x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / crypto / nx / nx.c
blob5533fe31c90dff2acc68434b86a31d4497ad3553
1 /**
2 * Routines supporting the Power 7+ Nest Accelerators driver
4 * Copyright (C) 2011-2012 International Business Machines Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Author: Kent Yoder <yoder1@us.ibm.com>
22 #include <crypto/internal/hash.h>
23 #include <crypto/hash.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/scatterwalk.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/types.h>
31 #include <linux/mm.h>
32 #include <linux/crypto.h>
33 #include <linux/scatterlist.h>
34 #include <linux/device.h>
35 #include <linux/of.h>
36 #include <asm/hvcall.h>
37 #include <asm/vio.h>
39 #include "nx_csbcpb.h"
40 #include "nx.h"
43 /**
44 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
46 * @nx_ctx: the crypto context handle
47 * @op: PFO operation struct to pass in
48 * @may_sleep: flag indicating the request can sleep
50 * Make the hcall, retrying while the hardware is busy. If we cannot yield
51 * the thread, limit the number of retries to 10 here.
53 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
54 struct vio_pfo_op *op,
55 u32 may_sleep)
57 int rc, retries = 10;
58 struct vio_dev *viodev = nx_driver.viodev;
60 atomic_inc(&(nx_ctx->stats->sync_ops));
62 do {
63 rc = vio_h_cop_sync(viodev, op);
64 } while (rc == -EBUSY && !may_sleep && retries--);
66 if (rc) {
67 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
68 "hcall rc: %ld\n", rc, op->hcall_err);
69 atomic_inc(&(nx_ctx->stats->errors));
70 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
71 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
74 return rc;
77 /**
78 * nx_build_sg_list - build an NX scatter list describing a single buffer
80 * @sg_head: pointer to the first scatter list element to build
81 * @start_addr: pointer to the linear buffer
82 * @len: length of the data at @start_addr
83 * @sgmax: the largest number of scatter list elements we're allowed to create
85 * This function will start writing nx_sg elements at @sg_head and keep
86 * writing them until all of the data from @start_addr is described or
87 * until sgmax elements have been written. Scatter list elements will be
88 * created such that none of the elements describes a buffer that crosses a 4K
89 * boundary.
91 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
92 u8 *start_addr,
93 unsigned int len,
94 u32 sgmax)
96 unsigned int sg_len = 0;
97 struct nx_sg *sg;
98 u64 sg_addr = (u64)start_addr;
99 u64 end_addr;
101 /* determine the start and end for this address range - slightly
102 * different if this is in VMALLOC_REGION */
103 if (is_vmalloc_addr(start_addr))
104 sg_addr = page_to_phys(vmalloc_to_page(start_addr))
105 + offset_in_page(sg_addr);
106 else
107 sg_addr = __pa(sg_addr);
109 end_addr = sg_addr + len;
111 /* each iteration will write one struct nx_sg element and add the
112 * length of data described by that element to sg_len. Once @len bytes
113 * have been described (or @sgmax elements have been written), the
114 * loop ends. min_t is used to ensure @end_addr falls on the same page
115 * as sg_addr, if not, we need to create another nx_sg element for the
116 * data on the next page.
118 * Also when using vmalloc'ed data, every time that a system page
119 * boundary is crossed the physical address needs to be re-calculated.
121 for (sg = sg_head; sg_len < len; sg++) {
122 u64 next_page;
124 sg->addr = sg_addr;
125 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
126 end_addr);
128 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
129 sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
130 sg_len += sg->len;
132 if (sg_addr >= next_page &&
133 is_vmalloc_addr(start_addr + sg_len)) {
134 sg_addr = page_to_phys(vmalloc_to_page(
135 start_addr + sg_len));
136 end_addr = sg_addr + len - sg_len;
139 if ((sg - sg_head) == sgmax) {
140 pr_err("nx: scatter/gather list overflow, pid: %d\n",
141 current->pid);
142 return NULL;
146 /* return the moved sg_head pointer */
147 return sg;
151 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
153 * @nx_dst: pointer to the first nx_sg element to write
154 * @sglen: max number of nx_sg entries we're allowed to write
155 * @sg_src: pointer to the source linux scatterlist to walk
156 * @start: number of bytes to fast-forward past at the beginning of @sg_src
157 * @src_len: number of bytes to walk in @sg_src
159 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
160 unsigned int sglen,
161 struct scatterlist *sg_src,
162 unsigned int start,
163 unsigned int src_len)
165 struct scatter_walk walk;
166 struct nx_sg *nx_sg = nx_dst;
167 unsigned int n, offset = 0, len = src_len;
168 char *dst;
170 /* we need to fast forward through @start bytes first */
171 for (;;) {
172 scatterwalk_start(&walk, sg_src);
174 if (start < offset + sg_src->length)
175 break;
177 offset += sg_src->length;
178 sg_src = scatterwalk_sg_next(sg_src);
181 /* start - offset is the number of bytes to advance in the scatterlist
182 * element we're currently looking at */
183 scatterwalk_advance(&walk, start - offset);
185 while (len && nx_sg) {
186 n = scatterwalk_clamp(&walk, len);
187 if (!n) {
188 scatterwalk_start(&walk, sg_next(walk.sg));
189 n = scatterwalk_clamp(&walk, len);
191 dst = scatterwalk_map(&walk);
193 nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen);
194 len -= n;
196 scatterwalk_unmap(dst);
197 scatterwalk_advance(&walk, n);
198 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
201 /* return the moved destination pointer */
202 return nx_sg;
206 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
207 * scatterlists based on them.
209 * @nx_ctx: NX crypto context for the lists we're building
210 * @desc: the block cipher descriptor for the operation
211 * @dst: destination scatterlist
212 * @src: source scatterlist
213 * @nbytes: length of data described in the scatterlists
214 * @offset: number of bytes to fast-forward past at the beginning of
215 * scatterlists.
216 * @iv: destination for the iv data, if the algorithm requires it
218 * This is common code shared by all the AES algorithms. It uses the block
219 * cipher walk routines to traverse input and output scatterlists, building
220 * corresponding NX scatterlists
222 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
223 struct blkcipher_desc *desc,
224 struct scatterlist *dst,
225 struct scatterlist *src,
226 unsigned int nbytes,
227 unsigned int offset,
228 u8 *iv)
230 struct nx_sg *nx_insg = nx_ctx->in_sg;
231 struct nx_sg *nx_outsg = nx_ctx->out_sg;
233 if (iv)
234 memcpy(iv, desc->info, AES_BLOCK_SIZE);
236 nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src,
237 offset, nbytes);
238 nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst,
239 offset, nbytes);
241 /* these lengths should be negative, which will indicate to phyp that
242 * the input and output parameters are scatterlists, not linear
243 * buffers */
244 nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg);
245 nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg);
247 return 0;
251 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
253 * @nx_ctx: the nx context to initialize
254 * @function: the function code for the op
256 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
258 spin_lock_init(&nx_ctx->lock);
259 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
260 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
262 nx_ctx->op.flags = function;
263 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
264 nx_ctx->op.in = __pa(nx_ctx->in_sg);
265 nx_ctx->op.out = __pa(nx_ctx->out_sg);
267 if (nx_ctx->csbcpb_aead) {
268 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
270 nx_ctx->op_aead.flags = function;
271 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
272 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
273 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
277 static void nx_of_update_status(struct device *dev,
278 struct property *p,
279 struct nx_of *props)
281 if (!strncmp(p->value, "okay", p->length)) {
282 props->status = NX_WAITING;
283 props->flags |= NX_OF_FLAG_STATUS_SET;
284 } else {
285 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
286 (char *)p->value);
290 static void nx_of_update_sglen(struct device *dev,
291 struct property *p,
292 struct nx_of *props)
294 if (p->length != sizeof(props->max_sg_len)) {
295 dev_err(dev, "%s: unexpected format for "
296 "ibm,max-sg-len property\n", __func__);
297 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
298 "long, expected %zd bytes\n", __func__,
299 p->length, sizeof(props->max_sg_len));
300 return;
303 props->max_sg_len = *(u32 *)p->value;
304 props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
307 static void nx_of_update_msc(struct device *dev,
308 struct property *p,
309 struct nx_of *props)
311 struct msc_triplet *trip;
312 struct max_sync_cop *msc;
313 unsigned int bytes_so_far, i, lenp;
315 msc = (struct max_sync_cop *)p->value;
316 lenp = p->length;
318 /* You can't tell if the data read in for this property is sane by its
319 * size alone. This is because there are sizes embedded in the data
320 * structure. The best we can do is check lengths as we parse and bail
321 * as soon as a length error is detected. */
322 bytes_so_far = 0;
324 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
325 bytes_so_far += sizeof(struct max_sync_cop);
327 trip = msc->trip;
329 for (i = 0;
330 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
331 i < msc->triplets;
332 i++) {
333 if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
334 dev_err(dev, "unknown function code/mode "
335 "combo: %d/%d (ignored)\n", msc->fc,
336 msc->mode);
337 goto next_loop;
340 switch (trip->keybitlen) {
341 case 128:
342 case 160:
343 props->ap[msc->fc][msc->mode][0].databytelen =
344 trip->databytelen;
345 props->ap[msc->fc][msc->mode][0].sglen =
346 trip->sglen;
347 break;
348 case 192:
349 props->ap[msc->fc][msc->mode][1].databytelen =
350 trip->databytelen;
351 props->ap[msc->fc][msc->mode][1].sglen =
352 trip->sglen;
353 break;
354 case 256:
355 if (msc->fc == NX_FC_AES) {
356 props->ap[msc->fc][msc->mode][2].
357 databytelen = trip->databytelen;
358 props->ap[msc->fc][msc->mode][2].sglen =
359 trip->sglen;
360 } else if (msc->fc == NX_FC_AES_HMAC ||
361 msc->fc == NX_FC_SHA) {
362 props->ap[msc->fc][msc->mode][1].
363 databytelen = trip->databytelen;
364 props->ap[msc->fc][msc->mode][1].sglen =
365 trip->sglen;
366 } else {
367 dev_warn(dev, "unknown function "
368 "code/key bit len combo"
369 ": (%u/256)\n", msc->fc);
371 break;
372 case 512:
373 props->ap[msc->fc][msc->mode][2].databytelen =
374 trip->databytelen;
375 props->ap[msc->fc][msc->mode][2].sglen =
376 trip->sglen;
377 break;
378 default:
379 dev_warn(dev, "unknown function code/key bit "
380 "len combo: (%u/%u)\n", msc->fc,
381 trip->keybitlen);
382 break;
384 next_loop:
385 bytes_so_far += sizeof(struct msc_triplet);
386 trip++;
389 msc = (struct max_sync_cop *)trip;
392 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
396 * nx_of_init - read openFirmware values from the device tree
398 * @dev: device handle
399 * @props: pointer to struct to hold the properties values
401 * Called once at driver probe time, this function will read out the
402 * openFirmware properties we use at runtime. If all the OF properties are
403 * acceptable, when we exit this function props->flags will indicate that
404 * we're ready to register our crypto algorithms.
406 static void nx_of_init(struct device *dev, struct nx_of *props)
408 struct device_node *base_node = dev->of_node;
409 struct property *p;
411 p = of_find_property(base_node, "status", NULL);
412 if (!p)
413 dev_info(dev, "%s: property 'status' not found\n", __func__);
414 else
415 nx_of_update_status(dev, p, props);
417 p = of_find_property(base_node, "ibm,max-sg-len", NULL);
418 if (!p)
419 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
420 __func__);
421 else
422 nx_of_update_sglen(dev, p, props);
424 p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
425 if (!p)
426 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
427 __func__);
428 else
429 nx_of_update_msc(dev, p, props);
433 * nx_register_algs - register algorithms with the crypto API
435 * Called from nx_probe()
437 * If all OF properties are in an acceptable state, the driver flags will
438 * indicate that we're ready and we'll create our debugfs files and register
439 * out crypto algorithms.
441 static int nx_register_algs(void)
443 int rc = -1;
445 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
446 goto out;
448 memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
450 rc = NX_DEBUGFS_INIT(&nx_driver);
451 if (rc)
452 goto out;
454 nx_driver.of.status = NX_OKAY;
456 rc = crypto_register_alg(&nx_ecb_aes_alg);
457 if (rc)
458 goto out;
460 rc = crypto_register_alg(&nx_cbc_aes_alg);
461 if (rc)
462 goto out_unreg_ecb;
464 rc = crypto_register_alg(&nx_ctr_aes_alg);
465 if (rc)
466 goto out_unreg_cbc;
468 rc = crypto_register_alg(&nx_ctr3686_aes_alg);
469 if (rc)
470 goto out_unreg_ctr;
472 rc = crypto_register_alg(&nx_gcm_aes_alg);
473 if (rc)
474 goto out_unreg_ctr3686;
476 rc = crypto_register_alg(&nx_gcm4106_aes_alg);
477 if (rc)
478 goto out_unreg_gcm;
480 rc = crypto_register_alg(&nx_ccm_aes_alg);
481 if (rc)
482 goto out_unreg_gcm4106;
484 rc = crypto_register_alg(&nx_ccm4309_aes_alg);
485 if (rc)
486 goto out_unreg_ccm;
488 rc = crypto_register_shash(&nx_shash_sha256_alg);
489 if (rc)
490 goto out_unreg_ccm4309;
492 rc = crypto_register_shash(&nx_shash_sha512_alg);
493 if (rc)
494 goto out_unreg_s256;
496 rc = crypto_register_shash(&nx_shash_aes_xcbc_alg);
497 if (rc)
498 goto out_unreg_s512;
500 goto out;
502 out_unreg_s512:
503 crypto_unregister_shash(&nx_shash_sha512_alg);
504 out_unreg_s256:
505 crypto_unregister_shash(&nx_shash_sha256_alg);
506 out_unreg_ccm4309:
507 crypto_unregister_alg(&nx_ccm4309_aes_alg);
508 out_unreg_ccm:
509 crypto_unregister_alg(&nx_ccm_aes_alg);
510 out_unreg_gcm4106:
511 crypto_unregister_alg(&nx_gcm4106_aes_alg);
512 out_unreg_gcm:
513 crypto_unregister_alg(&nx_gcm_aes_alg);
514 out_unreg_ctr3686:
515 crypto_unregister_alg(&nx_ctr3686_aes_alg);
516 out_unreg_ctr:
517 crypto_unregister_alg(&nx_ctr_aes_alg);
518 out_unreg_cbc:
519 crypto_unregister_alg(&nx_cbc_aes_alg);
520 out_unreg_ecb:
521 crypto_unregister_alg(&nx_ecb_aes_alg);
522 out:
523 return rc;
527 * nx_crypto_ctx_init - create and initialize a crypto api context
529 * @nx_ctx: the crypto api context
530 * @fc: function code for the context
531 * @mode: the function code specific mode for this context
533 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
535 if (nx_driver.of.status != NX_OKAY) {
536 pr_err("Attempt to initialize NX crypto context while device "
537 "is not available!\n");
538 return -ENODEV;
541 /* we need an extra page for csbcpb_aead for these modes */
542 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
543 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
544 sizeof(struct nx_csbcpb);
545 else
546 nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) +
547 sizeof(struct nx_csbcpb);
549 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
550 if (!nx_ctx->kmem)
551 return -ENOMEM;
553 /* the csbcpb and scatterlists must be 4K aligned pages */
554 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
555 (u64)NX_PAGE_SIZE));
556 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
557 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
559 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
560 nx_ctx->csbcpb_aead =
561 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
562 NX_PAGE_SIZE);
564 /* give each context a pointer to global stats and their OF
565 * properties */
566 nx_ctx->stats = &nx_driver.stats;
567 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
568 sizeof(struct alg_props) * 3);
570 return 0;
573 /* entry points from the crypto tfm initializers */
574 int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
576 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
577 NX_MODE_AES_CCM);
580 int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm)
582 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
583 NX_MODE_AES_GCM);
586 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
588 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
589 NX_MODE_AES_CTR);
592 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
594 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
595 NX_MODE_AES_CBC);
598 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
600 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
601 NX_MODE_AES_ECB);
604 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
606 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
609 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
611 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
612 NX_MODE_AES_XCBC_MAC);
616 * nx_crypto_ctx_exit - destroy a crypto api context
618 * @tfm: the crypto transform pointer for the context
620 * As crypto API contexts are destroyed, this exit hook is called to free the
621 * memory associated with it.
623 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
625 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
627 kzfree(nx_ctx->kmem);
628 nx_ctx->csbcpb = NULL;
629 nx_ctx->csbcpb_aead = NULL;
630 nx_ctx->in_sg = NULL;
631 nx_ctx->out_sg = NULL;
634 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
636 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
637 viodev->name, viodev->resource_id);
639 if (nx_driver.viodev) {
640 dev_err(&viodev->dev, "%s: Attempt to register more than one "
641 "instance of the hardware\n", __func__);
642 return -EINVAL;
645 nx_driver.viodev = viodev;
647 nx_of_init(&viodev->dev, &nx_driver.of);
649 return nx_register_algs();
652 static int nx_remove(struct vio_dev *viodev)
654 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
655 viodev->unit_address);
657 if (nx_driver.of.status == NX_OKAY) {
658 NX_DEBUGFS_FINI(&nx_driver);
660 crypto_unregister_alg(&nx_ccm_aes_alg);
661 crypto_unregister_alg(&nx_ccm4309_aes_alg);
662 crypto_unregister_alg(&nx_gcm_aes_alg);
663 crypto_unregister_alg(&nx_gcm4106_aes_alg);
664 crypto_unregister_alg(&nx_ctr_aes_alg);
665 crypto_unregister_alg(&nx_ctr3686_aes_alg);
666 crypto_unregister_alg(&nx_cbc_aes_alg);
667 crypto_unregister_alg(&nx_ecb_aes_alg);
668 crypto_unregister_shash(&nx_shash_sha256_alg);
669 crypto_unregister_shash(&nx_shash_sha512_alg);
670 crypto_unregister_shash(&nx_shash_aes_xcbc_alg);
673 return 0;
677 /* module wide initialization/cleanup */
678 static int __init nx_init(void)
680 return vio_register_driver(&nx_driver.viodriver);
683 static void __exit nx_fini(void)
685 vio_unregister_driver(&nx_driver.viodriver);
688 static struct vio_device_id nx_crypto_driver_ids[] = {
689 { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
690 { "", "" }
692 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
694 /* driver state structure */
695 struct nx_crypto_driver nx_driver = {
696 .viodriver = {
697 .id_table = nx_crypto_driver_ids,
698 .probe = nx_probe,
699 .remove = nx_remove,
700 .name = NX_NAME,
704 module_init(nx_init);
705 module_exit(nx_fini);
707 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
708 MODULE_DESCRIPTION(NX_STRING);
709 MODULE_LICENSE("GPL");
710 MODULE_VERSION(NX_VERSION);