x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / crypto / padlock-aes.c
blob633ba945e153da2a61f88f4580afab6caaff2c73
1 /*
2 * Cryptographic API.
4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 */
10 #include <crypto/algapi.h>
11 #include <crypto/aes.h>
12 #include <crypto/padlock.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/percpu.h>
20 #include <linux/smp.h>
21 #include <linux/slab.h>
22 #include <asm/cpu_device_id.h>
23 #include <asm/byteorder.h>
24 #include <asm/processor.h>
25 #include <asm/i387.h>
28 * Number of data blocks actually fetched for each xcrypt insn.
29 * Processors with prefetch errata will fetch extra blocks.
31 static unsigned int ecb_fetch_blocks = 2;
32 #define MAX_ECB_FETCH_BLOCKS (8)
33 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
35 static unsigned int cbc_fetch_blocks = 1;
36 #define MAX_CBC_FETCH_BLOCKS (4)
37 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
39 /* Control word. */
40 struct cword {
41 unsigned int __attribute__ ((__packed__))
42 rounds:4,
43 algo:3,
44 keygen:1,
45 interm:1,
46 encdec:1,
47 ksize:2;
48 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
50 /* Whenever making any changes to the following
51 * structure *make sure* you keep E, d_data
52 * and cword aligned on 16 Bytes boundaries and
53 * the Hardware can access 16 * 16 bytes of E and d_data
54 * (only the first 15 * 16 bytes matter but the HW reads
55 * more).
57 struct aes_ctx {
58 u32 E[AES_MAX_KEYLENGTH_U32]
59 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
60 u32 d_data[AES_MAX_KEYLENGTH_U32]
61 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 struct {
63 struct cword encrypt;
64 struct cword decrypt;
65 } cword;
66 u32 *D;
69 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
71 /* Tells whether the ACE is capable to generate
72 the extended key for a given key_len. */
73 static inline int
74 aes_hw_extkey_available(uint8_t key_len)
76 /* TODO: We should check the actual CPU model/stepping
77 as it's possible that the capability will be
78 added in the next CPU revisions. */
79 if (key_len == 16)
80 return 1;
81 return 0;
84 static inline struct aes_ctx *aes_ctx_common(void *ctx)
86 unsigned long addr = (unsigned long)ctx;
87 unsigned long align = PADLOCK_ALIGNMENT;
89 if (align <= crypto_tfm_ctx_alignment())
90 align = 1;
91 return (struct aes_ctx *)ALIGN(addr, align);
94 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
96 return aes_ctx_common(crypto_tfm_ctx(tfm));
99 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
101 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
104 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
105 unsigned int key_len)
107 struct aes_ctx *ctx = aes_ctx(tfm);
108 const __le32 *key = (const __le32 *)in_key;
109 u32 *flags = &tfm->crt_flags;
110 struct crypto_aes_ctx gen_aes;
111 int cpu;
113 if (key_len % 8) {
114 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
115 return -EINVAL;
119 * If the hardware is capable of generating the extended key
120 * itself we must supply the plain key for both encryption
121 * and decryption.
123 ctx->D = ctx->E;
125 ctx->E[0] = le32_to_cpu(key[0]);
126 ctx->E[1] = le32_to_cpu(key[1]);
127 ctx->E[2] = le32_to_cpu(key[2]);
128 ctx->E[3] = le32_to_cpu(key[3]);
130 /* Prepare control words. */
131 memset(&ctx->cword, 0, sizeof(ctx->cword));
133 ctx->cword.decrypt.encdec = 1;
134 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
139 /* Don't generate extended keys if the hardware can do it. */
140 if (aes_hw_extkey_available(key_len))
141 goto ok;
143 ctx->D = ctx->d_data;
144 ctx->cword.encrypt.keygen = 1;
145 ctx->cword.decrypt.keygen = 1;
147 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
148 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
149 return -EINVAL;
152 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
153 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
156 for_each_online_cpu(cpu)
157 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
158 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
159 per_cpu(paes_last_cword, cpu) = NULL;
161 return 0;
164 /* ====== Encryption/decryption routines ====== */
166 /* These are the real call to PadLock. */
167 static inline void padlock_reset_key(struct cword *cword)
169 int cpu = raw_smp_processor_id();
171 if (cword != per_cpu(paes_last_cword, cpu))
172 #ifndef CONFIG_X86_64
173 asm volatile ("pushfl; popfl");
174 #else
175 asm volatile ("pushfq; popfq");
176 #endif
179 static inline void padlock_store_cword(struct cword *cword)
181 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
185 * While the padlock instructions don't use FP/SSE registers, they
186 * generate a spurious DNA fault when cr0.ts is '1'. These instructions
187 * should be used only inside the irq_ts_save/restore() context
190 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
191 struct cword *control_word, int count)
193 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
194 : "+S"(input), "+D"(output)
195 : "d"(control_word), "b"(key), "c"(count));
198 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
199 u8 *iv, struct cword *control_word, int count)
201 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
202 : "+S" (input), "+D" (output), "+a" (iv)
203 : "d" (control_word), "b" (key), "c" (count));
204 return iv;
207 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
208 struct cword *cword, int count)
211 * Padlock prefetches extra data so we must provide mapped input buffers.
212 * Assume there are at least 16 bytes of stack already in use.
214 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
215 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
217 memcpy(tmp, in, count * AES_BLOCK_SIZE);
218 rep_xcrypt_ecb(tmp, out, key, cword, count);
221 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
222 u8 *iv, struct cword *cword, int count)
225 * Padlock prefetches extra data so we must provide mapped input buffers.
226 * Assume there are at least 16 bytes of stack already in use.
228 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
229 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
231 memcpy(tmp, in, count * AES_BLOCK_SIZE);
232 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
235 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
236 struct cword *cword, int count)
238 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
239 * We could avoid some copying here but it's probably not worth it.
241 if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
242 ecb_crypt_copy(in, out, key, cword, count);
243 return;
246 rep_xcrypt_ecb(in, out, key, cword, count);
249 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
250 u8 *iv, struct cword *cword, int count)
252 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
253 if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
254 return cbc_crypt_copy(in, out, key, iv, cword, count);
256 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
259 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
260 void *control_word, u32 count)
262 u32 initial = count & (ecb_fetch_blocks - 1);
264 if (count < ecb_fetch_blocks) {
265 ecb_crypt(input, output, key, control_word, count);
266 return;
269 if (initial)
270 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
271 : "+S"(input), "+D"(output)
272 : "d"(control_word), "b"(key), "c"(initial));
274 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
275 : "+S"(input), "+D"(output)
276 : "d"(control_word), "b"(key), "c"(count - initial));
279 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
280 u8 *iv, void *control_word, u32 count)
282 u32 initial = count & (cbc_fetch_blocks - 1);
284 if (count < cbc_fetch_blocks)
285 return cbc_crypt(input, output, key, iv, control_word, count);
287 if (initial)
288 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
289 : "+S" (input), "+D" (output), "+a" (iv)
290 : "d" (control_word), "b" (key), "c" (initial));
292 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
293 : "+S" (input), "+D" (output), "+a" (iv)
294 : "d" (control_word), "b" (key), "c" (count-initial));
295 return iv;
298 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
300 struct aes_ctx *ctx = aes_ctx(tfm);
301 int ts_state;
303 padlock_reset_key(&ctx->cword.encrypt);
304 ts_state = irq_ts_save();
305 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
306 irq_ts_restore(ts_state);
307 padlock_store_cword(&ctx->cword.encrypt);
310 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
312 struct aes_ctx *ctx = aes_ctx(tfm);
313 int ts_state;
315 padlock_reset_key(&ctx->cword.encrypt);
316 ts_state = irq_ts_save();
317 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
318 irq_ts_restore(ts_state);
319 padlock_store_cword(&ctx->cword.encrypt);
322 static struct crypto_alg aes_alg = {
323 .cra_name = "aes",
324 .cra_driver_name = "aes-padlock",
325 .cra_priority = PADLOCK_CRA_PRIORITY,
326 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
327 .cra_blocksize = AES_BLOCK_SIZE,
328 .cra_ctxsize = sizeof(struct aes_ctx),
329 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
330 .cra_module = THIS_MODULE,
331 .cra_u = {
332 .cipher = {
333 .cia_min_keysize = AES_MIN_KEY_SIZE,
334 .cia_max_keysize = AES_MAX_KEY_SIZE,
335 .cia_setkey = aes_set_key,
336 .cia_encrypt = aes_encrypt,
337 .cia_decrypt = aes_decrypt,
342 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
343 struct scatterlist *dst, struct scatterlist *src,
344 unsigned int nbytes)
346 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
347 struct blkcipher_walk walk;
348 int err;
349 int ts_state;
351 padlock_reset_key(&ctx->cword.encrypt);
353 blkcipher_walk_init(&walk, dst, src, nbytes);
354 err = blkcipher_walk_virt(desc, &walk);
356 ts_state = irq_ts_save();
357 while ((nbytes = walk.nbytes)) {
358 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
359 ctx->E, &ctx->cword.encrypt,
360 nbytes / AES_BLOCK_SIZE);
361 nbytes &= AES_BLOCK_SIZE - 1;
362 err = blkcipher_walk_done(desc, &walk, nbytes);
364 irq_ts_restore(ts_state);
366 padlock_store_cword(&ctx->cword.encrypt);
368 return err;
371 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
372 struct scatterlist *dst, struct scatterlist *src,
373 unsigned int nbytes)
375 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
376 struct blkcipher_walk walk;
377 int err;
378 int ts_state;
380 padlock_reset_key(&ctx->cword.decrypt);
382 blkcipher_walk_init(&walk, dst, src, nbytes);
383 err = blkcipher_walk_virt(desc, &walk);
385 ts_state = irq_ts_save();
386 while ((nbytes = walk.nbytes)) {
387 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
388 ctx->D, &ctx->cword.decrypt,
389 nbytes / AES_BLOCK_SIZE);
390 nbytes &= AES_BLOCK_SIZE - 1;
391 err = blkcipher_walk_done(desc, &walk, nbytes);
393 irq_ts_restore(ts_state);
395 padlock_store_cword(&ctx->cword.encrypt);
397 return err;
400 static struct crypto_alg ecb_aes_alg = {
401 .cra_name = "ecb(aes)",
402 .cra_driver_name = "ecb-aes-padlock",
403 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
404 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
405 .cra_blocksize = AES_BLOCK_SIZE,
406 .cra_ctxsize = sizeof(struct aes_ctx),
407 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
408 .cra_type = &crypto_blkcipher_type,
409 .cra_module = THIS_MODULE,
410 .cra_u = {
411 .blkcipher = {
412 .min_keysize = AES_MIN_KEY_SIZE,
413 .max_keysize = AES_MAX_KEY_SIZE,
414 .setkey = aes_set_key,
415 .encrypt = ecb_aes_encrypt,
416 .decrypt = ecb_aes_decrypt,
421 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
422 struct scatterlist *dst, struct scatterlist *src,
423 unsigned int nbytes)
425 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
426 struct blkcipher_walk walk;
427 int err;
428 int ts_state;
430 padlock_reset_key(&ctx->cword.encrypt);
432 blkcipher_walk_init(&walk, dst, src, nbytes);
433 err = blkcipher_walk_virt(desc, &walk);
435 ts_state = irq_ts_save();
436 while ((nbytes = walk.nbytes)) {
437 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
438 walk.dst.virt.addr, ctx->E,
439 walk.iv, &ctx->cword.encrypt,
440 nbytes / AES_BLOCK_SIZE);
441 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
442 nbytes &= AES_BLOCK_SIZE - 1;
443 err = blkcipher_walk_done(desc, &walk, nbytes);
445 irq_ts_restore(ts_state);
447 padlock_store_cword(&ctx->cword.decrypt);
449 return err;
452 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
453 struct scatterlist *dst, struct scatterlist *src,
454 unsigned int nbytes)
456 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
457 struct blkcipher_walk walk;
458 int err;
459 int ts_state;
461 padlock_reset_key(&ctx->cword.encrypt);
463 blkcipher_walk_init(&walk, dst, src, nbytes);
464 err = blkcipher_walk_virt(desc, &walk);
466 ts_state = irq_ts_save();
467 while ((nbytes = walk.nbytes)) {
468 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
469 ctx->D, walk.iv, &ctx->cword.decrypt,
470 nbytes / AES_BLOCK_SIZE);
471 nbytes &= AES_BLOCK_SIZE - 1;
472 err = blkcipher_walk_done(desc, &walk, nbytes);
475 irq_ts_restore(ts_state);
477 padlock_store_cword(&ctx->cword.encrypt);
479 return err;
482 static struct crypto_alg cbc_aes_alg = {
483 .cra_name = "cbc(aes)",
484 .cra_driver_name = "cbc-aes-padlock",
485 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
486 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
487 .cra_blocksize = AES_BLOCK_SIZE,
488 .cra_ctxsize = sizeof(struct aes_ctx),
489 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
490 .cra_type = &crypto_blkcipher_type,
491 .cra_module = THIS_MODULE,
492 .cra_u = {
493 .blkcipher = {
494 .min_keysize = AES_MIN_KEY_SIZE,
495 .max_keysize = AES_MAX_KEY_SIZE,
496 .ivsize = AES_BLOCK_SIZE,
497 .setkey = aes_set_key,
498 .encrypt = cbc_aes_encrypt,
499 .decrypt = cbc_aes_decrypt,
504 static struct x86_cpu_id padlock_cpu_id[] = {
505 X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
508 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
510 static int __init padlock_init(void)
512 int ret;
513 struct cpuinfo_x86 *c = &cpu_data(0);
515 if (!x86_match_cpu(padlock_cpu_id))
516 return -ENODEV;
518 if (!cpu_has_xcrypt_enabled) {
519 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
520 return -ENODEV;
523 if ((ret = crypto_register_alg(&aes_alg)))
524 goto aes_err;
526 if ((ret = crypto_register_alg(&ecb_aes_alg)))
527 goto ecb_aes_err;
529 if ((ret = crypto_register_alg(&cbc_aes_alg)))
530 goto cbc_aes_err;
532 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
534 if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
535 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
536 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
537 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
540 out:
541 return ret;
543 cbc_aes_err:
544 crypto_unregister_alg(&ecb_aes_alg);
545 ecb_aes_err:
546 crypto_unregister_alg(&aes_alg);
547 aes_err:
548 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
549 goto out;
552 static void __exit padlock_fini(void)
554 crypto_unregister_alg(&cbc_aes_alg);
555 crypto_unregister_alg(&ecb_aes_alg);
556 crypto_unregister_alg(&aes_alg);
559 module_init(padlock_init);
560 module_exit(padlock_fini);
562 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
563 MODULE_LICENSE("GPL");
564 MODULE_AUTHOR("Michal Ludvig");
566 MODULE_ALIAS("aes");