x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / clocksource / tcb_clksrc.c
blob8a6187225dd0e7faa9b25c14147be31f3b7a9539
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 * - Some chips support 32 bit counter. A single channel is used for
23 * this 32 bit free-running counter. the second channel is not used.
25 * - The third channel may be used to provide a 16-bit clockevent
26 * source, used in either periodic or oneshot mode. This runs
27 * at 32 KiHZ, and can handle delays of up to two seconds.
29 * A boot clocksource and clockevent source are also currently needed,
30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31 * this code can be used when init_timers() is called, well before most
32 * devices are set up. (Some low end AT91 parts, which can run uClinux,
33 * have only the timers in one TC block... they currently don't support
34 * the tclib code, because of that initialization issue.)
36 * REVISIT behavior during system suspend states... we should disable
37 * all clocks and save the power. Easily done for clockevent devices,
38 * but clocksources won't necessarily get the needed notifications.
39 * For deeper system sleep states, this will be mandatory...
42 static void __iomem *tcaddr;
44 static cycle_t tc_get_cycles(struct clocksource *cs)
46 unsigned long flags;
47 u32 lower, upper;
49 raw_local_irq_save(flags);
50 do {
51 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
55 raw_local_irq_restore(flags);
56 return (upper << 16) | lower;
59 static cycle_t tc_get_cycles32(struct clocksource *cs)
61 return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
64 static struct clocksource clksrc = {
65 .name = "tcb_clksrc",
66 .rating = 200,
67 .read = tc_get_cycles,
68 .mask = CLOCKSOURCE_MASK(32),
69 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
74 struct tc_clkevt_device {
75 struct clock_event_device clkevt;
76 struct clk *clk;
77 void __iomem *regs;
80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
82 return container_of(clkevt, struct tc_clkevt_device, clkevt);
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86 * because using one of the divided clocks would usually mean the
87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
89 * A divided clock could be good for high resolution timers, since
90 * 30.5 usec resolution can seem "low".
92 static u32 timer_clock;
94 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
96 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 void __iomem *regs = tcd->regs;
99 if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100 || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103 clk_disable(tcd->clk);
106 switch (m) {
108 /* By not making the gentime core emulate periodic mode on top
109 * of oneshot, we get lower overhead and improved accuracy.
111 case CLOCK_EVT_MODE_PERIODIC:
112 clk_enable(tcd->clk);
114 /* slow clock, count up to RC, then irq and restart */
115 __raw_writel(timer_clock
116 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117 regs + ATMEL_TC_REG(2, CMR));
118 __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
120 /* Enable clock and interrupts on RC compare */
121 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
123 /* go go gadget! */
124 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125 regs + ATMEL_TC_REG(2, CCR));
126 break;
128 case CLOCK_EVT_MODE_ONESHOT:
129 clk_enable(tcd->clk);
131 /* slow clock, count up to RC, then irq and stop */
132 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134 regs + ATMEL_TC_REG(2, CMR));
135 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
137 /* set_next_event() configures and starts the timer */
138 break;
140 default:
141 break;
145 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
147 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
149 /* go go gadget! */
150 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151 tcaddr + ATMEL_TC_REG(2, CCR));
152 return 0;
155 static struct tc_clkevt_device clkevt = {
156 .clkevt = {
157 .name = "tc_clkevt",
158 .features = CLOCK_EVT_FEAT_PERIODIC
159 | CLOCK_EVT_FEAT_ONESHOT,
160 /* Should be lower than at91rm9200's system timer */
161 .rating = 125,
162 .set_next_event = tc_next_event,
163 .set_mode = tc_mode,
167 static irqreturn_t ch2_irq(int irq, void *handle)
169 struct tc_clkevt_device *dev = handle;
170 unsigned int sr;
172 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
173 if (sr & ATMEL_TC_CPCS) {
174 dev->clkevt.event_handler(&dev->clkevt);
175 return IRQ_HANDLED;
178 return IRQ_NONE;
181 static struct irqaction tc_irqaction = {
182 .name = "tc_clkevt",
183 .flags = IRQF_TIMER | IRQF_DISABLED,
184 .handler = ch2_irq,
187 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
189 struct clk *t2_clk = tc->clk[2];
190 int irq = tc->irq[2];
192 clkevt.regs = tc->regs;
193 clkevt.clk = t2_clk;
194 tc_irqaction.dev_id = &clkevt;
196 timer_clock = clk32k_divisor_idx;
198 clkevt.clkevt.cpumask = cpumask_of(0);
200 clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
202 setup_irq(irq, &tc_irqaction);
205 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
207 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
209 /* NOTHING */
212 #endif
214 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
216 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
217 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
218 | ATMEL_TC_WAVE
219 | ATMEL_TC_WAVESEL_UP /* free-run */
220 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
221 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
222 tcaddr + ATMEL_TC_REG(0, CMR));
223 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
224 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
225 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
226 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
228 /* channel 1: waveform mode, input TIOA0 */
229 __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
230 | ATMEL_TC_WAVE
231 | ATMEL_TC_WAVESEL_UP, /* free-run */
232 tcaddr + ATMEL_TC_REG(1, CMR));
233 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
234 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
236 /* chain channel 0 to channel 1*/
237 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
238 /* then reset all the timers */
239 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
242 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
244 /* channel 0: waveform mode, input mclk/8 */
245 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
246 | ATMEL_TC_WAVE
247 | ATMEL_TC_WAVESEL_UP, /* free-run */
248 tcaddr + ATMEL_TC_REG(0, CMR));
249 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
250 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
252 /* then reset all the timers */
253 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
256 static int __init tcb_clksrc_init(void)
258 static char bootinfo[] __initdata
259 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
261 struct platform_device *pdev;
262 struct atmel_tc *tc;
263 struct clk *t0_clk;
264 u32 rate, divided_rate = 0;
265 int best_divisor_idx = -1;
266 int clk32k_divisor_idx = -1;
267 int i;
269 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
270 if (!tc) {
271 pr_debug("can't alloc TC for clocksource\n");
272 return -ENODEV;
274 tcaddr = tc->regs;
275 pdev = tc->pdev;
277 t0_clk = tc->clk[0];
278 clk_enable(t0_clk);
280 /* How fast will we be counting? Pick something over 5 MHz. */
281 rate = (u32) clk_get_rate(t0_clk);
282 for (i = 0; i < 5; i++) {
283 unsigned divisor = atmel_tc_divisors[i];
284 unsigned tmp;
286 /* remember 32 KiHz clock for later */
287 if (!divisor) {
288 clk32k_divisor_idx = i;
289 continue;
292 tmp = rate / divisor;
293 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
294 if (best_divisor_idx > 0) {
295 if (tmp < 5 * 1000 * 1000)
296 continue;
298 divided_rate = tmp;
299 best_divisor_idx = i;
303 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
304 divided_rate / 1000000,
305 ((divided_rate + 500000) % 1000000) / 1000);
307 if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
308 /* use apropriate function to read 32 bit counter */
309 clksrc.read = tc_get_cycles32;
310 /* setup ony channel 0 */
311 tcb_setup_single_chan(tc, best_divisor_idx);
312 } else {
313 /* tclib will give us three clocks no matter what the
314 * underlying platform supports.
316 clk_enable(tc->clk[1]);
317 /* setup both channel 0 & 1 */
318 tcb_setup_dual_chan(tc, best_divisor_idx);
321 /* and away we go! */
322 clocksource_register_hz(&clksrc, divided_rate);
324 /* channel 2: periodic and oneshot timer support */
325 setup_clkevents(tc, clk32k_divisor_idx);
327 return 0;
329 arch_initcall(tcb_clksrc_init);