x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / char / random.c
blob7a744d39175638a381835a8cadce7039f58ee3bf
1 /*
2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
52 * Theory of operation
53 * ===================
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
220 * Acknowledgements:
221 * =================
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 #include <linux/irq.h>
260 #include <asm/processor.h>
261 #include <asm/uaccess.h>
262 #include <asm/irq.h>
263 #include <asm/irq_regs.h>
264 #include <asm/io.h>
266 #define CREATE_TRACE_POINTS
267 #include <trace/events/random.h>
270 * Configuration information
272 #define INPUT_POOL_WORDS 128
273 #define OUTPUT_POOL_WORDS 32
274 #define SEC_XFER_SIZE 512
275 #define EXTRACT_SIZE 10
277 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
280 * The minimum number of bits of entropy before we wake up a read on
281 * /dev/random. Should be enough to do a significant reseed.
283 static int random_read_wakeup_thresh = 64;
286 * If the entropy count falls under this number of bits, then we
287 * should wake up processes which are selecting or polling on write
288 * access to /dev/random.
290 static int random_write_wakeup_thresh = 128;
293 * When the input pool goes over trickle_thresh, start dropping most
294 * samples to avoid wasting CPU time and reduce lock contention.
297 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
299 static DEFINE_PER_CPU(int, trickle_count);
302 * A pool of size .poolwords is stirred with a primitive polynomial
303 * of degree .poolwords over GF(2). The taps for various sizes are
304 * defined below. They are chosen to be evenly spaced (minimum RMS
305 * distance from evenly spaced; the numbers in the comments are a
306 * scaled squared error sum) except for the last tap, which is 1 to
307 * get the twisting happening as fast as possible.
309 static struct poolinfo {
310 int poolwords;
311 int tap1, tap2, tap3, tap4, tap5;
312 } poolinfo_table[] = {
313 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
314 { 128, 103, 76, 51, 25, 1 },
315 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
316 { 32, 26, 20, 14, 7, 1 },
317 #if 0
318 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
319 { 2048, 1638, 1231, 819, 411, 1 },
321 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
322 { 1024, 817, 615, 412, 204, 1 },
324 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
325 { 1024, 819, 616, 410, 207, 2 },
327 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
328 { 512, 411, 308, 208, 104, 1 },
330 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
331 { 512, 409, 307, 206, 102, 2 },
332 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
333 { 512, 409, 309, 205, 103, 2 },
335 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
336 { 256, 205, 155, 101, 52, 1 },
338 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
339 { 128, 103, 78, 51, 27, 2 },
341 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
342 { 64, 52, 39, 26, 14, 1 },
343 #endif
346 #define POOLBITS poolwords*32
347 #define POOLBYTES poolwords*4
350 * For the purposes of better mixing, we use the CRC-32 polynomial as
351 * well to make a twisted Generalized Feedback Shift Reigster
353 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
354 * Transactions on Modeling and Computer Simulation 2(3):179-194.
355 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
356 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
358 * Thanks to Colin Plumb for suggesting this.
360 * We have not analyzed the resultant polynomial to prove it primitive;
361 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
362 * of a random large-degree polynomial over GF(2) are more than large enough
363 * that periodicity is not a concern.
365 * The input hash is much less sensitive than the output hash. All
366 * that we want of it is that it be a good non-cryptographic hash;
367 * i.e. it not produce collisions when fed "random" data of the sort
368 * we expect to see. As long as the pool state differs for different
369 * inputs, we have preserved the input entropy and done a good job.
370 * The fact that an intelligent attacker can construct inputs that
371 * will produce controlled alterations to the pool's state is not
372 * important because we don't consider such inputs to contribute any
373 * randomness. The only property we need with respect to them is that
374 * the attacker can't increase his/her knowledge of the pool's state.
375 * Since all additions are reversible (knowing the final state and the
376 * input, you can reconstruct the initial state), if an attacker has
377 * any uncertainty about the initial state, he/she can only shuffle
378 * that uncertainty about, but never cause any collisions (which would
379 * decrease the uncertainty).
381 * The chosen system lets the state of the pool be (essentially) the input
382 * modulo the generator polymnomial. Now, for random primitive polynomials,
383 * this is a universal class of hash functions, meaning that the chance
384 * of a collision is limited by the attacker's knowledge of the generator
385 * polynomail, so if it is chosen at random, an attacker can never force
386 * a collision. Here, we use a fixed polynomial, but we *can* assume that
387 * ###--> it is unknown to the processes generating the input entropy. <-###
388 * Because of this important property, this is a good, collision-resistant
389 * hash; hash collisions will occur no more often than chance.
393 * Static global variables
395 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
396 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
397 static struct fasync_struct *fasync;
399 static bool debug;
400 module_param(debug, bool, 0644);
401 #define DEBUG_ENT(fmt, arg...) do { \
402 if (debug) \
403 printk(KERN_DEBUG "random %04d %04d %04d: " \
404 fmt,\
405 input_pool.entropy_count,\
406 blocking_pool.entropy_count,\
407 nonblocking_pool.entropy_count,\
408 ## arg); } while (0)
410 /**********************************************************************
412 * OS independent entropy store. Here are the functions which handle
413 * storing entropy in an entropy pool.
415 **********************************************************************/
417 struct entropy_store;
418 struct entropy_store {
419 /* read-only data: */
420 struct poolinfo *poolinfo;
421 __u32 *pool;
422 const char *name;
423 struct entropy_store *pull;
424 int limit;
426 /* read-write data: */
427 spinlock_t lock;
428 unsigned add_ptr;
429 unsigned input_rotate;
430 int entropy_count;
431 int entropy_total;
432 unsigned int initialized:1;
433 bool last_data_init;
434 __u8 last_data[EXTRACT_SIZE];
437 static __u32 input_pool_data[INPUT_POOL_WORDS];
438 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
439 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
441 static struct entropy_store input_pool = {
442 .poolinfo = &poolinfo_table[0],
443 .name = "input",
444 .limit = 1,
445 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
446 .pool = input_pool_data
449 static struct entropy_store blocking_pool = {
450 .poolinfo = &poolinfo_table[1],
451 .name = "blocking",
452 .limit = 1,
453 .pull = &input_pool,
454 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
455 .pool = blocking_pool_data
458 static struct entropy_store nonblocking_pool = {
459 .poolinfo = &poolinfo_table[1],
460 .name = "nonblocking",
461 .pull = &input_pool,
462 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
463 .pool = nonblocking_pool_data
466 static __u32 const twist_table[8] = {
467 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
468 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
471 * This function adds bytes into the entropy "pool". It does not
472 * update the entropy estimate. The caller should call
473 * credit_entropy_bits if this is appropriate.
475 * The pool is stirred with a primitive polynomial of the appropriate
476 * degree, and then twisted. We twist by three bits at a time because
477 * it's cheap to do so and helps slightly in the expected case where
478 * the entropy is concentrated in the low-order bits.
480 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
481 int nbytes, __u8 out[64])
483 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
484 int input_rotate;
485 int wordmask = r->poolinfo->poolwords - 1;
486 const char *bytes = in;
487 __u32 w;
489 tap1 = r->poolinfo->tap1;
490 tap2 = r->poolinfo->tap2;
491 tap3 = r->poolinfo->tap3;
492 tap4 = r->poolinfo->tap4;
493 tap5 = r->poolinfo->tap5;
495 smp_rmb();
496 input_rotate = ACCESS_ONCE(r->input_rotate);
497 i = ACCESS_ONCE(r->add_ptr);
499 /* mix one byte at a time to simplify size handling and churn faster */
500 while (nbytes--) {
501 w = rol32(*bytes++, input_rotate & 31);
502 i = (i - 1) & wordmask;
504 /* XOR in the various taps */
505 w ^= r->pool[i];
506 w ^= r->pool[(i + tap1) & wordmask];
507 w ^= r->pool[(i + tap2) & wordmask];
508 w ^= r->pool[(i + tap3) & wordmask];
509 w ^= r->pool[(i + tap4) & wordmask];
510 w ^= r->pool[(i + tap5) & wordmask];
512 /* Mix the result back in with a twist */
513 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
516 * Normally, we add 7 bits of rotation to the pool.
517 * At the beginning of the pool, add an extra 7 bits
518 * rotation, so that successive passes spread the
519 * input bits across the pool evenly.
521 input_rotate += i ? 7 : 14;
524 ACCESS_ONCE(r->input_rotate) = input_rotate;
525 ACCESS_ONCE(r->add_ptr) = i;
526 smp_wmb();
528 if (out)
529 for (j = 0; j < 16; j++)
530 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
533 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
534 int nbytes, __u8 out[64])
536 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
537 _mix_pool_bytes(r, in, nbytes, out);
540 static void mix_pool_bytes(struct entropy_store *r, const void *in,
541 int nbytes, __u8 out[64])
543 unsigned long flags;
545 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
546 spin_lock_irqsave(&r->lock, flags);
547 _mix_pool_bytes(r, in, nbytes, out);
548 spin_unlock_irqrestore(&r->lock, flags);
551 struct fast_pool {
552 __u32 pool[4];
553 unsigned long last;
554 unsigned short count;
555 unsigned char rotate;
556 unsigned char last_timer_intr;
560 * This is a fast mixing routine used by the interrupt randomness
561 * collector. It's hardcoded for an 128 bit pool and assumes that any
562 * locks that might be needed are taken by the caller.
564 static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
566 const char *bytes = in;
567 __u32 w;
568 unsigned i = f->count;
569 unsigned input_rotate = f->rotate;
571 while (nbytes--) {
572 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
573 f->pool[(i + 1) & 3];
574 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
575 input_rotate += (i++ & 3) ? 7 : 14;
577 f->count = i;
578 f->rotate = input_rotate;
582 * Credit (or debit) the entropy store with n bits of entropy
584 static void credit_entropy_bits(struct entropy_store *r, int nbits)
586 int entropy_count, orig;
588 if (!nbits)
589 return;
591 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
592 retry:
593 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
594 entropy_count += nbits;
596 if (entropy_count < 0) {
597 DEBUG_ENT("negative entropy/overflow\n");
598 entropy_count = 0;
599 } else if (entropy_count > r->poolinfo->POOLBITS)
600 entropy_count = r->poolinfo->POOLBITS;
601 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
602 goto retry;
604 if (!r->initialized && nbits > 0) {
605 r->entropy_total += nbits;
606 if (r->entropy_total > 128)
607 r->initialized = 1;
610 trace_credit_entropy_bits(r->name, nbits, entropy_count,
611 r->entropy_total, _RET_IP_);
613 /* should we wake readers? */
614 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
615 wake_up_interruptible(&random_read_wait);
616 kill_fasync(&fasync, SIGIO, POLL_IN);
620 /*********************************************************************
622 * Entropy input management
624 *********************************************************************/
626 /* There is one of these per entropy source */
627 struct timer_rand_state {
628 cycles_t last_time;
629 long last_delta, last_delta2;
630 unsigned dont_count_entropy:1;
634 * Add device- or boot-specific data to the input and nonblocking
635 * pools to help initialize them to unique values.
637 * None of this adds any entropy, it is meant to avoid the
638 * problem of the nonblocking pool having similar initial state
639 * across largely identical devices.
641 void add_device_randomness(const void *buf, unsigned int size)
643 unsigned long time = random_get_entropy() ^ jiffies;
645 mix_pool_bytes(&input_pool, buf, size, NULL);
646 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
647 mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
648 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
650 EXPORT_SYMBOL(add_device_randomness);
652 static struct timer_rand_state input_timer_state;
655 * This function adds entropy to the entropy "pool" by using timing
656 * delays. It uses the timer_rand_state structure to make an estimate
657 * of how many bits of entropy this call has added to the pool.
659 * The number "num" is also added to the pool - it should somehow describe
660 * the type of event which just happened. This is currently 0-255 for
661 * keyboard scan codes, and 256 upwards for interrupts.
664 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
666 struct {
667 long jiffies;
668 unsigned cycles;
669 unsigned num;
670 } sample;
671 long delta, delta2, delta3;
673 preempt_disable();
674 /* if over the trickle threshold, use only 1 in 4096 samples */
675 if (input_pool.entropy_count > trickle_thresh &&
676 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
677 goto out;
679 sample.jiffies = jiffies;
680 sample.cycles = random_get_entropy();
681 sample.num = num;
682 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
685 * Calculate number of bits of randomness we probably added.
686 * We take into account the first, second and third-order deltas
687 * in order to make our estimate.
690 if (!state->dont_count_entropy) {
691 delta = sample.jiffies - state->last_time;
692 state->last_time = sample.jiffies;
694 delta2 = delta - state->last_delta;
695 state->last_delta = delta;
697 delta3 = delta2 - state->last_delta2;
698 state->last_delta2 = delta2;
700 if (delta < 0)
701 delta = -delta;
702 if (delta2 < 0)
703 delta2 = -delta2;
704 if (delta3 < 0)
705 delta3 = -delta3;
706 if (delta > delta2)
707 delta = delta2;
708 if (delta > delta3)
709 delta = delta3;
712 * delta is now minimum absolute delta.
713 * Round down by 1 bit on general principles,
714 * and limit entropy entimate to 12 bits.
716 credit_entropy_bits(&input_pool,
717 min_t(int, fls(delta>>1), 11));
719 out:
720 preempt_enable();
723 void add_input_randomness(unsigned int type, unsigned int code,
724 unsigned int value)
726 static unsigned char last_value;
728 /* ignore autorepeat and the like */
729 if (value == last_value)
730 return;
732 DEBUG_ENT("input event\n");
733 last_value = value;
734 add_timer_randomness(&input_timer_state,
735 (type << 4) ^ code ^ (code >> 4) ^ value);
737 EXPORT_SYMBOL_GPL(add_input_randomness);
739 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
741 void add_interrupt_randomness(int irq, int irq_flags)
743 struct entropy_store *r;
744 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
745 struct pt_regs *regs = get_irq_regs();
746 unsigned long now = jiffies;
747 __u32 input[4], cycles = random_get_entropy();
749 input[0] = cycles ^ jiffies;
750 input[1] = irq;
751 if (regs) {
752 __u64 ip = instruction_pointer(regs);
753 input[2] = ip;
754 input[3] = ip >> 32;
757 fast_mix(fast_pool, input, sizeof(input));
759 if ((fast_pool->count & 1023) &&
760 !time_after(now, fast_pool->last + HZ))
761 return;
763 fast_pool->last = now;
765 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
766 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
768 * If we don't have a valid cycle counter, and we see
769 * back-to-back timer interrupts, then skip giving credit for
770 * any entropy.
772 if (cycles == 0) {
773 if (irq_flags & __IRQF_TIMER) {
774 if (fast_pool->last_timer_intr)
775 return;
776 fast_pool->last_timer_intr = 1;
777 } else
778 fast_pool->last_timer_intr = 0;
780 credit_entropy_bits(r, 1);
783 #ifdef CONFIG_BLOCK
784 void add_disk_randomness(struct gendisk *disk)
786 if (!disk || !disk->random)
787 return;
788 /* first major is 1, so we get >= 0x200 here */
789 DEBUG_ENT("disk event %d:%d\n",
790 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
792 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
794 #endif
796 /*********************************************************************
798 * Entropy extraction routines
800 *********************************************************************/
802 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
803 size_t nbytes, int min, int rsvd);
806 * This utility inline function is responsible for transferring entropy
807 * from the primary pool to the secondary extraction pool. We make
808 * sure we pull enough for a 'catastrophic reseed'.
810 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
812 __u32 tmp[OUTPUT_POOL_WORDS];
814 if (r->pull && r->entropy_count < nbytes * 8 &&
815 r->entropy_count < r->poolinfo->POOLBITS) {
816 /* If we're limited, always leave two wakeup worth's BITS */
817 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
818 int bytes = nbytes;
820 /* pull at least as many as BYTES as wakeup BITS */
821 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
822 /* but never more than the buffer size */
823 bytes = min_t(int, bytes, sizeof(tmp));
825 DEBUG_ENT("going to reseed %s with %d bits "
826 "(%zu of %d requested)\n",
827 r->name, bytes * 8, nbytes * 8, r->entropy_count);
829 bytes = extract_entropy(r->pull, tmp, bytes,
830 random_read_wakeup_thresh / 8, rsvd);
831 mix_pool_bytes(r, tmp, bytes, NULL);
832 credit_entropy_bits(r, bytes*8);
837 * These functions extracts randomness from the "entropy pool", and
838 * returns it in a buffer.
840 * The min parameter specifies the minimum amount we can pull before
841 * failing to avoid races that defeat catastrophic reseeding while the
842 * reserved parameter indicates how much entropy we must leave in the
843 * pool after each pull to avoid starving other readers.
845 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
848 static size_t account(struct entropy_store *r, size_t nbytes, int min,
849 int reserved)
851 unsigned long flags;
852 int wakeup_write = 0;
854 /* Hold lock while accounting */
855 spin_lock_irqsave(&r->lock, flags);
857 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
858 DEBUG_ENT("trying to extract %zu bits from %s\n",
859 nbytes * 8, r->name);
861 /* Can we pull enough? */
862 if (r->entropy_count / 8 < min + reserved) {
863 nbytes = 0;
864 } else {
865 int entropy_count, orig;
866 retry:
867 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
868 /* If limited, never pull more than available */
869 if (r->limit && nbytes + reserved >= entropy_count / 8)
870 nbytes = entropy_count/8 - reserved;
872 if (entropy_count / 8 >= nbytes + reserved) {
873 entropy_count -= nbytes*8;
874 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
875 goto retry;
876 } else {
877 entropy_count = reserved;
878 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
879 goto retry;
882 if (entropy_count < random_write_wakeup_thresh)
883 wakeup_write = 1;
886 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
887 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
889 spin_unlock_irqrestore(&r->lock, flags);
891 if (wakeup_write) {
892 wake_up_interruptible(&random_write_wait);
893 kill_fasync(&fasync, SIGIO, POLL_OUT);
896 return nbytes;
899 static void extract_buf(struct entropy_store *r, __u8 *out)
901 int i;
902 union {
903 __u32 w[5];
904 unsigned long l[LONGS(EXTRACT_SIZE)];
905 } hash;
906 __u32 workspace[SHA_WORKSPACE_WORDS];
907 __u8 extract[64];
908 unsigned long flags;
910 /* Generate a hash across the pool, 16 words (512 bits) at a time */
911 sha_init(hash.w);
912 spin_lock_irqsave(&r->lock, flags);
913 for (i = 0; i < r->poolinfo->poolwords; i += 16)
914 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
917 * We mix the hash back into the pool to prevent backtracking
918 * attacks (where the attacker knows the state of the pool
919 * plus the current outputs, and attempts to find previous
920 * ouputs), unless the hash function can be inverted. By
921 * mixing at least a SHA1 worth of hash data back, we make
922 * brute-forcing the feedback as hard as brute-forcing the
923 * hash.
925 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
926 spin_unlock_irqrestore(&r->lock, flags);
929 * To avoid duplicates, we atomically extract a portion of the
930 * pool while mixing, and hash one final time.
932 sha_transform(hash.w, extract, workspace);
933 memset(extract, 0, sizeof(extract));
934 memset(workspace, 0, sizeof(workspace));
937 * In case the hash function has some recognizable output
938 * pattern, we fold it in half. Thus, we always feed back
939 * twice as much data as we output.
941 hash.w[0] ^= hash.w[3];
942 hash.w[1] ^= hash.w[4];
943 hash.w[2] ^= rol32(hash.w[2], 16);
946 * If we have a architectural hardware random number
947 * generator, mix that in, too.
949 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
950 unsigned long v;
951 if (!arch_get_random_long(&v))
952 break;
953 hash.l[i] ^= v;
956 memcpy(out, &hash, EXTRACT_SIZE);
957 memset(&hash, 0, sizeof(hash));
960 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
961 size_t nbytes, int min, int reserved)
963 ssize_t ret = 0, i;
964 __u8 tmp[EXTRACT_SIZE];
965 unsigned long flags;
967 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
968 if (fips_enabled) {
969 spin_lock_irqsave(&r->lock, flags);
970 if (!r->last_data_init) {
971 r->last_data_init = true;
972 spin_unlock_irqrestore(&r->lock, flags);
973 trace_extract_entropy(r->name, EXTRACT_SIZE,
974 r->entropy_count, _RET_IP_);
975 xfer_secondary_pool(r, EXTRACT_SIZE);
976 extract_buf(r, tmp);
977 spin_lock_irqsave(&r->lock, flags);
978 memcpy(r->last_data, tmp, EXTRACT_SIZE);
980 spin_unlock_irqrestore(&r->lock, flags);
983 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
984 xfer_secondary_pool(r, nbytes);
985 nbytes = account(r, nbytes, min, reserved);
987 while (nbytes) {
988 extract_buf(r, tmp);
990 if (fips_enabled) {
991 spin_lock_irqsave(&r->lock, flags);
992 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
993 panic("Hardware RNG duplicated output!\n");
994 memcpy(r->last_data, tmp, EXTRACT_SIZE);
995 spin_unlock_irqrestore(&r->lock, flags);
997 i = min_t(int, nbytes, EXTRACT_SIZE);
998 memcpy(buf, tmp, i);
999 nbytes -= i;
1000 buf += i;
1001 ret += i;
1004 /* Wipe data just returned from memory */
1005 memset(tmp, 0, sizeof(tmp));
1007 return ret;
1010 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1011 size_t nbytes)
1013 ssize_t ret = 0, i;
1014 __u8 tmp[EXTRACT_SIZE];
1016 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
1017 xfer_secondary_pool(r, nbytes);
1018 nbytes = account(r, nbytes, 0, 0);
1020 while (nbytes) {
1021 if (need_resched()) {
1022 if (signal_pending(current)) {
1023 if (ret == 0)
1024 ret = -ERESTARTSYS;
1025 break;
1027 schedule();
1030 extract_buf(r, tmp);
1031 i = min_t(int, nbytes, EXTRACT_SIZE);
1032 if (copy_to_user(buf, tmp, i)) {
1033 ret = -EFAULT;
1034 break;
1037 nbytes -= i;
1038 buf += i;
1039 ret += i;
1042 /* Wipe data just returned from memory */
1043 memset(tmp, 0, sizeof(tmp));
1045 return ret;
1049 * This function is the exported kernel interface. It returns some
1050 * number of good random numbers, suitable for key generation, seeding
1051 * TCP sequence numbers, etc. It does not use the hw random number
1052 * generator, if available; use get_random_bytes_arch() for that.
1054 void get_random_bytes(void *buf, int nbytes)
1056 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1058 EXPORT_SYMBOL(get_random_bytes);
1061 * This function will use the architecture-specific hardware random
1062 * number generator if it is available. The arch-specific hw RNG will
1063 * almost certainly be faster than what we can do in software, but it
1064 * is impossible to verify that it is implemented securely (as
1065 * opposed, to, say, the AES encryption of a sequence number using a
1066 * key known by the NSA). So it's useful if we need the speed, but
1067 * only if we're willing to trust the hardware manufacturer not to
1068 * have put in a back door.
1070 void get_random_bytes_arch(void *buf, int nbytes)
1072 char *p = buf;
1074 trace_get_random_bytes(nbytes, _RET_IP_);
1075 while (nbytes) {
1076 unsigned long v;
1077 int chunk = min(nbytes, (int)sizeof(unsigned long));
1079 if (!arch_get_random_long(&v))
1080 break;
1082 memcpy(p, &v, chunk);
1083 p += chunk;
1084 nbytes -= chunk;
1087 if (nbytes)
1088 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1090 EXPORT_SYMBOL(get_random_bytes_arch);
1094 * init_std_data - initialize pool with system data
1096 * @r: pool to initialize
1098 * This function clears the pool's entropy count and mixes some system
1099 * data into the pool to prepare it for use. The pool is not cleared
1100 * as that can only decrease the entropy in the pool.
1102 static void init_std_data(struct entropy_store *r)
1104 int i;
1105 ktime_t now = ktime_get_real();
1106 unsigned long rv;
1108 r->entropy_count = 0;
1109 r->entropy_total = 0;
1110 r->last_data_init = false;
1111 mix_pool_bytes(r, &now, sizeof(now), NULL);
1112 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1113 if (!arch_get_random_long(&rv))
1114 break;
1115 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1117 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1121 * Note that setup_arch() may call add_device_randomness()
1122 * long before we get here. This allows seeding of the pools
1123 * with some platform dependent data very early in the boot
1124 * process. But it limits our options here. We must use
1125 * statically allocated structures that already have all
1126 * initializations complete at compile time. We should also
1127 * take care not to overwrite the precious per platform data
1128 * we were given.
1130 static int rand_initialize(void)
1132 init_std_data(&input_pool);
1133 init_std_data(&blocking_pool);
1134 init_std_data(&nonblocking_pool);
1135 return 0;
1137 module_init(rand_initialize);
1139 #ifdef CONFIG_BLOCK
1140 void rand_initialize_disk(struct gendisk *disk)
1142 struct timer_rand_state *state;
1145 * If kzalloc returns null, we just won't use that entropy
1146 * source.
1148 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1149 if (state)
1150 disk->random = state;
1152 #endif
1154 static ssize_t
1155 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1157 ssize_t n, retval = 0, count = 0;
1159 if (nbytes == 0)
1160 return 0;
1162 while (nbytes > 0) {
1163 n = nbytes;
1164 if (n > SEC_XFER_SIZE)
1165 n = SEC_XFER_SIZE;
1167 DEBUG_ENT("reading %zu bits\n", n*8);
1169 n = extract_entropy_user(&blocking_pool, buf, n);
1171 if (n < 0) {
1172 retval = n;
1173 break;
1176 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1177 n*8, (nbytes-n)*8);
1179 if (n == 0) {
1180 if (file->f_flags & O_NONBLOCK) {
1181 retval = -EAGAIN;
1182 break;
1185 DEBUG_ENT("sleeping?\n");
1187 wait_event_interruptible(random_read_wait,
1188 input_pool.entropy_count >=
1189 random_read_wakeup_thresh);
1191 DEBUG_ENT("awake\n");
1193 if (signal_pending(current)) {
1194 retval = -ERESTARTSYS;
1195 break;
1198 continue;
1201 count += n;
1202 buf += n;
1203 nbytes -= n;
1204 break; /* This break makes the device work */
1205 /* like a named pipe */
1208 return (count ? count : retval);
1211 static ssize_t
1212 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1214 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1217 static unsigned int
1218 random_poll(struct file *file, poll_table * wait)
1220 unsigned int mask;
1222 poll_wait(file, &random_read_wait, wait);
1223 poll_wait(file, &random_write_wait, wait);
1224 mask = 0;
1225 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1226 mask |= POLLIN | POLLRDNORM;
1227 if (input_pool.entropy_count < random_write_wakeup_thresh)
1228 mask |= POLLOUT | POLLWRNORM;
1229 return mask;
1232 static int
1233 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1235 size_t bytes;
1236 __u32 buf[16];
1237 const char __user *p = buffer;
1239 while (count > 0) {
1240 bytes = min(count, sizeof(buf));
1241 if (copy_from_user(&buf, p, bytes))
1242 return -EFAULT;
1244 count -= bytes;
1245 p += bytes;
1247 mix_pool_bytes(r, buf, bytes, NULL);
1248 cond_resched();
1251 return 0;
1254 static ssize_t random_write(struct file *file, const char __user *buffer,
1255 size_t count, loff_t *ppos)
1257 size_t ret;
1259 ret = write_pool(&blocking_pool, buffer, count);
1260 if (ret)
1261 return ret;
1262 ret = write_pool(&nonblocking_pool, buffer, count);
1263 if (ret)
1264 return ret;
1266 return (ssize_t)count;
1269 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1271 int size, ent_count;
1272 int __user *p = (int __user *)arg;
1273 int retval;
1275 switch (cmd) {
1276 case RNDGETENTCNT:
1277 /* inherently racy, no point locking */
1278 if (put_user(input_pool.entropy_count, p))
1279 return -EFAULT;
1280 return 0;
1281 case RNDADDTOENTCNT:
1282 if (!capable(CAP_SYS_ADMIN))
1283 return -EPERM;
1284 if (get_user(ent_count, p))
1285 return -EFAULT;
1286 credit_entropy_bits(&input_pool, ent_count);
1287 return 0;
1288 case RNDADDENTROPY:
1289 if (!capable(CAP_SYS_ADMIN))
1290 return -EPERM;
1291 if (get_user(ent_count, p++))
1292 return -EFAULT;
1293 if (ent_count < 0)
1294 return -EINVAL;
1295 if (get_user(size, p++))
1296 return -EFAULT;
1297 retval = write_pool(&input_pool, (const char __user *)p,
1298 size);
1299 if (retval < 0)
1300 return retval;
1301 credit_entropy_bits(&input_pool, ent_count);
1302 return 0;
1303 case RNDZAPENTCNT:
1304 case RNDCLEARPOOL:
1305 /* Clear the entropy pool counters. */
1306 if (!capable(CAP_SYS_ADMIN))
1307 return -EPERM;
1308 rand_initialize();
1309 return 0;
1310 default:
1311 return -EINVAL;
1315 static int random_fasync(int fd, struct file *filp, int on)
1317 return fasync_helper(fd, filp, on, &fasync);
1320 const struct file_operations random_fops = {
1321 .read = random_read,
1322 .write = random_write,
1323 .poll = random_poll,
1324 .unlocked_ioctl = random_ioctl,
1325 .fasync = random_fasync,
1326 .llseek = noop_llseek,
1329 const struct file_operations urandom_fops = {
1330 .read = urandom_read,
1331 .write = random_write,
1332 .unlocked_ioctl = random_ioctl,
1333 .fasync = random_fasync,
1334 .llseek = noop_llseek,
1337 /***************************************************************
1338 * Random UUID interface
1340 * Used here for a Boot ID, but can be useful for other kernel
1341 * drivers.
1342 ***************************************************************/
1345 * Generate random UUID
1347 void generate_random_uuid(unsigned char uuid_out[16])
1349 get_random_bytes(uuid_out, 16);
1350 /* Set UUID version to 4 --- truly random generation */
1351 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1352 /* Set the UUID variant to DCE */
1353 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1355 EXPORT_SYMBOL(generate_random_uuid);
1357 /********************************************************************
1359 * Sysctl interface
1361 ********************************************************************/
1363 #ifdef CONFIG_SYSCTL
1365 #include <linux/sysctl.h>
1367 static int min_read_thresh = 8, min_write_thresh;
1368 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1369 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1370 static char sysctl_bootid[16];
1373 * These functions is used to return both the bootid UUID, and random
1374 * UUID. The difference is in whether table->data is NULL; if it is,
1375 * then a new UUID is generated and returned to the user.
1377 * If the user accesses this via the proc interface, it will be returned
1378 * as an ASCII string in the standard UUID format. If accesses via the
1379 * sysctl system call, it is returned as 16 bytes of binary data.
1381 static int proc_do_uuid(struct ctl_table *table, int write,
1382 void __user *buffer, size_t *lenp, loff_t *ppos)
1384 struct ctl_table fake_table;
1385 unsigned char buf[64], tmp_uuid[16], *uuid;
1387 uuid = table->data;
1388 if (!uuid) {
1389 uuid = tmp_uuid;
1390 generate_random_uuid(uuid);
1391 } else {
1392 static DEFINE_SPINLOCK(bootid_spinlock);
1394 spin_lock(&bootid_spinlock);
1395 if (!uuid[8])
1396 generate_random_uuid(uuid);
1397 spin_unlock(&bootid_spinlock);
1400 sprintf(buf, "%pU", uuid);
1402 fake_table.data = buf;
1403 fake_table.maxlen = sizeof(buf);
1405 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1408 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1409 extern struct ctl_table random_table[];
1410 struct ctl_table random_table[] = {
1412 .procname = "poolsize",
1413 .data = &sysctl_poolsize,
1414 .maxlen = sizeof(int),
1415 .mode = 0444,
1416 .proc_handler = proc_dointvec,
1419 .procname = "entropy_avail",
1420 .maxlen = sizeof(int),
1421 .mode = 0444,
1422 .proc_handler = proc_dointvec,
1423 .data = &input_pool.entropy_count,
1426 .procname = "read_wakeup_threshold",
1427 .data = &random_read_wakeup_thresh,
1428 .maxlen = sizeof(int),
1429 .mode = 0644,
1430 .proc_handler = proc_dointvec_minmax,
1431 .extra1 = &min_read_thresh,
1432 .extra2 = &max_read_thresh,
1435 .procname = "write_wakeup_threshold",
1436 .data = &random_write_wakeup_thresh,
1437 .maxlen = sizeof(int),
1438 .mode = 0644,
1439 .proc_handler = proc_dointvec_minmax,
1440 .extra1 = &min_write_thresh,
1441 .extra2 = &max_write_thresh,
1444 .procname = "boot_id",
1445 .data = &sysctl_bootid,
1446 .maxlen = 16,
1447 .mode = 0444,
1448 .proc_handler = proc_do_uuid,
1451 .procname = "uuid",
1452 .maxlen = 16,
1453 .mode = 0444,
1454 .proc_handler = proc_do_uuid,
1458 #endif /* CONFIG_SYSCTL */
1460 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1462 int random_int_secret_init(void)
1464 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1465 return 0;
1469 * Get a random word for internal kernel use only. Similar to urandom but
1470 * with the goal of minimal entropy pool depletion. As a result, the random
1471 * value is not cryptographically secure but for several uses the cost of
1472 * depleting entropy is too high
1474 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1475 unsigned int get_random_int(void)
1477 __u32 *hash;
1478 unsigned int ret;
1480 if (arch_get_random_int(&ret))
1481 return ret;
1483 hash = get_cpu_var(get_random_int_hash);
1485 hash[0] += current->pid + jiffies + random_get_entropy();
1486 md5_transform(hash, random_int_secret);
1487 ret = hash[0];
1488 put_cpu_var(get_random_int_hash);
1490 return ret;
1492 EXPORT_SYMBOL(get_random_int);
1495 * randomize_range() returns a start address such that
1497 * [...... <range> .....]
1498 * start end
1500 * a <range> with size "len" starting at the return value is inside in the
1501 * area defined by [start, end], but is otherwise randomized.
1503 unsigned long
1504 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1506 unsigned long range = end - len - start;
1508 if (end <= start + len)
1509 return 0;
1510 return PAGE_ALIGN(get_random_int() % range + start);