x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / char / hw_random / n2-drv.c
blobf9beed54d0c87fe2908b7c7d84bba111ee580f0b
1 /* n2-drv.c: Niagara-2 RNG driver.
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
19 #include <asm/hypervisor.h>
21 #include "n2rng.h"
23 #define DRV_MODULE_NAME "n2rng"
24 #define PFX DRV_MODULE_NAME ": "
25 #define DRV_MODULE_VERSION "0.2"
26 #define DRV_MODULE_RELDATE "July 27, 2011"
28 static char version[] =
29 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
31 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32 MODULE_DESCRIPTION("Niagara2 RNG driver");
33 MODULE_LICENSE("GPL");
34 MODULE_VERSION(DRV_MODULE_VERSION);
36 /* The Niagara2 RNG provides a 64-bit read-only random number
37 * register, plus a control register. Access to the RNG is
38 * virtualized through the hypervisor so that both guests and control
39 * nodes can access the device.
41 * The entropy source consists of raw entropy sources, each
42 * constructed from a voltage controlled oscillator whose phase is
43 * jittered by thermal noise sources.
45 * The oscillator in each of the three raw entropy sources run at
46 * different frequencies. Normally, all three generator outputs are
47 * gathered, xored together, and fed into a CRC circuit, the output of
48 * which is the 64-bit read-only register.
50 * Some time is necessary for all the necessary entropy to build up
51 * such that a full 64-bits of entropy are available in the register.
52 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53 * an interlock which blocks register reads until sufficient entropy
54 * is available.
56 * A control register is provided for adjusting various aspects of RNG
57 * operation, and to enable diagnostic modes. Each of the three raw
58 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
59 * provided are fields for controlling the minimum time in cycles
60 * between read accesses to the register (RNG_CTL_WAIT, this controls
61 * the interlock described in the previous paragraph).
63 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64 * all three entropy sources enabled, and the interlock time set
65 * appropriately.
67 * The CRC polynomial used by the chip is:
69 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
73 * The RNG_CTL_VCO value of each noise cell must be programmed
74 * separately. This is why 4 control register values must be provided
75 * to the hypervisor. During a write, the hypervisor writes them all,
76 * one at a time, to the actual RNG_CTL register. The first three
77 * values are used to setup the desired RNG_CTL_VCO for each entropy
78 * source, for example:
80 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
84 * And then the fourth value sets the final chip state and enables
85 * desired.
88 static int n2rng_hv_err_trans(unsigned long hv_err)
90 switch (hv_err) {
91 case HV_EOK:
92 return 0;
93 case HV_EWOULDBLOCK:
94 return -EAGAIN;
95 case HV_ENOACCESS:
96 return -EPERM;
97 case HV_EIO:
98 return -EIO;
99 case HV_EBUSY:
100 return -EBUSY;
101 case HV_EBADALIGN:
102 case HV_ENORADDR:
103 return -EFAULT;
104 default:
105 return -EINVAL;
109 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110 unsigned long unit)
112 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113 int block = 0, busy = 0;
115 while (1) {
116 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117 &ticks,
118 &watchdog_delta,
119 &watchdog_status);
120 if (hv_err == HV_EOK)
121 break;
123 if (hv_err == HV_EBUSY) {
124 if (++busy >= N2RNG_BUSY_LIMIT)
125 break;
127 udelay(1);
128 } else if (hv_err == HV_EWOULDBLOCK) {
129 if (++block >= N2RNG_BLOCK_LIMIT)
130 break;
132 __delay(ticks);
133 } else
134 break;
137 return hv_err;
140 /* In multi-socket situations, the hypervisor might need to
141 * queue up the RNG control register write if it's for a unit
142 * that is on a cpu socket other than the one we are executing on.
144 * We poll here waiting for a successful read of that control
145 * register to make sure the write has been actually performed.
147 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
149 unsigned long ra = __pa(&np->scratch_control[0]);
151 return n2rng_generic_read_control_v2(ra, unit);
154 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155 unsigned long state,
156 unsigned long control_ra,
157 unsigned long watchdog_timeout,
158 unsigned long *ticks)
160 unsigned long hv_err;
162 if (np->hvapi_major == 1) {
163 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164 watchdog_timeout, ticks);
165 } else {
166 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167 watchdog_timeout, unit);
168 if (hv_err == HV_EOK)
169 hv_err = n2rng_control_settle_v2(np, unit);
170 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
173 return hv_err;
176 static int n2rng_generic_read_data(unsigned long data_ra)
178 unsigned long ticks, hv_err;
179 int block = 0, hcheck = 0;
181 while (1) {
182 hv_err = sun4v_rng_data_read(data_ra, &ticks);
183 if (hv_err == HV_EOK)
184 return 0;
186 if (hv_err == HV_EWOULDBLOCK) {
187 if (++block >= N2RNG_BLOCK_LIMIT)
188 return -EWOULDBLOCK;
189 __delay(ticks);
190 } else if (hv_err == HV_ENOACCESS) {
191 return -EPERM;
192 } else if (hv_err == HV_EIO) {
193 if (++hcheck >= N2RNG_HCHECK_LIMIT)
194 return -EIO;
195 udelay(10000);
196 } else
197 return -ENODEV;
201 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202 unsigned long unit,
203 unsigned long data_ra,
204 unsigned long data_len,
205 unsigned long *ticks)
207 unsigned long hv_err;
209 if (np->hvapi_major == 1) {
210 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211 } else {
212 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213 unit, ticks);
214 if (!*ticks)
215 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
217 return hv_err;
220 static int n2rng_generic_read_diag_data(struct n2rng *np,
221 unsigned long unit,
222 unsigned long data_ra,
223 unsigned long data_len)
225 unsigned long ticks, hv_err;
226 int block = 0;
228 while (1) {
229 hv_err = n2rng_read_diag_data_one(np, unit,
230 data_ra, data_len,
231 &ticks);
232 if (hv_err == HV_EOK)
233 return 0;
235 if (hv_err == HV_EWOULDBLOCK) {
236 if (++block >= N2RNG_BLOCK_LIMIT)
237 return -EWOULDBLOCK;
238 __delay(ticks);
239 } else if (hv_err == HV_ENOACCESS) {
240 return -EPERM;
241 } else if (hv_err == HV_EIO) {
242 return -EIO;
243 } else
244 return -ENODEV;
249 static int n2rng_generic_write_control(struct n2rng *np,
250 unsigned long control_ra,
251 unsigned long unit,
252 unsigned long state)
254 unsigned long hv_err, ticks;
255 int block = 0, busy = 0;
257 while (1) {
258 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259 np->wd_timeo, &ticks);
260 if (hv_err == HV_EOK)
261 return 0;
263 if (hv_err == HV_EWOULDBLOCK) {
264 if (++block >= N2RNG_BLOCK_LIMIT)
265 return -EWOULDBLOCK;
266 __delay(ticks);
267 } else if (hv_err == HV_EBUSY) {
268 if (++busy >= N2RNG_BUSY_LIMIT)
269 return -EBUSY;
270 udelay(1);
271 } else
272 return -ENODEV;
276 /* Just try to see if we can successfully access the control register
277 * of the RNG on the domain on which we are currently executing.
279 static int n2rng_try_read_ctl(struct n2rng *np)
281 unsigned long hv_err;
282 unsigned long x;
284 if (np->hvapi_major == 1) {
285 hv_err = sun4v_rng_get_diag_ctl();
286 } else {
287 /* We purposefully give invalid arguments, HV_NOACCESS
288 * is higher priority than the errors we'd get from
289 * these other cases, and that's the error we are
290 * truly interested in.
292 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293 switch (hv_err) {
294 case HV_EWOULDBLOCK:
295 case HV_ENOACCESS:
296 break;
297 default:
298 hv_err = HV_EOK;
299 break;
303 return n2rng_hv_err_trans(hv_err);
306 #define CONTROL_DEFAULT_BASE \
307 ((2 << RNG_CTL_ASEL_SHIFT) | \
308 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
309 RNG_CTL_LFSR)
311 #define CONTROL_DEFAULT_0 \
312 (CONTROL_DEFAULT_BASE | \
313 (1 << RNG_CTL_VCO_SHIFT) | \
314 RNG_CTL_ES1)
315 #define CONTROL_DEFAULT_1 \
316 (CONTROL_DEFAULT_BASE | \
317 (2 << RNG_CTL_VCO_SHIFT) | \
318 RNG_CTL_ES2)
319 #define CONTROL_DEFAULT_2 \
320 (CONTROL_DEFAULT_BASE | \
321 (3 << RNG_CTL_VCO_SHIFT) | \
322 RNG_CTL_ES3)
323 #define CONTROL_DEFAULT_3 \
324 (CONTROL_DEFAULT_BASE | \
325 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
327 static void n2rng_control_swstate_init(struct n2rng *np)
329 int i;
331 np->flags |= N2RNG_FLAG_CONTROL;
333 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
334 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
335 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
337 for (i = 0; i < np->num_units; i++) {
338 struct n2rng_unit *up = &np->units[i];
340 up->control[0] = CONTROL_DEFAULT_0;
341 up->control[1] = CONTROL_DEFAULT_1;
342 up->control[2] = CONTROL_DEFAULT_2;
343 up->control[3] = CONTROL_DEFAULT_3;
346 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
349 static int n2rng_grab_diag_control(struct n2rng *np)
351 int i, busy_count, err = -ENODEV;
353 busy_count = 0;
354 for (i = 0; i < 100; i++) {
355 err = n2rng_try_read_ctl(np);
356 if (err != -EAGAIN)
357 break;
359 if (++busy_count > 100) {
360 dev_err(&np->op->dev,
361 "Grab diag control timeout.\n");
362 return -ENODEV;
365 udelay(1);
368 return err;
371 static int n2rng_init_control(struct n2rng *np)
373 int err = n2rng_grab_diag_control(np);
375 /* Not in the control domain, that's OK we are only a consumer
376 * of the RNG data, we don't setup and program it.
378 if (err == -EPERM)
379 return 0;
380 if (err)
381 return err;
383 n2rng_control_swstate_init(np);
385 return 0;
388 static int n2rng_data_read(struct hwrng *rng, u32 *data)
390 struct n2rng *np = (struct n2rng *) rng->priv;
391 unsigned long ra = __pa(&np->test_data);
392 int len;
394 if (!(np->flags & N2RNG_FLAG_READY)) {
395 len = 0;
396 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
397 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
398 *data = np->buffer;
399 len = 4;
400 } else {
401 int err = n2rng_generic_read_data(ra);
402 if (!err) {
403 np->buffer = np->test_data >> 32;
404 *data = np->test_data & 0xffffffff;
405 len = 4;
406 } else {
407 dev_err(&np->op->dev, "RNG error, restesting\n");
408 np->flags &= ~N2RNG_FLAG_READY;
409 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
410 schedule_delayed_work(&np->work, 0);
411 len = 0;
415 return len;
418 /* On a guest node, just make sure we can read random data properly.
419 * If a control node reboots or reloads it's n2rng driver, this won't
420 * work during that time. So we have to keep probing until the device
421 * becomes usable.
423 static int n2rng_guest_check(struct n2rng *np)
425 unsigned long ra = __pa(&np->test_data);
427 return n2rng_generic_read_data(ra);
430 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
431 u64 *pre_control, u64 pre_state,
432 u64 *buffer, unsigned long buf_len,
433 u64 *post_control, u64 post_state)
435 unsigned long post_ctl_ra = __pa(post_control);
436 unsigned long pre_ctl_ra = __pa(pre_control);
437 unsigned long buffer_ra = __pa(buffer);
438 int err;
440 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
441 if (err)
442 return err;
444 err = n2rng_generic_read_diag_data(np, unit,
445 buffer_ra, buf_len);
447 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
448 post_state);
450 return err;
453 static u64 advance_polynomial(u64 poly, u64 val, int count)
455 int i;
457 for (i = 0; i < count; i++) {
458 int highbit_set = ((s64)val < 0);
460 val <<= 1;
461 if (highbit_set)
462 val ^= poly;
465 return val;
468 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
470 int i, count = 0;
472 /* Purposefully skip over the first word. */
473 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
474 if (np->test_buffer[i] == val)
475 count++;
477 return count;
480 static void n2rng_dump_test_buffer(struct n2rng *np)
482 int i;
484 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
485 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
486 i, np->test_buffer[i]);
489 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
491 u64 val = SELFTEST_VAL;
492 int err, matches, limit;
494 matches = 0;
495 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
496 matches += n2rng_test_buffer_find(np, val);
497 if (matches >= SELFTEST_MATCH_GOAL)
498 break;
499 val = advance_polynomial(SELFTEST_POLY, val, 1);
502 err = 0;
503 if (limit >= SELFTEST_LOOPS_MAX) {
504 err = -ENODEV;
505 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
506 n2rng_dump_test_buffer(np);
507 } else
508 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
510 return err;
513 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
515 int err;
517 np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
520 np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
521 RNG_CTL_LFSR |
522 ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
525 err = n2rng_entropy_diag_read(np, unit, np->test_control,
526 HV_RNG_STATE_HEALTHCHECK,
527 np->test_buffer,
528 sizeof(np->test_buffer),
529 &np->units[unit].control[0],
530 np->hv_state);
531 if (err)
532 return err;
534 return n2rng_check_selftest_buffer(np, unit);
537 static int n2rng_control_check(struct n2rng *np)
539 int i;
541 for (i = 0; i < np->num_units; i++) {
542 int err = n2rng_control_selftest(np, i);
543 if (err)
544 return err;
546 return 0;
549 /* The sanity checks passed, install the final configuration into the
550 * chip, it's ready to use.
552 static int n2rng_control_configure_units(struct n2rng *np)
554 int unit, err;
556 err = 0;
557 for (unit = 0; unit < np->num_units; unit++) {
558 struct n2rng_unit *up = &np->units[unit];
559 unsigned long ctl_ra = __pa(&up->control[0]);
560 int esrc;
561 u64 base;
563 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
564 (2 << RNG_CTL_ASEL_SHIFT) |
565 RNG_CTL_LFSR);
567 /* XXX This isn't the best. We should fetch a bunch
568 * XXX of words using each entropy source combined XXX
569 * with each VCO setting, and see which combinations
570 * XXX give the best random data.
572 for (esrc = 0; esrc < 3; esrc++)
573 up->control[esrc] = base |
574 (esrc << RNG_CTL_VCO_SHIFT) |
575 (RNG_CTL_ES1 << esrc);
577 up->control[3] = base |
578 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
580 err = n2rng_generic_write_control(np, ctl_ra, unit,
581 HV_RNG_STATE_CONFIGURED);
582 if (err)
583 break;
586 return err;
589 static void n2rng_work(struct work_struct *work)
591 struct n2rng *np = container_of(work, struct n2rng, work.work);
592 int err = 0;
594 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
595 err = n2rng_guest_check(np);
596 } else {
597 preempt_disable();
598 err = n2rng_control_check(np);
599 preempt_enable();
601 if (!err)
602 err = n2rng_control_configure_units(np);
605 if (!err) {
606 np->flags |= N2RNG_FLAG_READY;
607 dev_info(&np->op->dev, "RNG ready\n");
610 if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
611 schedule_delayed_work(&np->work, HZ * 2);
614 static void n2rng_driver_version(void)
616 static int n2rng_version_printed;
618 if (n2rng_version_printed++ == 0)
619 pr_info("%s", version);
622 static const struct of_device_id n2rng_match[];
623 static int n2rng_probe(struct platform_device *op)
625 const struct of_device_id *match;
626 int multi_capable;
627 int err = -ENOMEM;
628 struct n2rng *np;
630 match = of_match_device(n2rng_match, &op->dev);
631 if (!match)
632 return -EINVAL;
633 multi_capable = (match->data != NULL);
635 n2rng_driver_version();
636 np = kzalloc(sizeof(*np), GFP_KERNEL);
637 if (!np)
638 goto out;
639 np->op = op;
641 INIT_DELAYED_WORK(&np->work, n2rng_work);
643 if (multi_capable)
644 np->flags |= N2RNG_FLAG_MULTI;
646 err = -ENODEV;
647 np->hvapi_major = 2;
648 if (sun4v_hvapi_register(HV_GRP_RNG,
649 np->hvapi_major,
650 &np->hvapi_minor)) {
651 np->hvapi_major = 1;
652 if (sun4v_hvapi_register(HV_GRP_RNG,
653 np->hvapi_major,
654 &np->hvapi_minor)) {
655 dev_err(&op->dev, "Cannot register suitable "
656 "HVAPI version.\n");
657 goto out_free;
661 if (np->flags & N2RNG_FLAG_MULTI) {
662 if (np->hvapi_major < 2) {
663 dev_err(&op->dev, "multi-unit-capable RNG requires "
664 "HVAPI major version 2 or later, got %lu\n",
665 np->hvapi_major);
666 goto out_hvapi_unregister;
668 np->num_units = of_getintprop_default(op->dev.of_node,
669 "rng-#units", 0);
670 if (!np->num_units) {
671 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
672 goto out_hvapi_unregister;
674 } else
675 np->num_units = 1;
677 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
678 np->hvapi_major, np->hvapi_minor);
680 np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
681 GFP_KERNEL);
682 err = -ENOMEM;
683 if (!np->units)
684 goto out_hvapi_unregister;
686 err = n2rng_init_control(np);
687 if (err)
688 goto out_free_units;
690 dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 ((np->flags & N2RNG_FLAG_MULTI) ?
692 "multi-unit-capable" : "single-unit"),
693 np->num_units);
695 np->hwrng.name = "n2rng";
696 np->hwrng.data_read = n2rng_data_read;
697 np->hwrng.priv = (unsigned long) np;
699 err = hwrng_register(&np->hwrng);
700 if (err)
701 goto out_free_units;
703 platform_set_drvdata(op, np);
705 schedule_delayed_work(&np->work, 0);
707 return 0;
709 out_free_units:
710 kfree(np->units);
711 np->units = NULL;
713 out_hvapi_unregister:
714 sun4v_hvapi_unregister(HV_GRP_RNG);
716 out_free:
717 kfree(np);
718 out:
719 return err;
722 static int n2rng_remove(struct platform_device *op)
724 struct n2rng *np = platform_get_drvdata(op);
726 np->flags |= N2RNG_FLAG_SHUTDOWN;
728 cancel_delayed_work_sync(&np->work);
730 hwrng_unregister(&np->hwrng);
732 sun4v_hvapi_unregister(HV_GRP_RNG);
734 kfree(np->units);
735 np->units = NULL;
737 kfree(np);
739 return 0;
742 static const struct of_device_id n2rng_match[] = {
744 .name = "random-number-generator",
745 .compatible = "SUNW,n2-rng",
748 .name = "random-number-generator",
749 .compatible = "SUNW,vf-rng",
750 .data = (void *) 1,
753 .name = "random-number-generator",
754 .compatible = "SUNW,kt-rng",
755 .data = (void *) 1,
759 MODULE_DEVICE_TABLE(of, n2rng_match);
761 static struct platform_driver n2rng_driver = {
762 .driver = {
763 .name = "n2rng",
764 .owner = THIS_MODULE,
765 .of_match_table = n2rng_match,
767 .probe = n2rng_probe,
768 .remove = n2rng_remove,
771 module_platform_driver(n2rng_driver);