot_reset
= nvme_slot_reset
,
2262 .resume
= nvme_error_resume
,
2265 /* Move to pci_ids.h later */
2266 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2268 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table
) = {
2269 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2272 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2274 static struct pci_driver nvme_driver
= {
2276 .id_table
= nvme_id_table
,
2277 .probe
= nvme_probe
,
2278 .remove
= nvme_remove
,
2280 .pm
= &nvme_dev_pm_ops
,
2282 .err_handler
= &nvme_err_handler
,
2285 static int __init
nvme_init(void)
2289 nvme_thread
= kthread_run(nvme_kthread
, NULL
, "nvme");
2290 if (IS_ERR(nvme_thread
))
2291 return PTR_ERR(nvme_thread
);
2293 result
= register_blkdev(nvme_major
, "nvme");
2296 else if (result
> 0)
2297 nvme_major
= result
;
2299 result
= pci_register_driver(&nvme_driver
);
2301 goto unregister_blkdev
;
2305 unregister_blkdev(nvme_major
, "nvme");
2307 kthread_stop(nvme_thread
);
2311 static void __exit
nvme_exit(void)
2313 pci_unregister_driver(&nvme_driver
);
2314 unregister_blkdev(nvme_major
, "nvme");
2315 kthread_stop(nvme_thread
);
2318 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2319 MODULE_LICENSE("GPL");
2320 MODULE_VERSION("0.8");
2321 module_init(nvme_init
);
2322 module_exit(nvme_exit
);