x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / crypto / tegra-aes.c
blob2d58da972ae279f44b91f05dd472f6287c13f081
1 /*
2 * drivers/crypto/tegra-aes.c
4 * Driver for NVIDIA Tegra AES hardware engine residing inside the
5 * Bit Stream Engine for Video (BSEV) hardware block.
7 * The programming sequence for this engine is with the help
8 * of commands which travel via a command queue residing between the
9 * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM)
10 * where the final input plaintext, keys and the IV have to be copied
11 * before starting the encrypt/decrypt operation.
13 * Copyright (c) 2010, NVIDIA Corporation.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful, but WITHOUT
21 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
22 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
23 * more details.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/clk.h>
35 #include <linux/platform_device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/io.h>
39 #include <linux/mutex.h>
40 #include <linux/interrupt.h>
41 #include <linux/completion.h>
42 #include <linux/workqueue.h>
44 #include <crypto/scatterwalk.h>
45 #include <crypto/aes.h>
46 #include <crypto/internal/rng.h>
48 #include "tegra-aes.h"
50 #define FLAGS_MODE_MASK 0x00FF
51 #define FLAGS_ENCRYPT BIT(0)
52 #define FLAGS_CBC BIT(1)
53 #define FLAGS_GIV BIT(2)
54 #define FLAGS_RNG BIT(3)
55 #define FLAGS_OFB BIT(4)
56 #define FLAGS_NEW_KEY BIT(5)
57 #define FLAGS_NEW_IV BIT(6)
58 #define FLAGS_INIT BIT(7)
59 #define FLAGS_FAST BIT(8)
60 #define FLAGS_BUSY 9
63 * Defines AES engine Max process bytes size in one go, which takes 1 msec.
64 * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
65 * The duration CPU can use the BSE to 1 msec, then the number of available
66 * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
67 * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
69 #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
72 * The key table length is 64 bytes
73 * (This includes first upto 32 bytes key + 16 bytes original initial vector
74 * and 16 bytes updated initial vector)
76 #define AES_HW_KEY_TABLE_LENGTH_BYTES 64
79 * The memory being used is divides as follows:
80 * 1. Key - 32 bytes
81 * 2. Original IV - 16 bytes
82 * 3. Updated IV - 16 bytes
83 * 4. Key schedule - 256 bytes
85 * 1+2+3 constitute the hw key table.
87 #define AES_HW_IV_SIZE 16
88 #define AES_HW_KEYSCHEDULE_LEN 256
89 #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
91 /* Define commands required for AES operation */
92 enum {
93 CMD_BLKSTARTENGINE = 0x0E,
94 CMD_DMASETUP = 0x10,
95 CMD_DMACOMPLETE = 0x11,
96 CMD_SETTABLE = 0x15,
97 CMD_MEMDMAVD = 0x22,
100 /* Define sub-commands */
101 enum {
102 SUBCMD_VRAM_SEL = 0x1,
103 SUBCMD_CRYPTO_TABLE_SEL = 0x3,
104 SUBCMD_KEY_TABLE_SEL = 0x8,
107 /* memdma_vd command */
108 #define MEMDMA_DIR_DTOVRAM 0 /* sdram -> vram */
109 #define MEMDMA_DIR_VTODRAM 1 /* vram -> sdram */
110 #define MEMDMA_DIR_SHIFT 25
111 #define MEMDMA_NUM_WORDS_SHIFT 12
113 /* command queue bit shifts */
114 enum {
115 CMDQ_KEYTABLEADDR_SHIFT = 0,
116 CMDQ_KEYTABLEID_SHIFT = 17,
117 CMDQ_VRAMSEL_SHIFT = 23,
118 CMDQ_TABLESEL_SHIFT = 24,
119 CMDQ_OPCODE_SHIFT = 26,
123 * The secure key slot contains a unique secure key generated
124 * and loaded by the bootloader. This slot is marked as non-accessible
125 * to the kernel.
127 #define SSK_SLOT_NUM 4
129 #define AES_NR_KEYSLOTS 8
130 #define TEGRA_AES_QUEUE_LENGTH 50
131 #define DEFAULT_RNG_BLK_SZ 16
133 /* The command queue depth */
134 #define AES_HW_MAX_ICQ_LENGTH 5
136 struct tegra_aes_slot {
137 struct list_head node;
138 int slot_num;
141 static struct tegra_aes_slot ssk = {
142 .slot_num = SSK_SLOT_NUM,
145 struct tegra_aes_reqctx {
146 unsigned long mode;
149 struct tegra_aes_dev {
150 struct device *dev;
151 void __iomem *io_base;
152 dma_addr_t ivkey_phys_base;
153 void __iomem *ivkey_base;
154 struct clk *aes_clk;
155 struct tegra_aes_ctx *ctx;
156 int irq;
157 unsigned long flags;
158 struct completion op_complete;
159 u32 *buf_in;
160 dma_addr_t dma_buf_in;
161 u32 *buf_out;
162 dma_addr_t dma_buf_out;
163 u8 *iv;
164 u8 dt[DEFAULT_RNG_BLK_SZ];
165 int ivlen;
166 u64 ctr;
167 spinlock_t lock;
168 struct crypto_queue queue;
169 struct tegra_aes_slot *slots;
170 struct ablkcipher_request *req;
171 size_t total;
172 struct scatterlist *in_sg;
173 size_t in_offset;
174 struct scatterlist *out_sg;
175 size_t out_offset;
178 static struct tegra_aes_dev *aes_dev;
180 struct tegra_aes_ctx {
181 struct tegra_aes_dev *dd;
182 unsigned long flags;
183 struct tegra_aes_slot *slot;
184 u8 key[AES_MAX_KEY_SIZE];
185 size_t keylen;
188 static struct tegra_aes_ctx rng_ctx = {
189 .flags = FLAGS_NEW_KEY,
190 .keylen = AES_KEYSIZE_128,
193 /* keep registered devices data here */
194 static struct list_head dev_list;
195 static DEFINE_SPINLOCK(list_lock);
196 static DEFINE_MUTEX(aes_lock);
198 static void aes_workqueue_handler(struct work_struct *work);
199 static DECLARE_WORK(aes_work, aes_workqueue_handler);
200 static struct workqueue_struct *aes_wq;
202 extern unsigned long long tegra_chip_uid(void);
204 static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset)
206 return readl(dd->io_base + offset);
209 static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset)
211 writel(val, dd->io_base + offset);
214 static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
215 int nblocks, int mode, bool upd_iv)
217 u32 cmdq[AES_HW_MAX_ICQ_LENGTH];
218 int i, eng_busy, icq_empty, ret;
219 u32 value;
221 /* reset all the interrupt bits */
222 aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS);
224 /* enable error, dma xfer complete interrupts */
225 aes_writel(dd, 0x33, TEGRA_AES_INT_ENB);
227 cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT;
228 cmdq[1] = in_addr;
229 cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1);
230 cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT;
232 value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL);
233 /* access SDRAM through AHB */
234 value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD;
235 value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD;
236 value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD |
237 TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD |
238 TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD;
239 aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL);
240 dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value);
242 value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) |
243 ((dd->ctx->keylen * 8) <<
244 TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) |
245 ((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT);
247 if (mode & FLAGS_CBC) {
248 value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3)
249 << TEGRA_AES_SECURE_XOR_POS_SHIFT) |
250 (((mode & FLAGS_ENCRYPT) ? 2 : 3)
251 << TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) |
252 ((mode & FLAGS_ENCRYPT) ? 1 : 0)
253 << TEGRA_AES_SECURE_CORE_SEL_SHIFT);
254 } else if (mode & FLAGS_OFB) {
255 value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) |
256 (2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) |
257 (TEGRA_AES_SECURE_CORE_SEL_FIELD));
258 } else if (mode & FLAGS_RNG) {
259 value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
260 << TEGRA_AES_SECURE_CORE_SEL_SHIFT |
261 TEGRA_AES_SECURE_RNG_ENB_FIELD);
262 } else {
263 value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
264 << TEGRA_AES_SECURE_CORE_SEL_SHIFT);
267 dev_dbg(dd->dev, "secure_in_sel=0x%x", value);
268 aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT);
270 aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR);
271 INIT_COMPLETION(dd->op_complete);
273 for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) {
274 do {
275 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
276 eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
277 icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
278 } while (eng_busy && !icq_empty);
279 aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
282 ret = wait_for_completion_timeout(&dd->op_complete,
283 msecs_to_jiffies(150));
284 if (ret == 0) {
285 dev_err(dd->dev, "timed out (0x%x)\n",
286 aes_readl(dd, TEGRA_AES_INTR_STATUS));
287 return -ETIMEDOUT;
290 aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR);
291 return 0;
294 static void aes_release_key_slot(struct tegra_aes_slot *slot)
296 if (slot->slot_num == SSK_SLOT_NUM)
297 return;
299 spin_lock(&list_lock);
300 list_add_tail(&slot->node, &dev_list);
301 slot = NULL;
302 spin_unlock(&list_lock);
305 static struct tegra_aes_slot *aes_find_key_slot(void)
307 struct tegra_aes_slot *slot = NULL;
308 struct list_head *new_head;
309 int empty;
311 spin_lock(&list_lock);
312 empty = list_empty(&dev_list);
313 if (!empty) {
314 slot = list_entry(&dev_list, struct tegra_aes_slot, node);
315 new_head = dev_list.next;
316 list_del(&dev_list);
317 dev_list.next = new_head->next;
318 dev_list.prev = NULL;
320 spin_unlock(&list_lock);
322 return slot;
325 static int aes_set_key(struct tegra_aes_dev *dd)
327 u32 value, cmdq[2];
328 struct tegra_aes_ctx *ctx = dd->ctx;
329 int eng_busy, icq_empty, dma_busy;
330 bool use_ssk = false;
332 /* use ssk? */
333 if (!dd->ctx->slot) {
334 dev_dbg(dd->dev, "using ssk");
335 dd->ctx->slot = &ssk;
336 use_ssk = true;
339 /* enable key schedule generation in hardware */
340 value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT);
341 value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD;
342 aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT);
344 /* select the key slot */
345 value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG);
346 value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD;
347 value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT);
348 aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG);
350 if (use_ssk)
351 return 0;
353 /* copy the key table from sdram to vram */
354 cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT |
355 MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT |
356 AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) <<
357 MEMDMA_NUM_WORDS_SHIFT;
358 cmdq[1] = (u32)dd->ivkey_phys_base;
360 aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR);
361 aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR);
363 do {
364 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
365 eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
366 icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
367 dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
368 } while (eng_busy && !icq_empty && dma_busy);
370 /* settable command to get key into internal registers */
371 value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
372 SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT |
373 SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT |
374 (SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) <<
375 CMDQ_KEYTABLEID_SHIFT;
376 aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR);
378 do {
379 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
380 eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
381 icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
382 } while (eng_busy && !icq_empty);
384 return 0;
387 static int tegra_aes_handle_req(struct tegra_aes_dev *dd)
389 struct crypto_async_request *async_req, *backlog;
390 struct crypto_ablkcipher *tfm;
391 struct tegra_aes_ctx *ctx;
392 struct tegra_aes_reqctx *rctx;
393 struct ablkcipher_request *req;
394 unsigned long flags;
395 int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
396 int ret = 0, nblocks, total;
397 int count = 0;
398 dma_addr_t addr_in, addr_out;
399 struct scatterlist *in_sg, *out_sg;
401 if (!dd)
402 return -EINVAL;
404 spin_lock_irqsave(&dd->lock, flags);
405 backlog = crypto_get_backlog(&dd->queue);
406 async_req = crypto_dequeue_request(&dd->queue);
407 if (!async_req)
408 clear_bit(FLAGS_BUSY, &dd->flags);
409 spin_unlock_irqrestore(&dd->lock, flags);
411 if (!async_req)
412 return -ENODATA;
414 if (backlog)
415 backlog->complete(backlog, -EINPROGRESS);
417 req = ablkcipher_request_cast(async_req);
419 dev_dbg(dd->dev, "%s: get new req\n", __func__);
421 if (!req->src || !req->dst)
422 return -EINVAL;
424 /* take mutex to access the aes hw */
425 mutex_lock(&aes_lock);
427 /* assign new request to device */
428 dd->req = req;
429 dd->total = req->nbytes;
430 dd->in_offset = 0;
431 dd->in_sg = req->src;
432 dd->out_offset = 0;
433 dd->out_sg = req->dst;
435 in_sg = dd->in_sg;
436 out_sg = dd->out_sg;
438 total = dd->total;
440 tfm = crypto_ablkcipher_reqtfm(req);
441 rctx = ablkcipher_request_ctx(req);
442 ctx = crypto_ablkcipher_ctx(tfm);
443 rctx->mode &= FLAGS_MODE_MASK;
444 dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
446 dd->iv = (u8 *)req->info;
447 dd->ivlen = crypto_ablkcipher_ivsize(tfm);
449 /* assign new context to device */
450 ctx->dd = dd;
451 dd->ctx = ctx;
453 if (ctx->flags & FLAGS_NEW_KEY) {
454 /* copy the key */
455 memcpy(dd->ivkey_base, ctx->key, ctx->keylen);
456 memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen);
457 aes_set_key(dd);
458 ctx->flags &= ~FLAGS_NEW_KEY;
461 if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) {
462 /* set iv to the aes hw slot
463 * Hw generates updated iv only after iv is set in slot.
464 * So key and iv is passed asynchronously.
466 memcpy(dd->buf_in, dd->iv, dd->ivlen);
468 ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
469 dd->dma_buf_out, 1, FLAGS_CBC, false);
470 if (ret < 0) {
471 dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
472 goto out;
476 while (total) {
477 dev_dbg(dd->dev, "remain: %d\n", total);
478 ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
479 if (!ret) {
480 dev_err(dd->dev, "dma_map_sg() error\n");
481 goto out;
484 ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
485 if (!ret) {
486 dev_err(dd->dev, "dma_map_sg() error\n");
487 dma_unmap_sg(dd->dev, dd->in_sg,
488 1, DMA_TO_DEVICE);
489 goto out;
492 addr_in = sg_dma_address(in_sg);
493 addr_out = sg_dma_address(out_sg);
494 dd->flags |= FLAGS_FAST;
495 count = min_t(int, sg_dma_len(in_sg), dma_max);
496 WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
497 nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
499 ret = aes_start_crypt(dd, addr_in, addr_out, nblocks,
500 dd->flags, true);
502 dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
503 dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
505 if (ret < 0) {
506 dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
507 goto out;
509 dd->flags &= ~FLAGS_FAST;
511 dev_dbg(dd->dev, "out: copied %d\n", count);
512 total -= count;
513 in_sg = sg_next(in_sg);
514 out_sg = sg_next(out_sg);
515 WARN_ON(((total != 0) && (!in_sg || !out_sg)));
518 out:
519 mutex_unlock(&aes_lock);
521 dd->total = total;
523 if (dd->req->base.complete)
524 dd->req->base.complete(&dd->req->base, ret);
526 dev_dbg(dd->dev, "%s: exit\n", __func__);
527 return ret;
530 static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
531 unsigned int keylen)
533 struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
534 struct tegra_aes_dev *dd = aes_dev;
535 struct tegra_aes_slot *key_slot;
537 if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
538 (keylen != AES_KEYSIZE_256)) {
539 dev_err(dd->dev, "unsupported key size\n");
540 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
541 return -EINVAL;
544 dev_dbg(dd->dev, "keylen: %d\n", keylen);
546 ctx->dd = dd;
548 if (key) {
549 if (!ctx->slot) {
550 key_slot = aes_find_key_slot();
551 if (!key_slot) {
552 dev_err(dd->dev, "no empty slot\n");
553 return -ENOMEM;
556 ctx->slot = key_slot;
559 memcpy(ctx->key, key, keylen);
560 ctx->keylen = keylen;
563 ctx->flags |= FLAGS_NEW_KEY;
564 dev_dbg(dd->dev, "done\n");
565 return 0;
568 static void aes_workqueue_handler(struct work_struct *work)
570 struct tegra_aes_dev *dd = aes_dev;
571 int ret;
573 ret = clk_prepare_enable(dd->aes_clk);
574 if (ret)
575 BUG_ON("clock enable failed");
577 /* empty the crypto queue and then return */
578 do {
579 ret = tegra_aes_handle_req(dd);
580 } while (!ret);
582 clk_disable_unprepare(dd->aes_clk);
585 static irqreturn_t aes_irq(int irq, void *dev_id)
587 struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
588 u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
589 int busy = test_bit(FLAGS_BUSY, &dd->flags);
591 if (!busy) {
592 dev_dbg(dd->dev, "spurious interrupt\n");
593 return IRQ_NONE;
596 dev_dbg(dd->dev, "irq_stat: 0x%x\n", value);
597 if (value & TEGRA_AES_INT_ERROR_MASK)
598 aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS);
600 if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD))
601 complete(&dd->op_complete);
602 else
603 return IRQ_NONE;
605 return IRQ_HANDLED;
608 static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
610 struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
611 struct tegra_aes_dev *dd = aes_dev;
612 unsigned long flags;
613 int err = 0;
614 int busy;
616 dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n",
617 req->nbytes, !!(mode & FLAGS_ENCRYPT),
618 !!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB));
620 rctx->mode = mode;
622 spin_lock_irqsave(&dd->lock, flags);
623 err = ablkcipher_enqueue_request(&dd->queue, req);
624 busy = test_and_set_bit(FLAGS_BUSY, &dd->flags);
625 spin_unlock_irqrestore(&dd->lock, flags);
627 if (!busy)
628 queue_work(aes_wq, &aes_work);
630 return err;
633 static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
635 return tegra_aes_crypt(req, FLAGS_ENCRYPT);
638 static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
640 return tegra_aes_crypt(req, 0);
643 static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
645 return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
648 static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
650 return tegra_aes_crypt(req, FLAGS_CBC);
653 static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
655 return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
658 static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
660 return tegra_aes_crypt(req, FLAGS_OFB);
663 static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
664 unsigned int dlen)
666 struct tegra_aes_dev *dd = aes_dev;
667 struct tegra_aes_ctx *ctx = &rng_ctx;
668 int ret, i;
669 u8 *dest = rdata, *dt = dd->dt;
671 /* take mutex to access the aes hw */
672 mutex_lock(&aes_lock);
674 ret = clk_prepare_enable(dd->aes_clk);
675 if (ret) {
676 mutex_unlock(&aes_lock);
677 return ret;
680 ctx->dd = dd;
681 dd->ctx = ctx;
682 dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
684 memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ);
686 ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
687 (u32)dd->dma_buf_out, 1, dd->flags, true);
688 if (ret < 0) {
689 dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
690 dlen = ret;
691 goto out;
693 memcpy(dest, dd->buf_out, dlen);
695 /* update the DT */
696 for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
697 dt[i] += 1;
698 if (dt[i] != 0)
699 break;
702 out:
703 clk_disable_unprepare(dd->aes_clk);
704 mutex_unlock(&aes_lock);
706 dev_dbg(dd->dev, "%s: done\n", __func__);
707 return dlen;
710 static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
711 unsigned int slen)
713 struct tegra_aes_dev *dd = aes_dev;
714 struct tegra_aes_ctx *ctx = &rng_ctx;
715 struct tegra_aes_slot *key_slot;
716 struct timespec ts;
717 int ret = 0;
718 u64 nsec, tmp[2];
719 u8 *dt;
721 if (!ctx || !dd) {
722 dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n",
723 (unsigned int)ctx, (unsigned int)dd);
724 return -EINVAL;
727 if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
728 dev_err(dd->dev, "seed size invalid");
729 return -ENOMEM;
732 /* take mutex to access the aes hw */
733 mutex_lock(&aes_lock);
735 if (!ctx->slot) {
736 key_slot = aes_find_key_slot();
737 if (!key_slot) {
738 dev_err(dd->dev, "no empty slot\n");
739 mutex_unlock(&aes_lock);
740 return -ENOMEM;
742 ctx->slot = key_slot;
745 ctx->dd = dd;
746 dd->ctx = ctx;
747 dd->ctr = 0;
749 ctx->keylen = AES_KEYSIZE_128;
750 ctx->flags |= FLAGS_NEW_KEY;
752 /* copy the key to the key slot */
753 memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128);
754 memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128);
756 dd->iv = seed;
757 dd->ivlen = slen;
759 dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
761 ret = clk_prepare_enable(dd->aes_clk);
762 if (ret) {
763 mutex_unlock(&aes_lock);
764 return ret;
767 aes_set_key(dd);
769 /* set seed to the aes hw slot */
770 memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ);
771 ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
772 dd->dma_buf_out, 1, FLAGS_CBC, false);
773 if (ret < 0) {
774 dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
775 goto out;
778 if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
779 dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128;
780 } else {
781 getnstimeofday(&ts);
782 nsec = timespec_to_ns(&ts);
783 do_div(nsec, 1000);
784 nsec ^= dd->ctr << 56;
785 dd->ctr++;
786 tmp[0] = nsec;
787 tmp[1] = tegra_chip_uid();
788 dt = (u8 *)tmp;
790 memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ);
792 out:
793 clk_disable_unprepare(dd->aes_clk);
794 mutex_unlock(&aes_lock);
796 dev_dbg(dd->dev, "%s: done\n", __func__);
797 return ret;
800 static int tegra_aes_cra_init(struct crypto_tfm *tfm)
802 tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
804 return 0;
807 void tegra_aes_cra_exit(struct crypto_tfm *tfm)
809 struct tegra_aes_ctx *ctx =
810 crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
812 if (ctx && ctx->slot)
813 aes_release_key_slot(ctx->slot);
816 static struct crypto_alg algs[] = {
818 .cra_name = "ecb(aes)",
819 .cra_driver_name = "ecb-aes-tegra",
820 .cra_priority = 300,
821 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
822 .cra_blocksize = AES_BLOCK_SIZE,
823 .cra_alignmask = 3,
824 .cra_type = &crypto_ablkcipher_type,
825 .cra_u.ablkcipher = {
826 .min_keysize = AES_MIN_KEY_SIZE,
827 .max_keysize = AES_MAX_KEY_SIZE,
828 .setkey = tegra_aes_setkey,
829 .encrypt = tegra_aes_ecb_encrypt,
830 .decrypt = tegra_aes_ecb_decrypt,
832 }, {
833 .cra_name = "cbc(aes)",
834 .cra_driver_name = "cbc-aes-tegra",
835 .cra_priority = 300,
836 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
837 .cra_blocksize = AES_BLOCK_SIZE,
838 .cra_alignmask = 3,
839 .cra_type = &crypto_ablkcipher_type,
840 .cra_u.ablkcipher = {
841 .min_keysize = AES_MIN_KEY_SIZE,
842 .max_keysize = AES_MAX_KEY_SIZE,
843 .ivsize = AES_MIN_KEY_SIZE,
844 .setkey = tegra_aes_setkey,
845 .encrypt = tegra_aes_cbc_encrypt,
846 .decrypt = tegra_aes_cbc_decrypt,
848 }, {
849 .cra_name = "ofb(aes)",
850 .cra_driver_name = "ofb-aes-tegra",
851 .cra_priority = 300,
852 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
853 .cra_blocksize = AES_BLOCK_SIZE,
854 .cra_alignmask = 3,
855 .cra_type = &crypto_ablkcipher_type,
856 .cra_u.ablkcipher = {
857 .min_keysize = AES_MIN_KEY_SIZE,
858 .max_keysize = AES_MAX_KEY_SIZE,
859 .ivsize = AES_MIN_KEY_SIZE,
860 .setkey = tegra_aes_setkey,
861 .encrypt = tegra_aes_ofb_encrypt,
862 .decrypt = tegra_aes_ofb_decrypt,
864 }, {
865 .cra_name = "ansi_cprng",
866 .cra_driver_name = "rng-aes-tegra",
867 .cra_flags = CRYPTO_ALG_TYPE_RNG,
868 .cra_ctxsize = sizeof(struct tegra_aes_ctx),
869 .cra_type = &crypto_rng_type,
870 .cra_u.rng = {
871 .rng_make_random = tegra_aes_get_random,
872 .rng_reset = tegra_aes_rng_reset,
873 .seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
878 static int tegra_aes_probe(struct platform_device *pdev)
880 struct device *dev = &pdev->dev;
881 struct tegra_aes_dev *dd;
882 struct resource *res;
883 int err = -ENOMEM, i = 0, j;
885 dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL);
886 if (dd == NULL) {
887 dev_err(dev, "unable to alloc data struct.\n");
888 return err;
891 dd->dev = dev;
892 platform_set_drvdata(pdev, dd);
894 dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) *
895 AES_NR_KEYSLOTS, GFP_KERNEL);
896 if (dd->slots == NULL) {
897 dev_err(dev, "unable to alloc slot struct.\n");
898 goto out;
901 spin_lock_init(&dd->lock);
902 crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH);
904 /* Get the module base address */
905 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
906 if (!res) {
907 dev_err(dev, "invalid resource type: base\n");
908 err = -ENODEV;
909 goto out;
912 if (!devm_request_mem_region(&pdev->dev, res->start,
913 resource_size(res),
914 dev_name(&pdev->dev))) {
915 dev_err(&pdev->dev, "Couldn't request MEM resource\n");
916 return -ENODEV;
919 dd->io_base = devm_ioremap(dev, res->start, resource_size(res));
920 if (!dd->io_base) {
921 dev_err(dev, "can't ioremap register space\n");
922 err = -ENOMEM;
923 goto out;
926 /* Initialize the vde clock */
927 dd->aes_clk = clk_get(dev, "vde");
928 if (IS_ERR(dd->aes_clk)) {
929 dev_err(dev, "iclock intialization failed.\n");
930 err = -ENODEV;
931 goto out;
934 err = clk_set_rate(dd->aes_clk, ULONG_MAX);
935 if (err) {
936 dev_err(dd->dev, "iclk set_rate fail(%d)\n", err);
937 goto out;
941 * the foll contiguous memory is allocated as follows -
942 * - hardware key table
943 * - key schedule
945 dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
946 &dd->ivkey_phys_base,
947 GFP_KERNEL);
948 if (!dd->ivkey_base) {
949 dev_err(dev, "can not allocate iv/key buffer\n");
950 err = -ENOMEM;
951 goto out;
954 dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
955 &dd->dma_buf_in, GFP_KERNEL);
956 if (!dd->buf_in) {
957 dev_err(dev, "can not allocate dma-in buffer\n");
958 err = -ENOMEM;
959 goto out;
962 dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
963 &dd->dma_buf_out, GFP_KERNEL);
964 if (!dd->buf_out) {
965 dev_err(dev, "can not allocate dma-out buffer\n");
966 err = -ENOMEM;
967 goto out;
970 init_completion(&dd->op_complete);
971 aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
972 if (!aes_wq) {
973 dev_err(dev, "alloc_workqueue failed\n");
974 err = -ENOMEM;
975 goto out;
978 /* get the irq */
979 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
980 if (!res) {
981 dev_err(dev, "invalid resource type: base\n");
982 err = -ENODEV;
983 goto out;
985 dd->irq = res->start;
987 err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH |
988 IRQF_SHARED, "tegra-aes", dd);
989 if (err) {
990 dev_err(dev, "request_irq failed\n");
991 goto out;
994 mutex_init(&aes_lock);
995 INIT_LIST_HEAD(&dev_list);
997 spin_lock_init(&list_lock);
998 spin_lock(&list_lock);
999 for (i = 0; i < AES_NR_KEYSLOTS; i++) {
1000 if (i == SSK_SLOT_NUM)
1001 continue;
1002 dd->slots[i].slot_num = i;
1003 INIT_LIST_HEAD(&dd->slots[i].node);
1004 list_add_tail(&dd->slots[i].node, &dev_list);
1006 spin_unlock(&list_lock);
1008 aes_dev = dd;
1009 for (i = 0; i < ARRAY_SIZE(algs); i++) {
1010 algs[i].cra_priority = 300;
1011 algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx);
1012 algs[i].cra_module = THIS_MODULE;
1013 algs[i].cra_init = tegra_aes_cra_init;
1014 algs[i].cra_exit = tegra_aes_cra_exit;
1016 err = crypto_register_alg(&algs[i]);
1017 if (err)
1018 goto out;
1021 dev_info(dev, "registered");
1022 return 0;
1024 out:
1025 for (j = 0; j < i; j++)
1026 crypto_unregister_alg(&algs[j]);
1027 if (dd->ivkey_base)
1028 dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1029 dd->ivkey_base, dd->ivkey_phys_base);
1030 if (dd->buf_in)
1031 dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1032 dd->buf_in, dd->dma_buf_in);
1033 if (dd->buf_out)
1034 dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1035 dd->buf_out, dd->dma_buf_out);
1036 if (!IS_ERR(dd->aes_clk))
1037 clk_put(dd->aes_clk);
1038 if (aes_wq)
1039 destroy_workqueue(aes_wq);
1040 spin_lock(&list_lock);
1041 list_del(&dev_list);
1042 spin_unlock(&list_lock);
1044 aes_dev = NULL;
1046 dev_err(dev, "%s: initialization failed.\n", __func__);
1047 return err;
1050 static int tegra_aes_remove(struct platform_device *pdev)
1052 struct device *dev = &pdev->dev;
1053 struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
1054 int i;
1056 for (i = 0; i < ARRAY_SIZE(algs); i++)
1057 crypto_unregister_alg(&algs[i]);
1059 cancel_work_sync(&aes_work);
1060 destroy_workqueue(aes_wq);
1061 spin_lock(&list_lock);
1062 list_del(&dev_list);
1063 spin_unlock(&list_lock);
1065 dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1066 dd->ivkey_base, dd->ivkey_phys_base);
1067 dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1068 dd->buf_in, dd->dma_buf_in);
1069 dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1070 dd->buf_out, dd->dma_buf_out);
1071 clk_put(dd->aes_clk);
1072 aes_dev = NULL;
1074 return 0;
1077 static struct of_device_id tegra_aes_of_match[] = {
1078 { .compatible = "nvidia,tegra20-aes", },
1079 { .compatible = "nvidia,tegra30-aes", },
1080 { },
1083 static struct platform_driver tegra_aes_driver = {
1084 .probe = tegra_aes_probe,
1085 .remove = tegra_aes_remove,
1086 .driver = {
1087 .name = "tegra-aes",
1088 .owner = THIS_MODULE,
1089 .of_match_table = tegra_aes_of_match,
1093 module_platform_driver(tegra_aes_driver);
1095 MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support.");
1096 MODULE_AUTHOR("NVIDIA Corporation");
1097 MODULE_LICENSE("GPL v2");