x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / crypto / nx / nx-aes-xcbc.c
blob03c4bf57d066b230d8750875eb8bdc33429cd357
1 /**
2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
4 * Copyright (C) 2011-2012 International Business Machines Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Author: Kent Yoder <yoder1@us.ibm.com>
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
30 #include "nx_csbcpb.h"
31 #include "nx.h"
34 struct xcbc_state {
35 u8 state[AES_BLOCK_SIZE];
36 unsigned int count;
37 u8 buffer[AES_BLOCK_SIZE];
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 const u8 *in_key,
42 unsigned int key_len)
44 struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
46 switch (key_len) {
47 case AES_KEYSIZE_128:
48 nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 break;
50 default:
51 return -EINVAL;
54 memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
56 return 0;
60 * Based on RFC 3566, for a zero-length message:
62 * n = 1
63 * K1 = E(K, 0x01010101010101010101010101010101)
64 * K3 = E(K, 0x03030303030303030303030303030303)
65 * E[0] = 0x00000000000000000000000000000000
66 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
67 * E[1] = (K1, M[1] ^ E[0] ^ K3)
68 * Tag = M[1]
70 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
72 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
74 struct nx_sg *in_sg, *out_sg;
75 u8 keys[2][AES_BLOCK_SIZE];
76 u8 key[32];
77 int rc = 0;
79 /* Change to ECB mode */
80 csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
81 memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
82 memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
83 NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
85 /* K1 and K3 base patterns */
86 memset(keys[0], 0x01, sizeof(keys[0]));
87 memset(keys[1], 0x03, sizeof(keys[1]));
89 /* Generate K1 and K3 encrypting the patterns */
90 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, sizeof(keys),
91 nx_ctx->ap->sglen);
92 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, sizeof(keys),
93 nx_ctx->ap->sglen);
94 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
95 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
97 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
98 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
99 if (rc)
100 goto out;
101 atomic_inc(&(nx_ctx->stats->aes_ops));
103 /* XOr K3 with the padding for a 0 length message */
104 keys[1][0] ^= 0x80;
106 /* Encrypt the final result */
107 memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
108 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], sizeof(keys[1]),
109 nx_ctx->ap->sglen);
110 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
111 nx_ctx->ap->sglen);
112 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
113 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
115 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
116 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
117 if (rc)
118 goto out;
119 atomic_inc(&(nx_ctx->stats->aes_ops));
121 out:
122 /* Restore XCBC mode */
123 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
124 memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
125 NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
127 return rc;
130 static int nx_xcbc_init(struct shash_desc *desc)
132 struct xcbc_state *sctx = shash_desc_ctx(desc);
133 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
134 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
135 struct nx_sg *out_sg;
137 nx_ctx_init(nx_ctx, HCOP_FC_AES);
139 memset(sctx, 0, sizeof *sctx);
141 NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
142 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
144 memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
145 memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
147 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
148 AES_BLOCK_SIZE, nx_ctx->ap->sglen);
149 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
151 return 0;
154 static int nx_xcbc_update(struct shash_desc *desc,
155 const u8 *data,
156 unsigned int len)
158 struct xcbc_state *sctx = shash_desc_ctx(desc);
159 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
160 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
161 struct nx_sg *in_sg;
162 u32 to_process, leftover, total;
163 u32 max_sg_len;
164 unsigned long irq_flags;
165 int rc = 0;
167 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
170 total = sctx->count + len;
172 /* 2 cases for total data len:
173 * 1: <= AES_BLOCK_SIZE: copy into state, return 0
174 * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
176 if (total <= AES_BLOCK_SIZE) {
177 memcpy(sctx->buffer + sctx->count, data, len);
178 sctx->count += len;
179 goto out;
182 in_sg = nx_ctx->in_sg;
183 max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
184 nx_ctx->ap->sglen);
186 do {
188 /* to_process: the AES_BLOCK_SIZE data chunk to process in this
189 * update */
190 to_process = min_t(u64, total, nx_ctx->ap->databytelen);
191 to_process = min_t(u64, to_process,
192 NX_PAGE_SIZE * (max_sg_len - 1));
193 to_process = to_process & ~(AES_BLOCK_SIZE - 1);
194 leftover = total - to_process;
196 /* the hardware will not accept a 0 byte operation for this
197 * algorithm and the operation MUST be finalized to be correct.
198 * So if we happen to get an update that falls on a block sized
199 * boundary, we must save off the last block to finalize with
200 * later. */
201 if (!leftover) {
202 to_process -= AES_BLOCK_SIZE;
203 leftover = AES_BLOCK_SIZE;
206 if (sctx->count) {
207 in_sg = nx_build_sg_list(nx_ctx->in_sg,
208 (u8 *) sctx->buffer,
209 sctx->count,
210 max_sg_len);
212 in_sg = nx_build_sg_list(in_sg,
213 (u8 *) data,
214 to_process - sctx->count,
215 max_sg_len);
216 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
217 sizeof(struct nx_sg);
219 /* we've hit the nx chip previously and we're updating again,
220 * so copy over the partial digest */
221 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
222 memcpy(csbcpb->cpb.aes_xcbc.cv,
223 csbcpb->cpb.aes_xcbc.out_cv_mac,
224 AES_BLOCK_SIZE);
227 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
228 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
229 rc = -EINVAL;
230 goto out;
233 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
234 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
235 if (rc)
236 goto out;
238 atomic_inc(&(nx_ctx->stats->aes_ops));
240 /* everything after the first update is continuation */
241 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
243 total -= to_process;
244 data += to_process - sctx->count;
245 sctx->count = 0;
246 in_sg = nx_ctx->in_sg;
247 } while (leftover > AES_BLOCK_SIZE);
249 /* copy the leftover back into the state struct */
250 memcpy(sctx->buffer, data, leftover);
251 sctx->count = leftover;
253 out:
254 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
255 return rc;
258 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
260 struct xcbc_state *sctx = shash_desc_ctx(desc);
261 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
262 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
263 struct nx_sg *in_sg, *out_sg;
264 unsigned long irq_flags;
265 int rc = 0;
267 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
269 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
270 /* we've hit the nx chip previously, now we're finalizing,
271 * so copy over the partial digest */
272 memcpy(csbcpb->cpb.aes_xcbc.cv,
273 csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
274 } else if (sctx->count == 0) {
276 * we've never seen an update, so this is a 0 byte op. The
277 * hardware cannot handle a 0 byte op, so just ECB to
278 * generate the hash.
280 rc = nx_xcbc_empty(desc, out);
281 goto out;
284 /* final is represented by continuing the operation and indicating that
285 * this is not an intermediate operation */
286 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
288 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
289 sctx->count, nx_ctx->ap->sglen);
290 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
291 nx_ctx->ap->sglen);
293 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
294 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
296 if (!nx_ctx->op.outlen) {
297 rc = -EINVAL;
298 goto out;
301 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
302 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
303 if (rc)
304 goto out;
306 atomic_inc(&(nx_ctx->stats->aes_ops));
308 memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
309 out:
310 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
311 return rc;
314 struct shash_alg nx_shash_aes_xcbc_alg = {
315 .digestsize = AES_BLOCK_SIZE,
316 .init = nx_xcbc_init,
317 .update = nx_xcbc_update,
318 .final = nx_xcbc_final,
319 .setkey = nx_xcbc_set_key,
320 .descsize = sizeof(struct xcbc_state),
321 .statesize = sizeof(struct xcbc_state),
322 .base = {
323 .cra_name = "xcbc(aes)",
324 .cra_driver_name = "xcbc-aes-nx",
325 .cra_priority = 300,
326 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
327 .cra_blocksize = AES_BLOCK_SIZE,
328 .cra_module = THIS_MODULE,
329 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
330 .cra_init = nx_crypto_ctx_aes_xcbc_init,
331 .cra_exit = nx_crypto_ctx_exit,