x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_pm.c
blob71a831ae73e936b3db24fc3bf32a7f35cf6f44db
1 /*
2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
46 static bool intel_crtc_active(struct drm_crtc *crtc)
48 /* Be paranoid as we can arrive here with only partial
49 * state retrieved from the hardware during setup.
51 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
54 static void i8xx_disable_fbc(struct drm_device *dev)
56 struct drm_i915_private *dev_priv = dev->dev_private;
57 u32 fbc_ctl;
59 /* Disable compression */
60 fbc_ctl = I915_READ(FBC_CONTROL);
61 if ((fbc_ctl & FBC_CTL_EN) == 0)
62 return;
64 fbc_ctl &= ~FBC_CTL_EN;
65 I915_WRITE(FBC_CONTROL, fbc_ctl);
67 /* Wait for compressing bit to clear */
68 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69 DRM_DEBUG_KMS("FBC idle timed out\n");
70 return;
73 DRM_DEBUG_KMS("disabled FBC\n");
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 struct drm_device *dev = crtc->dev;
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct drm_framebuffer *fb = crtc->fb;
81 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82 struct drm_i915_gem_object *obj = intel_fb->obj;
83 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84 int cfb_pitch;
85 int plane, i;
86 u32 fbc_ctl, fbc_ctl2;
88 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89 if (fb->pitches[0] < cfb_pitch)
90 cfb_pitch = fb->pitches[0];
92 /* FBC_CTL wants 64B units */
93 cfb_pitch = (cfb_pitch / 64) - 1;
94 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96 /* Clear old tags */
97 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98 I915_WRITE(FBC_TAG + (i * 4), 0);
100 /* Set it up... */
101 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102 fbc_ctl2 |= plane;
103 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104 I915_WRITE(FBC_FENCE_OFF, crtc->y);
106 /* enable it... */
107 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108 if (IS_I945GM(dev))
109 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112 fbc_ctl |= obj->fence_reg;
113 I915_WRITE(FBC_CONTROL, fbc_ctl);
115 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 struct drm_i915_private *dev_priv = dev->dev_private;
123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 struct drm_device *dev = crtc->dev;
129 struct drm_i915_private *dev_priv = dev->dev_private;
130 struct drm_framebuffer *fb = crtc->fb;
131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132 struct drm_i915_gem_object *obj = intel_fb->obj;
133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135 unsigned long stall_watermark = 200;
136 u32 dpfc_ctl;
138 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147 /* enable it... */
148 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
153 static void g4x_disable_fbc(struct drm_device *dev)
155 struct drm_i915_private *dev_priv = dev->dev_private;
156 u32 dpfc_ctl;
158 /* Disable compression */
159 dpfc_ctl = I915_READ(DPFC_CONTROL);
160 if (dpfc_ctl & DPFC_CTL_EN) {
161 dpfc_ctl &= ~DPFC_CTL_EN;
162 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164 DRM_DEBUG_KMS("disabled FBC\n");
168 static bool g4x_fbc_enabled(struct drm_device *dev)
170 struct drm_i915_private *dev_priv = dev->dev_private;
172 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 u32 blt_ecoskpd;
180 /* Make sure blitter notifies FBC of writes */
181 gen6_gt_force_wake_get(dev_priv);
182 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184 GEN6_BLITTER_LOCK_SHIFT;
185 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189 GEN6_BLITTER_LOCK_SHIFT);
190 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191 POSTING_READ(GEN6_BLITTER_ECOSKPD);
192 gen6_gt_force_wake_put(dev_priv);
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 struct drm_device *dev = crtc->dev;
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 struct drm_framebuffer *fb = crtc->fb;
200 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201 struct drm_i915_gem_object *obj = intel_fb->obj;
202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204 unsigned long stall_watermark = 200;
205 u32 dpfc_ctl;
207 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208 dpfc_ctl &= DPFC_RESERVED;
209 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210 /* Set persistent mode for front-buffer rendering, ala X. */
211 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
220 /* enable it... */
221 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223 if (IS_GEN6(dev)) {
224 I915_WRITE(SNB_DPFC_CTL_SA,
225 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227 sandybridge_blit_fbc_update(dev);
230 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
233 static void ironlake_disable_fbc(struct drm_device *dev)
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 u32 dpfc_ctl;
238 /* Disable compression */
239 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240 if (dpfc_ctl & DPFC_CTL_EN) {
241 dpfc_ctl &= ~DPFC_CTL_EN;
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244 if (IS_IVYBRIDGE(dev))
245 /* WaFbcDisableDpfcClockGating:ivb */
246 I915_WRITE(ILK_DSPCLK_GATE_D,
247 I915_READ(ILK_DSPCLK_GATE_D) &
248 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
250 if (IS_HASWELL(dev))
251 /* WaFbcDisableDpfcClockGating:hsw */
252 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254 ~HSW_DPFC_GATING_DISABLE);
256 DRM_DEBUG_KMS("disabled FBC\n");
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
262 struct drm_i915_private *dev_priv = dev->dev_private;
264 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269 struct drm_device *dev = crtc->dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 struct drm_framebuffer *fb = crtc->fb;
272 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273 struct drm_i915_gem_object *obj = intel_fb->obj;
274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
278 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279 IVB_DPFC_CTL_FENCE_EN |
280 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282 if (IS_IVYBRIDGE(dev)) {
283 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285 /* WaFbcDisableDpfcClockGating:ivb */
286 I915_WRITE(ILK_DSPCLK_GATE_D,
287 I915_READ(ILK_DSPCLK_GATE_D) |
288 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289 } else {
290 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292 HSW_BYPASS_FBC_QUEUE);
293 /* WaFbcDisableDpfcClockGating:hsw */
294 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296 HSW_DPFC_GATING_DISABLE);
299 I915_WRITE(SNB_DPFC_CTL_SA,
300 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303 sandybridge_blit_fbc_update(dev);
305 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
308 bool intel_fbc_enabled(struct drm_device *dev)
310 struct drm_i915_private *dev_priv = dev->dev_private;
312 if (!dev_priv->display.fbc_enabled)
313 return false;
315 return dev_priv->display.fbc_enabled(dev);
318 static void intel_fbc_work_fn(struct work_struct *__work)
320 struct intel_fbc_work *work =
321 container_of(to_delayed_work(__work),
322 struct intel_fbc_work, work);
323 struct drm_device *dev = work->crtc->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
326 mutex_lock(&dev->struct_mutex);
327 if (work == dev_priv->fbc.fbc_work) {
328 /* Double check that we haven't switched fb without cancelling
329 * the prior work.
331 if (work->crtc->fb == work->fb) {
332 dev_priv->display.enable_fbc(work->crtc,
333 work->interval);
335 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337 dev_priv->fbc.y = work->crtc->y;
340 dev_priv->fbc.fbc_work = NULL;
342 mutex_unlock(&dev->struct_mutex);
344 kfree(work);
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 if (dev_priv->fbc.fbc_work == NULL)
350 return;
352 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354 /* Synchronisation is provided by struct_mutex and checking of
355 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 * entirely asynchronously.
358 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359 /* tasklet was killed before being run, clean up */
360 kfree(dev_priv->fbc.fbc_work);
362 /* Mark the work as no longer wanted so that if it does
363 * wake-up (because the work was already running and waiting
364 * for our mutex), it will discover that is no longer
365 * necessary to run.
367 dev_priv->fbc.fbc_work = NULL;
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372 struct intel_fbc_work *work;
373 struct drm_device *dev = crtc->dev;
374 struct drm_i915_private *dev_priv = dev->dev_private;
376 if (!dev_priv->display.enable_fbc)
377 return;
379 intel_cancel_fbc_work(dev_priv);
381 work = kzalloc(sizeof *work, GFP_KERNEL);
382 if (work == NULL) {
383 DRM_ERROR("Failed to allocate FBC work structure\n");
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
393 dev_priv->fbc.fbc_work = work;
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
411 void intel_disable_fbc(struct drm_device *dev)
413 struct drm_i915_private *dev_priv = dev->dev_private;
415 intel_cancel_fbc_work(dev_priv);
417 if (!dev_priv->display.disable_fbc)
418 return;
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->fbc.plane = -1;
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
427 if (dev_priv->fbc.no_fbc_reason == reason)
428 return false;
430 dev_priv->fbc.no_fbc_reason = reason;
431 return true;
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
443 * - no dual wide
444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
449 * stolen memory.
451 * We need to enable/disable FBC on a global basis.
453 void intel_update_fbc(struct drm_device *dev)
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
461 unsigned int max_hdisplay, max_vdisplay;
463 if (!I915_HAS_FBC(dev)) {
464 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
465 return;
468 if (!i915_powersave) {
469 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470 DRM_DEBUG_KMS("fbc disabled per module param\n");
471 return;
475 * If FBC is already on, we just have to verify that we can
476 * keep it that way...
477 * Need to disable if:
478 * - more than one pipe is active
479 * - changing FBC params (stride, fence, mode)
480 * - new fb is too large to fit in compressed buffer
481 * - going to an unsupported config (interlace, pixel multiply, etc.)
483 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484 if (intel_crtc_active(tmp_crtc) &&
485 !to_intel_crtc(tmp_crtc)->primary_disabled) {
486 if (crtc) {
487 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
489 goto out_disable;
491 crtc = tmp_crtc;
495 if (!crtc || crtc->fb == NULL) {
496 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497 DRM_DEBUG_KMS("no output, disabling\n");
498 goto out_disable;
501 intel_crtc = to_intel_crtc(crtc);
502 fb = crtc->fb;
503 intel_fb = to_intel_framebuffer(fb);
504 obj = intel_fb->obj;
506 if (i915_enable_fbc < 0 &&
507 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509 DRM_DEBUG_KMS("disabled per chip default\n");
510 goto out_disable;
512 if (!i915_enable_fbc) {
513 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514 DRM_DEBUG_KMS("fbc disabled per module param\n");
515 goto out_disable;
517 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520 DRM_DEBUG_KMS("mode incompatible with compression, "
521 "disabling\n");
522 goto out_disable;
525 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
526 max_hdisplay = 4096;
527 max_vdisplay = 2048;
528 } else {
529 max_hdisplay = 2048;
530 max_vdisplay = 1536;
532 if ((crtc->mode.hdisplay > max_hdisplay) ||
533 (crtc->mode.vdisplay > max_vdisplay)) {
534 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
536 goto out_disable;
538 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539 intel_crtc->plane != 0) {
540 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
542 goto out_disable;
545 /* The use of a CPU fence is mandatory in order to detect writes
546 * by the CPU to the scanout and trigger updates to the FBC.
548 if (obj->tiling_mode != I915_TILING_X ||
549 obj->fence_reg == I915_FENCE_REG_NONE) {
550 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
552 goto out_disable;
555 /* If the kernel debugger is active, always disable compression */
556 if (in_dbg_master())
557 goto out_disable;
559 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
562 goto out_disable;
565 /* If the scanout has not changed, don't modify the FBC settings.
566 * Note that we make the fundamental assumption that the fb->obj
567 * cannot be unpinned (and have its GTT offset and fence revoked)
568 * without first being decoupled from the scanout and FBC disabled.
570 if (dev_priv->fbc.plane == intel_crtc->plane &&
571 dev_priv->fbc.fb_id == fb->base.id &&
572 dev_priv->fbc.y == crtc->y)
573 return;
575 if (intel_fbc_enabled(dev)) {
576 /* We update FBC along two paths, after changing fb/crtc
577 * configuration (modeswitching) and after page-flipping
578 * finishes. For the latter, we know that not only did
579 * we disable the FBC at the start of the page-flip
580 * sequence, but also more than one vblank has passed.
582 * For the former case of modeswitching, it is possible
583 * to switch between two FBC valid configurations
584 * instantaneously so we do need to disable the FBC
585 * before we can modify its control registers. We also
586 * have to wait for the next vblank for that to take
587 * effect. However, since we delay enabling FBC we can
588 * assume that a vblank has passed since disabling and
589 * that we can safely alter the registers in the deferred
590 * callback.
592 * In the scenario that we go from a valid to invalid
593 * and then back to valid FBC configuration we have
594 * no strict enforcement that a vblank occurred since
595 * disabling the FBC. However, along all current pipe
596 * disabling paths we do need to wait for a vblank at
597 * some point. And we wait before enabling FBC anyway.
599 DRM_DEBUG_KMS("disabling active FBC for update\n");
600 intel_disable_fbc(dev);
603 intel_enable_fbc(crtc, 500);
604 dev_priv->fbc.no_fbc_reason = FBC_OK;
605 return;
607 out_disable:
608 /* Multiple disables should be harmless */
609 if (intel_fbc_enabled(dev)) {
610 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611 intel_disable_fbc(dev);
613 i915_gem_stolen_cleanup_compression(dev);
616 static void i915_pineview_get_mem_freq(struct drm_device *dev)
618 drm_i915_private_t *dev_priv = dev->dev_private;
619 u32 tmp;
621 tmp = I915_READ(CLKCFG);
623 switch (tmp & CLKCFG_FSB_MASK) {
624 case CLKCFG_FSB_533:
625 dev_priv->fsb_freq = 533; /* 133*4 */
626 break;
627 case CLKCFG_FSB_800:
628 dev_priv->fsb_freq = 800; /* 200*4 */
629 break;
630 case CLKCFG_FSB_667:
631 dev_priv->fsb_freq = 667; /* 167*4 */
632 break;
633 case CLKCFG_FSB_400:
634 dev_priv->fsb_freq = 400; /* 100*4 */
635 break;
638 switch (tmp & CLKCFG_MEM_MASK) {
639 case CLKCFG_MEM_533:
640 dev_priv->mem_freq = 533;
641 break;
642 case CLKCFG_MEM_667:
643 dev_priv->mem_freq = 667;
644 break;
645 case CLKCFG_MEM_800:
646 dev_priv->mem_freq = 800;
647 break;
650 /* detect pineview DDR3 setting */
651 tmp = I915_READ(CSHRDDR3CTL);
652 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
657 drm_i915_private_t *dev_priv = dev->dev_private;
658 u16 ddrpll, csipll;
660 ddrpll = I915_READ16(DDRMPLL1);
661 csipll = I915_READ16(CSIPLL0);
663 switch (ddrpll & 0xff) {
664 case 0xc:
665 dev_priv->mem_freq = 800;
666 break;
667 case 0x10:
668 dev_priv->mem_freq = 1066;
669 break;
670 case 0x14:
671 dev_priv->mem_freq = 1333;
672 break;
673 case 0x18:
674 dev_priv->mem_freq = 1600;
675 break;
676 default:
677 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
678 ddrpll & 0xff);
679 dev_priv->mem_freq = 0;
680 break;
683 dev_priv->ips.r_t = dev_priv->mem_freq;
685 switch (csipll & 0x3ff) {
686 case 0x00c:
687 dev_priv->fsb_freq = 3200;
688 break;
689 case 0x00e:
690 dev_priv->fsb_freq = 3733;
691 break;
692 case 0x010:
693 dev_priv->fsb_freq = 4266;
694 break;
695 case 0x012:
696 dev_priv->fsb_freq = 4800;
697 break;
698 case 0x014:
699 dev_priv->fsb_freq = 5333;
700 break;
701 case 0x016:
702 dev_priv->fsb_freq = 5866;
703 break;
704 case 0x018:
705 dev_priv->fsb_freq = 6400;
706 break;
707 default:
708 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
709 csipll & 0x3ff);
710 dev_priv->fsb_freq = 0;
711 break;
714 if (dev_priv->fsb_freq == 3200) {
715 dev_priv->ips.c_m = 0;
716 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717 dev_priv->ips.c_m = 1;
718 } else {
719 dev_priv->ips.c_m = 2;
723 static const struct cxsr_latency cxsr_latency_table[] = {
724 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
725 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
726 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
727 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
728 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
730 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
731 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
732 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
733 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
734 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
736 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
737 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
738 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
739 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
740 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
742 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
743 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
744 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
745 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
746 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
748 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
749 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
750 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
751 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
752 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
754 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
755 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
756 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
757 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
758 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
761 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
762 int is_ddr3,
763 int fsb,
764 int mem)
766 const struct cxsr_latency *latency;
767 int i;
769 if (fsb == 0 || mem == 0)
770 return NULL;
772 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773 latency = &cxsr_latency_table[i];
774 if (is_desktop == latency->is_desktop &&
775 is_ddr3 == latency->is_ddr3 &&
776 fsb == latency->fsb_freq && mem == latency->mem_freq)
777 return latency;
780 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
782 return NULL;
785 static void pineview_disable_cxsr(struct drm_device *dev)
787 struct drm_i915_private *dev_priv = dev->dev_private;
789 /* deactivate cxsr */
790 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
794 * Latency for FIFO fetches is dependent on several factors:
795 * - memory configuration (speed, channels)
796 * - chipset
797 * - current MCH state
798 * It can be fairly high in some situations, so here we assume a fairly
799 * pessimal value. It's a tradeoff between extra memory fetches (if we
800 * set this value too high, the FIFO will fetch frequently to stay full)
801 * and power consumption (set it too low to save power and we might see
802 * FIFO underruns and display "flicker").
804 * A value of 5us seems to be a good balance; safe for very low end
805 * platforms but not overly aggressive on lower latency configs.
807 static const int latency_ns = 5000;
809 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 uint32_t dsparb = I915_READ(DSPARB);
813 int size;
815 size = dsparb & 0x7f;
816 if (plane)
817 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820 plane ? "B" : "A", size);
822 return size;
825 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 uint32_t dsparb = I915_READ(DSPARB);
829 int size;
831 size = dsparb & 0x1ff;
832 if (plane)
833 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834 size >>= 1; /* Convert to cachelines */
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837 plane ? "B" : "A", size);
839 return size;
842 static int i845_get_fifo_size(struct drm_device *dev, int plane)
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 uint32_t dsparb = I915_READ(DSPARB);
846 int size;
848 size = dsparb & 0x7f;
849 size >>= 2; /* Convert to cachelines */
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852 plane ? "B" : "A",
853 size);
855 return size;
858 static int i830_get_fifo_size(struct drm_device *dev, int plane)
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dsparb = I915_READ(DSPARB);
862 int size;
864 size = dsparb & 0x7f;
865 size >>= 1; /* Convert to cachelines */
867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868 plane ? "B" : "A", size);
870 return size;
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882 PINEVIEW_DISPLAY_FIFO,
883 PINEVIEW_MAX_WM,
884 PINEVIEW_DFT_HPLLOFF_WM,
885 PINEVIEW_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE
888 static const struct intel_watermark_params pineview_cursor_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE,
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896 PINEVIEW_CURSOR_FIFO,
897 PINEVIEW_CURSOR_MAX_WM,
898 PINEVIEW_CURSOR_DFT_WM,
899 PINEVIEW_CURSOR_GUARD_WM,
900 PINEVIEW_FIFO_LINE_SIZE
902 static const struct intel_watermark_params g4x_wm_info = {
903 G4X_FIFO_SIZE,
904 G4X_MAX_WM,
905 G4X_MAX_WM,
907 G4X_FIFO_LINE_SIZE,
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
910 I965_CURSOR_FIFO,
911 I965_CURSOR_MAX_WM,
912 I965_CURSOR_DFT_WM,
914 G4X_FIFO_LINE_SIZE,
916 static const struct intel_watermark_params valleyview_wm_info = {
917 VALLEYVIEW_FIFO_SIZE,
918 VALLEYVIEW_MAX_WM,
919 VALLEYVIEW_MAX_WM,
921 G4X_FIFO_LINE_SIZE,
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 VALLEYVIEW_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
928 G4X_FIFO_LINE_SIZE,
930 static const struct intel_watermark_params i965_cursor_wm_info = {
931 I965_CURSOR_FIFO,
932 I965_CURSOR_MAX_WM,
933 I965_CURSOR_DFT_WM,
935 I915_FIFO_LINE_SIZE,
937 static const struct intel_watermark_params i945_wm_info = {
938 I945_FIFO_SIZE,
939 I915_MAX_WM,
942 I915_FIFO_LINE_SIZE
944 static const struct intel_watermark_params i915_wm_info = {
945 I915_FIFO_SIZE,
946 I915_MAX_WM,
949 I915_FIFO_LINE_SIZE
951 static const struct intel_watermark_params i855_wm_info = {
952 I855GM_FIFO_SIZE,
953 I915_MAX_WM,
956 I830_FIFO_LINE_SIZE
958 static const struct intel_watermark_params i830_wm_info = {
959 I830_FIFO_SIZE,
960 I915_MAX_WM,
963 I830_FIFO_LINE_SIZE
966 static const struct intel_watermark_params ironlake_display_wm_info = {
967 ILK_DISPLAY_FIFO,
968 ILK_DISPLAY_MAXWM,
969 ILK_DISPLAY_DFTWM,
971 ILK_FIFO_LINE_SIZE
973 static const struct intel_watermark_params ironlake_cursor_wm_info = {
974 ILK_CURSOR_FIFO,
975 ILK_CURSOR_MAXWM,
976 ILK_CURSOR_DFTWM,
978 ILK_FIFO_LINE_SIZE
980 static const struct intel_watermark_params ironlake_display_srwm_info = {
981 ILK_DISPLAY_SR_FIFO,
982 ILK_DISPLAY_MAX_SRWM,
983 ILK_DISPLAY_DFT_SRWM,
985 ILK_FIFO_LINE_SIZE
987 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
988 ILK_CURSOR_SR_FIFO,
989 ILK_CURSOR_MAX_SRWM,
990 ILK_CURSOR_DFT_SRWM,
992 ILK_FIFO_LINE_SIZE
995 static const struct intel_watermark_params sandybridge_display_wm_info = {
996 SNB_DISPLAY_FIFO,
997 SNB_DISPLAY_MAXWM,
998 SNB_DISPLAY_DFTWM,
1000 SNB_FIFO_LINE_SIZE
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1003 SNB_CURSOR_FIFO,
1004 SNB_CURSOR_MAXWM,
1005 SNB_CURSOR_DFTWM,
1007 SNB_FIFO_LINE_SIZE
1009 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010 SNB_DISPLAY_SR_FIFO,
1011 SNB_DISPLAY_MAX_SRWM,
1012 SNB_DISPLAY_DFT_SRWM,
1014 SNB_FIFO_LINE_SIZE
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1017 SNB_CURSOR_SR_FIFO,
1018 SNB_CURSOR_MAX_SRWM,
1019 SNB_CURSOR_DFT_SRWM,
1021 SNB_FIFO_LINE_SIZE
1026 * intel_calculate_wm - calculate watermark level
1027 * @clock_in_khz: pixel clock
1028 * @wm: chip FIFO params
1029 * @pixel_size: display pixel size
1030 * @latency_ns: memory latency for the platform
1032 * Calculate the watermark level (the level at which the display plane will
1033 * start fetching from memory again). Each chip has a different display
1034 * FIFO size and allocation, so the caller needs to figure that out and pass
1035 * in the correct intel_watermark_params structure.
1037 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038 * on the pixel size. When it reaches the watermark level, it'll start
1039 * fetching FIFO line sized based chunks from memory until the FIFO fills
1040 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1041 * will occur, and a display engine hang could result.
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044 const struct intel_watermark_params *wm,
1045 int fifo_size,
1046 int pixel_size,
1047 unsigned long latency_ns)
1049 long entries_required, wm_size;
1052 * Note: we need to make sure we don't overflow for various clock &
1053 * latency values.
1054 * clocks go from a few thousand to several hundred thousand.
1055 * latency is usually a few thousand
1057 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058 1000;
1059 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1061 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1063 wm_size = fifo_size - (entries_required + wm->guard_size);
1065 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1067 /* Don't promote wm_size to unsigned... */
1068 if (wm_size > (long)wm->max_wm)
1069 wm_size = wm->max_wm;
1070 if (wm_size <= 0)
1071 wm_size = wm->default_wm;
1072 return wm_size;
1075 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1077 struct drm_crtc *crtc, *enabled = NULL;
1079 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080 if (intel_crtc_active(crtc)) {
1081 if (enabled)
1082 return NULL;
1083 enabled = crtc;
1087 return enabled;
1090 static void pineview_update_wm(struct drm_device *dev)
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 struct drm_crtc *crtc;
1094 const struct cxsr_latency *latency;
1095 u32 reg;
1096 unsigned long wm;
1098 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099 dev_priv->fsb_freq, dev_priv->mem_freq);
1100 if (!latency) {
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev);
1103 return;
1106 crtc = single_enabled_crtc(dev);
1107 if (crtc) {
1108 int clock = crtc->mode.clock;
1109 int pixel_size = crtc->fb->bits_per_pixel / 8;
1111 /* Display SR */
1112 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113 pineview_display_wm.fifo_size,
1114 pixel_size, latency->display_sr);
1115 reg = I915_READ(DSPFW1);
1116 reg &= ~DSPFW_SR_MASK;
1117 reg |= wm << DSPFW_SR_SHIFT;
1118 I915_WRITE(DSPFW1, reg);
1119 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1121 /* cursor SR */
1122 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123 pineview_display_wm.fifo_size,
1124 pixel_size, latency->cursor_sr);
1125 reg = I915_READ(DSPFW3);
1126 reg &= ~DSPFW_CURSOR_SR_MASK;
1127 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128 I915_WRITE(DSPFW3, reg);
1130 /* Display HPLL off SR */
1131 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132 pineview_display_hplloff_wm.fifo_size,
1133 pixel_size, latency->display_hpll_disable);
1134 reg = I915_READ(DSPFW3);
1135 reg &= ~DSPFW_HPLL_SR_MASK;
1136 reg |= wm & DSPFW_HPLL_SR_MASK;
1137 I915_WRITE(DSPFW3, reg);
1139 /* cursor HPLL off SR */
1140 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141 pineview_display_hplloff_wm.fifo_size,
1142 pixel_size, latency->cursor_hpll_disable);
1143 reg = I915_READ(DSPFW3);
1144 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146 I915_WRITE(DSPFW3, reg);
1147 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1149 /* activate cxsr */
1150 I915_WRITE(DSPFW3,
1151 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153 } else {
1154 pineview_disable_cxsr(dev);
1155 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1160 int plane,
1161 const struct intel_watermark_params *display,
1162 int display_latency_ns,
1163 const struct intel_watermark_params *cursor,
1164 int cursor_latency_ns,
1165 int *plane_wm,
1166 int *cursor_wm)
1168 struct drm_crtc *crtc;
1169 int htotal, hdisplay, clock, pixel_size;
1170 int line_time_us, line_count;
1171 int entries, tlb_miss;
1173 crtc = intel_get_crtc_for_plane(dev, plane);
1174 if (!intel_crtc_active(crtc)) {
1175 *cursor_wm = cursor->guard_size;
1176 *plane_wm = display->guard_size;
1177 return false;
1180 htotal = crtc->mode.htotal;
1181 hdisplay = crtc->mode.hdisplay;
1182 clock = crtc->mode.clock;
1183 pixel_size = crtc->fb->bits_per_pixel / 8;
1185 /* Use the small buffer method to calculate plane watermark */
1186 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1188 if (tlb_miss > 0)
1189 entries += tlb_miss;
1190 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191 *plane_wm = entries + display->guard_size;
1192 if (*plane_wm > (int)display->max_wm)
1193 *plane_wm = display->max_wm;
1195 /* Use the large buffer method to calculate cursor watermark */
1196 line_time_us = ((htotal * 1000) / clock);
1197 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198 entries = line_count * 64 * pixel_size;
1199 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1200 if (tlb_miss > 0)
1201 entries += tlb_miss;
1202 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203 *cursor_wm = entries + cursor->guard_size;
1204 if (*cursor_wm > (int)cursor->max_wm)
1205 *cursor_wm = (int)cursor->max_wm;
1207 return true;
1211 * Check the wm result.
1213 * If any calculated watermark values is larger than the maximum value that
1214 * can be programmed into the associated watermark register, that watermark
1215 * must be disabled.
1217 static bool g4x_check_srwm(struct drm_device *dev,
1218 int display_wm, int cursor_wm,
1219 const struct intel_watermark_params *display,
1220 const struct intel_watermark_params *cursor)
1222 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223 display_wm, cursor_wm);
1225 if (display_wm > display->max_wm) {
1226 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227 display_wm, display->max_wm);
1228 return false;
1231 if (cursor_wm > cursor->max_wm) {
1232 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233 cursor_wm, cursor->max_wm);
1234 return false;
1237 if (!(display_wm || cursor_wm)) {
1238 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1239 return false;
1242 return true;
1245 static bool g4x_compute_srwm(struct drm_device *dev,
1246 int plane,
1247 int latency_ns,
1248 const struct intel_watermark_params *display,
1249 const struct intel_watermark_params *cursor,
1250 int *display_wm, int *cursor_wm)
1252 struct drm_crtc *crtc;
1253 int hdisplay, htotal, pixel_size, clock;
1254 unsigned long line_time_us;
1255 int line_count, line_size;
1256 int small, large;
1257 int entries;
1259 if (!latency_ns) {
1260 *display_wm = *cursor_wm = 0;
1261 return false;
1264 crtc = intel_get_crtc_for_plane(dev, plane);
1265 hdisplay = crtc->mode.hdisplay;
1266 htotal = crtc->mode.htotal;
1267 clock = crtc->mode.clock;
1268 pixel_size = crtc->fb->bits_per_pixel / 8;
1270 line_time_us = (htotal * 1000) / clock;
1271 line_count = (latency_ns / line_time_us + 1000) / 1000;
1272 line_size = hdisplay * pixel_size;
1274 /* Use the minimum of the small and large buffer method for primary */
1275 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276 large = line_count * line_size;
1278 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279 *display_wm = entries + display->guard_size;
1281 /* calculate the self-refresh watermark for display cursor */
1282 entries = line_count * pixel_size * 64;
1283 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284 *cursor_wm = entries + cursor->guard_size;
1286 return g4x_check_srwm(dev,
1287 *display_wm, *cursor_wm,
1288 display, cursor);
1291 static bool vlv_compute_drain_latency(struct drm_device *dev,
1292 int plane,
1293 int *plane_prec_mult,
1294 int *plane_dl,
1295 int *cursor_prec_mult,
1296 int *cursor_dl)
1298 struct drm_crtc *crtc;
1299 int clock, pixel_size;
1300 int entries;
1302 crtc = intel_get_crtc_for_plane(dev, plane);
1303 if (!intel_crtc_active(crtc))
1304 return false;
1306 clock = crtc->mode.clock; /* VESA DOT Clock */
1307 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1309 entries = (clock / 1000) * pixel_size;
1310 *plane_prec_mult = (entries > 256) ?
1311 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1313 pixel_size);
1315 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1316 *cursor_prec_mult = (entries > 256) ?
1317 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1320 return true;
1324 * Update drain latency registers of memory arbiter
1326 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327 * to be programmed. Each plane has a drain latency multiplier and a drain
1328 * latency value.
1331 static void vlv_update_drain_latency(struct drm_device *dev)
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1337 either 16 or 32 */
1339 /* For plane A, Cursor A */
1340 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341 &cursor_prec_mult, &cursora_dl)) {
1342 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1347 I915_WRITE(VLV_DDL1, cursora_prec |
1348 (cursora_dl << DDL_CURSORA_SHIFT) |
1349 planea_prec | planea_dl);
1352 /* For plane B, Cursor B */
1353 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354 &cursor_prec_mult, &cursorb_dl)) {
1355 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1360 I915_WRITE(VLV_DDL2, cursorb_prec |
1361 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362 planeb_prec | planeb_dl);
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1368 static void valleyview_update_wm(struct drm_device *dev)
1370 static const int sr_latency_ns = 12000;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373 int plane_sr, cursor_sr;
1374 int ignore_plane_sr, ignore_cursor_sr;
1375 unsigned int enabled = 0;
1377 vlv_update_drain_latency(dev);
1379 if (g4x_compute_wm0(dev, PIPE_A,
1380 &valleyview_wm_info, latency_ns,
1381 &valleyview_cursor_wm_info, latency_ns,
1382 &planea_wm, &cursora_wm))
1383 enabled |= 1 << PIPE_A;
1385 if (g4x_compute_wm0(dev, PIPE_B,
1386 &valleyview_wm_info, latency_ns,
1387 &valleyview_cursor_wm_info, latency_ns,
1388 &planeb_wm, &cursorb_wm))
1389 enabled |= 1 << PIPE_B;
1391 if (single_plane_enabled(enabled) &&
1392 g4x_compute_srwm(dev, ffs(enabled) - 1,
1393 sr_latency_ns,
1394 &valleyview_wm_info,
1395 &valleyview_cursor_wm_info,
1396 &plane_sr, &ignore_cursor_sr) &&
1397 g4x_compute_srwm(dev, ffs(enabled) - 1,
1398 2*sr_latency_ns,
1399 &valleyview_wm_info,
1400 &valleyview_cursor_wm_info,
1401 &ignore_plane_sr, &cursor_sr)) {
1402 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403 } else {
1404 I915_WRITE(FW_BLC_SELF_VLV,
1405 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406 plane_sr = cursor_sr = 0;
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410 planea_wm, cursora_wm,
1411 planeb_wm, cursorb_wm,
1412 plane_sr, cursor_sr);
1414 I915_WRITE(DSPFW1,
1415 (plane_sr << DSPFW_SR_SHIFT) |
1416 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418 planea_wm);
1419 I915_WRITE(DSPFW2,
1420 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421 (cursora_wm << DSPFW_CURSORA_SHIFT));
1422 I915_WRITE(DSPFW3,
1423 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1427 static void g4x_update_wm(struct drm_device *dev)
1429 static const int sr_latency_ns = 12000;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432 int plane_sr, cursor_sr;
1433 unsigned int enabled = 0;
1435 if (g4x_compute_wm0(dev, PIPE_A,
1436 &g4x_wm_info, latency_ns,
1437 &g4x_cursor_wm_info, latency_ns,
1438 &planea_wm, &cursora_wm))
1439 enabled |= 1 << PIPE_A;
1441 if (g4x_compute_wm0(dev, PIPE_B,
1442 &g4x_wm_info, latency_ns,
1443 &g4x_cursor_wm_info, latency_ns,
1444 &planeb_wm, &cursorb_wm))
1445 enabled |= 1 << PIPE_B;
1447 if (single_plane_enabled(enabled) &&
1448 g4x_compute_srwm(dev, ffs(enabled) - 1,
1449 sr_latency_ns,
1450 &g4x_wm_info,
1451 &g4x_cursor_wm_info,
1452 &plane_sr, &cursor_sr)) {
1453 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1454 } else {
1455 I915_WRITE(FW_BLC_SELF,
1456 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457 plane_sr = cursor_sr = 0;
1460 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461 planea_wm, cursora_wm,
1462 planeb_wm, cursorb_wm,
1463 plane_sr, cursor_sr);
1465 I915_WRITE(DSPFW1,
1466 (plane_sr << DSPFW_SR_SHIFT) |
1467 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1469 planea_wm);
1470 I915_WRITE(DSPFW2,
1471 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472 (cursora_wm << DSPFW_CURSORA_SHIFT));
1473 /* HPLL off in SR has some issues on G4x... disable it */
1474 I915_WRITE(DSPFW3,
1475 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1479 static void i965_update_wm(struct drm_device *dev)
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 struct drm_crtc *crtc;
1483 int srwm = 1;
1484 int cursor_sr = 16;
1486 /* Calc sr entries for one plane configs */
1487 crtc = single_enabled_crtc(dev);
1488 if (crtc) {
1489 /* self-refresh has much higher latency */
1490 static const int sr_latency_ns = 12000;
1491 int clock = crtc->mode.clock;
1492 int htotal = crtc->mode.htotal;
1493 int hdisplay = crtc->mode.hdisplay;
1494 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495 unsigned long line_time_us;
1496 int entries;
1498 line_time_us = ((htotal * 1000) / clock);
1500 /* Use ns/us then divide to preserve precision */
1501 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502 pixel_size * hdisplay;
1503 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504 srwm = I965_FIFO_SIZE - entries;
1505 if (srwm < 0)
1506 srwm = 1;
1507 srwm &= 0x1ff;
1508 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1509 entries, srwm);
1511 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512 pixel_size * 64;
1513 entries = DIV_ROUND_UP(entries,
1514 i965_cursor_wm_info.cacheline_size);
1515 cursor_sr = i965_cursor_wm_info.fifo_size -
1516 (entries + i965_cursor_wm_info.guard_size);
1518 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519 cursor_sr = i965_cursor_wm_info.max_wm;
1521 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522 "cursor %d\n", srwm, cursor_sr);
1524 if (IS_CRESTLINE(dev))
1525 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1526 } else {
1527 /* Turn off self refresh if both pipes are enabled */
1528 if (IS_CRESTLINE(dev))
1529 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1530 & ~FW_BLC_SELF_EN);
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1534 srwm);
1536 /* 965 has limitations... */
1537 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538 (8 << 16) | (8 << 8) | (8 << 0));
1539 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540 /* update cursor SR watermark */
1541 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1544 static void i9xx_update_wm(struct drm_device *dev)
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 const struct intel_watermark_params *wm_info;
1548 uint32_t fwater_lo;
1549 uint32_t fwater_hi;
1550 int cwm, srwm = 1;
1551 int fifo_size;
1552 int planea_wm, planeb_wm;
1553 struct drm_crtc *crtc, *enabled = NULL;
1555 if (IS_I945GM(dev))
1556 wm_info = &i945_wm_info;
1557 else if (!IS_GEN2(dev))
1558 wm_info = &i915_wm_info;
1559 else
1560 wm_info = &i855_wm_info;
1562 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563 crtc = intel_get_crtc_for_plane(dev, 0);
1564 if (intel_crtc_active(crtc)) {
1565 int cpp = crtc->fb->bits_per_pixel / 8;
1566 if (IS_GEN2(dev))
1567 cpp = 4;
1569 planea_wm = intel_calculate_wm(crtc->mode.clock,
1570 wm_info, fifo_size, cpp,
1571 latency_ns);
1572 enabled = crtc;
1573 } else
1574 planea_wm = fifo_size - wm_info->guard_size;
1576 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577 crtc = intel_get_crtc_for_plane(dev, 1);
1578 if (intel_crtc_active(crtc)) {
1579 int cpp = crtc->fb->bits_per_pixel / 8;
1580 if (IS_GEN2(dev))
1581 cpp = 4;
1583 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584 wm_info, fifo_size, cpp,
1585 latency_ns);
1586 if (enabled == NULL)
1587 enabled = crtc;
1588 else
1589 enabled = NULL;
1590 } else
1591 planeb_wm = fifo_size - wm_info->guard_size;
1593 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1595 if (IS_I915GM(dev) && enabled) {
1596 struct intel_framebuffer *fb;
1598 fb = to_intel_framebuffer(enabled->fb);
1600 /* self-refresh seems busted with untiled */
1601 if (fb->obj->tiling_mode == I915_TILING_NONE)
1602 enabled = NULL;
1606 * Overlay gets an aggressive default since video jitter is bad.
1608 cwm = 2;
1610 /* Play safe and disable self-refresh before adjusting watermarks. */
1611 if (IS_I945G(dev) || IS_I945GM(dev))
1612 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1613 else if (IS_I915GM(dev))
1614 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1616 /* Calc sr entries for one plane configs */
1617 if (HAS_FW_BLC(dev) && enabled) {
1618 /* self-refresh has much higher latency */
1619 static const int sr_latency_ns = 6000;
1620 int clock = enabled->mode.clock;
1621 int htotal = enabled->mode.htotal;
1622 int hdisplay = enabled->mode.hdisplay;
1623 int pixel_size = enabled->fb->bits_per_pixel / 8;
1624 unsigned long line_time_us;
1625 int entries;
1627 line_time_us = (htotal * 1000) / clock;
1629 /* Use ns/us then divide to preserve precision */
1630 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1631 pixel_size * hdisplay;
1632 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1633 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1634 srwm = wm_info->fifo_size - entries;
1635 if (srwm < 0)
1636 srwm = 1;
1638 if (IS_I945G(dev) || IS_I945GM(dev))
1639 I915_WRITE(FW_BLC_SELF,
1640 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1641 else if (IS_I915GM(dev))
1642 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1645 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1646 planea_wm, planeb_wm, cwm, srwm);
1648 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1649 fwater_hi = (cwm & 0x1f);
1651 /* Set request length to 8 cachelines per fetch */
1652 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1653 fwater_hi = fwater_hi | (1 << 8);
1655 I915_WRITE(FW_BLC, fwater_lo);
1656 I915_WRITE(FW_BLC2, fwater_hi);
1658 if (HAS_FW_BLC(dev)) {
1659 if (enabled) {
1660 if (IS_I945G(dev) || IS_I945GM(dev))
1661 I915_WRITE(FW_BLC_SELF,
1662 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1663 else if (IS_I915GM(dev))
1664 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1665 DRM_DEBUG_KMS("memory self refresh enabled\n");
1666 } else
1667 DRM_DEBUG_KMS("memory self refresh disabled\n");
1671 static void i830_update_wm(struct drm_device *dev)
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 struct drm_crtc *crtc;
1675 uint32_t fwater_lo;
1676 int planea_wm;
1678 crtc = single_enabled_crtc(dev);
1679 if (crtc == NULL)
1680 return;
1682 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1683 dev_priv->display.get_fifo_size(dev, 0),
1684 4, latency_ns);
1685 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1686 fwater_lo |= (3<<8) | planea_wm;
1688 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1690 I915_WRITE(FW_BLC, fwater_lo);
1694 * Check the wm result.
1696 * If any calculated watermark values is larger than the maximum value that
1697 * can be programmed into the associated watermark register, that watermark
1698 * must be disabled.
1700 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1701 int fbc_wm, int display_wm, int cursor_wm,
1702 const struct intel_watermark_params *display,
1703 const struct intel_watermark_params *cursor)
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1707 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1708 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1710 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1711 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1712 fbc_wm, SNB_FBC_MAX_SRWM, level);
1714 /* fbc has it's own way to disable FBC WM */
1715 I915_WRITE(DISP_ARB_CTL,
1716 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1717 return false;
1718 } else if (INTEL_INFO(dev)->gen >= 6) {
1719 /* enable FBC WM (except on ILK, where it must remain off) */
1720 I915_WRITE(DISP_ARB_CTL,
1721 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1724 if (display_wm > display->max_wm) {
1725 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1726 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1727 return false;
1730 if (cursor_wm > cursor->max_wm) {
1731 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1732 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1733 return false;
1736 if (!(fbc_wm || display_wm || cursor_wm)) {
1737 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1738 return false;
1741 return true;
1745 * Compute watermark values of WM[1-3],
1747 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1748 int latency_ns,
1749 const struct intel_watermark_params *display,
1750 const struct intel_watermark_params *cursor,
1751 int *fbc_wm, int *display_wm, int *cursor_wm)
1753 struct drm_crtc *crtc;
1754 unsigned long line_time_us;
1755 int hdisplay, htotal, pixel_size, clock;
1756 int line_count, line_size;
1757 int small, large;
1758 int entries;
1760 if (!latency_ns) {
1761 *fbc_wm = *display_wm = *cursor_wm = 0;
1762 return false;
1765 crtc = intel_get_crtc_for_plane(dev, plane);
1766 hdisplay = crtc->mode.hdisplay;
1767 htotal = crtc->mode.htotal;
1768 clock = crtc->mode.clock;
1769 pixel_size = crtc->fb->bits_per_pixel / 8;
1771 line_time_us = (htotal * 1000) / clock;
1772 line_count = (latency_ns / line_time_us + 1000) / 1000;
1773 line_size = hdisplay * pixel_size;
1775 /* Use the minimum of the small and large buffer method for primary */
1776 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1777 large = line_count * line_size;
1779 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1780 *display_wm = entries + display->guard_size;
1783 * Spec says:
1784 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1786 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1788 /* calculate the self-refresh watermark for display cursor */
1789 entries = line_count * pixel_size * 64;
1790 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1791 *cursor_wm = entries + cursor->guard_size;
1793 return ironlake_check_srwm(dev, level,
1794 *fbc_wm, *display_wm, *cursor_wm,
1795 display, cursor);
1798 static void ironlake_update_wm(struct drm_device *dev)
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 int fbc_wm, plane_wm, cursor_wm;
1802 unsigned int enabled;
1804 enabled = 0;
1805 if (g4x_compute_wm0(dev, PIPE_A,
1806 &ironlake_display_wm_info,
1807 dev_priv->wm.pri_latency[0] * 100,
1808 &ironlake_cursor_wm_info,
1809 dev_priv->wm.cur_latency[0] * 100,
1810 &plane_wm, &cursor_wm)) {
1811 I915_WRITE(WM0_PIPEA_ILK,
1812 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1813 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814 " plane %d, " "cursor: %d\n",
1815 plane_wm, cursor_wm);
1816 enabled |= 1 << PIPE_A;
1819 if (g4x_compute_wm0(dev, PIPE_B,
1820 &ironlake_display_wm_info,
1821 dev_priv->wm.pri_latency[0] * 100,
1822 &ironlake_cursor_wm_info,
1823 dev_priv->wm.cur_latency[0] * 100,
1824 &plane_wm, &cursor_wm)) {
1825 I915_WRITE(WM0_PIPEB_ILK,
1826 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1827 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828 " plane %d, cursor: %d\n",
1829 plane_wm, cursor_wm);
1830 enabled |= 1 << PIPE_B;
1834 * Calculate and update the self-refresh watermark only when one
1835 * display plane is used.
1837 I915_WRITE(WM3_LP_ILK, 0);
1838 I915_WRITE(WM2_LP_ILK, 0);
1839 I915_WRITE(WM1_LP_ILK, 0);
1841 if (!single_plane_enabled(enabled))
1842 return;
1843 enabled = ffs(enabled) - 1;
1845 /* WM1 */
1846 if (!ironlake_compute_srwm(dev, 1, enabled,
1847 dev_priv->wm.pri_latency[1] * 500,
1848 &ironlake_display_srwm_info,
1849 &ironlake_cursor_srwm_info,
1850 &fbc_wm, &plane_wm, &cursor_wm))
1851 return;
1853 I915_WRITE(WM1_LP_ILK,
1854 WM1_LP_SR_EN |
1855 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1856 (fbc_wm << WM1_LP_FBC_SHIFT) |
1857 (plane_wm << WM1_LP_SR_SHIFT) |
1858 cursor_wm);
1860 /* WM2 */
1861 if (!ironlake_compute_srwm(dev, 2, enabled,
1862 dev_priv->wm.pri_latency[2] * 500,
1863 &ironlake_display_srwm_info,
1864 &ironlake_cursor_srwm_info,
1865 &fbc_wm, &plane_wm, &cursor_wm))
1866 return;
1868 I915_WRITE(WM2_LP_ILK,
1869 WM2_LP_EN |
1870 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1871 (fbc_wm << WM1_LP_FBC_SHIFT) |
1872 (plane_wm << WM1_LP_SR_SHIFT) |
1873 cursor_wm);
1876 * WM3 is unsupported on ILK, probably because we don't have latency
1877 * data for that power state
1881 static void sandybridge_update_wm(struct drm_device *dev)
1883 struct drm_i915_private *dev_priv = dev->dev_private;
1884 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1885 u32 val;
1886 int fbc_wm, plane_wm, cursor_wm;
1887 unsigned int enabled;
1889 enabled = 0;
1890 if (g4x_compute_wm0(dev, PIPE_A,
1891 &sandybridge_display_wm_info, latency,
1892 &sandybridge_cursor_wm_info, latency,
1893 &plane_wm, &cursor_wm)) {
1894 val = I915_READ(WM0_PIPEA_ILK);
1895 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1896 I915_WRITE(WM0_PIPEA_ILK, val |
1897 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1898 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1899 " plane %d, " "cursor: %d\n",
1900 plane_wm, cursor_wm);
1901 enabled |= 1 << PIPE_A;
1904 if (g4x_compute_wm0(dev, PIPE_B,
1905 &sandybridge_display_wm_info, latency,
1906 &sandybridge_cursor_wm_info, latency,
1907 &plane_wm, &cursor_wm)) {
1908 val = I915_READ(WM0_PIPEB_ILK);
1909 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1910 I915_WRITE(WM0_PIPEB_ILK, val |
1911 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1912 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1913 " plane %d, cursor: %d\n",
1914 plane_wm, cursor_wm);
1915 enabled |= 1 << PIPE_B;
1919 * Calculate and update the self-refresh watermark only when one
1920 * display plane is used.
1922 * SNB support 3 levels of watermark.
1924 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1925 * and disabled in the descending order
1928 I915_WRITE(WM3_LP_ILK, 0);
1929 I915_WRITE(WM2_LP_ILK, 0);
1930 I915_WRITE(WM1_LP_ILK, 0);
1932 if (!single_plane_enabled(enabled) ||
1933 dev_priv->sprite_scaling_enabled)
1934 return;
1935 enabled = ffs(enabled) - 1;
1937 /* WM1 */
1938 if (!ironlake_compute_srwm(dev, 1, enabled,
1939 dev_priv->wm.pri_latency[1] * 500,
1940 &sandybridge_display_srwm_info,
1941 &sandybridge_cursor_srwm_info,
1942 &fbc_wm, &plane_wm, &cursor_wm))
1943 return;
1945 I915_WRITE(WM1_LP_ILK,
1946 WM1_LP_SR_EN |
1947 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1948 (fbc_wm << WM1_LP_FBC_SHIFT) |
1949 (plane_wm << WM1_LP_SR_SHIFT) |
1950 cursor_wm);
1952 /* WM2 */
1953 if (!ironlake_compute_srwm(dev, 2, enabled,
1954 dev_priv->wm.pri_latency[2] * 500,
1955 &sandybridge_display_srwm_info,
1956 &sandybridge_cursor_srwm_info,
1957 &fbc_wm, &plane_wm, &cursor_wm))
1958 return;
1960 I915_WRITE(WM2_LP_ILK,
1961 WM2_LP_EN |
1962 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1963 (fbc_wm << WM1_LP_FBC_SHIFT) |
1964 (plane_wm << WM1_LP_SR_SHIFT) |
1965 cursor_wm);
1967 /* WM3 */
1968 if (!ironlake_compute_srwm(dev, 3, enabled,
1969 dev_priv->wm.pri_latency[3] * 500,
1970 &sandybridge_display_srwm_info,
1971 &sandybridge_cursor_srwm_info,
1972 &fbc_wm, &plane_wm, &cursor_wm))
1973 return;
1975 I915_WRITE(WM3_LP_ILK,
1976 WM3_LP_EN |
1977 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1978 (fbc_wm << WM1_LP_FBC_SHIFT) |
1979 (plane_wm << WM1_LP_SR_SHIFT) |
1980 cursor_wm);
1983 static void ivybridge_update_wm(struct drm_device *dev)
1985 struct drm_i915_private *dev_priv = dev->dev_private;
1986 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1987 u32 val;
1988 int fbc_wm, plane_wm, cursor_wm;
1989 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1990 unsigned int enabled;
1992 enabled = 0;
1993 if (g4x_compute_wm0(dev, PIPE_A,
1994 &sandybridge_display_wm_info, latency,
1995 &sandybridge_cursor_wm_info, latency,
1996 &plane_wm, &cursor_wm)) {
1997 val = I915_READ(WM0_PIPEA_ILK);
1998 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1999 I915_WRITE(WM0_PIPEA_ILK, val |
2000 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2001 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2002 " plane %d, " "cursor: %d\n",
2003 plane_wm, cursor_wm);
2004 enabled |= 1 << PIPE_A;
2007 if (g4x_compute_wm0(dev, PIPE_B,
2008 &sandybridge_display_wm_info, latency,
2009 &sandybridge_cursor_wm_info, latency,
2010 &plane_wm, &cursor_wm)) {
2011 val = I915_READ(WM0_PIPEB_ILK);
2012 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2013 I915_WRITE(WM0_PIPEB_ILK, val |
2014 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2015 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2016 " plane %d, cursor: %d\n",
2017 plane_wm, cursor_wm);
2018 enabled |= 1 << PIPE_B;
2021 if (g4x_compute_wm0(dev, PIPE_C,
2022 &sandybridge_display_wm_info, latency,
2023 &sandybridge_cursor_wm_info, latency,
2024 &plane_wm, &cursor_wm)) {
2025 val = I915_READ(WM0_PIPEC_IVB);
2026 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2027 I915_WRITE(WM0_PIPEC_IVB, val |
2028 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2029 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2030 " plane %d, cursor: %d\n",
2031 plane_wm, cursor_wm);
2032 enabled |= 1 << PIPE_C;
2036 * Calculate and update the self-refresh watermark only when one
2037 * display plane is used.
2039 * SNB support 3 levels of watermark.
2041 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2042 * and disabled in the descending order
2045 I915_WRITE(WM3_LP_ILK, 0);
2046 I915_WRITE(WM2_LP_ILK, 0);
2047 I915_WRITE(WM1_LP_ILK, 0);
2049 if (!single_plane_enabled(enabled) ||
2050 dev_priv->sprite_scaling_enabled)
2051 return;
2052 enabled = ffs(enabled) - 1;
2054 /* WM1 */
2055 if (!ironlake_compute_srwm(dev, 1, enabled,
2056 dev_priv->wm.pri_latency[1] * 500,
2057 &sandybridge_display_srwm_info,
2058 &sandybridge_cursor_srwm_info,
2059 &fbc_wm, &plane_wm, &cursor_wm))
2060 return;
2062 I915_WRITE(WM1_LP_ILK,
2063 WM1_LP_SR_EN |
2064 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2065 (fbc_wm << WM1_LP_FBC_SHIFT) |
2066 (plane_wm << WM1_LP_SR_SHIFT) |
2067 cursor_wm);
2069 /* WM2 */
2070 if (!ironlake_compute_srwm(dev, 2, enabled,
2071 dev_priv->wm.pri_latency[2] * 500,
2072 &sandybridge_display_srwm_info,
2073 &sandybridge_cursor_srwm_info,
2074 &fbc_wm, &plane_wm, &cursor_wm))
2075 return;
2077 I915_WRITE(WM2_LP_ILK,
2078 WM2_LP_EN |
2079 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2080 (fbc_wm << WM1_LP_FBC_SHIFT) |
2081 (plane_wm << WM1_LP_SR_SHIFT) |
2082 cursor_wm);
2084 /* WM3, note we have to correct the cursor latency */
2085 if (!ironlake_compute_srwm(dev, 3, enabled,
2086 dev_priv->wm.pri_latency[3] * 500,
2087 &sandybridge_display_srwm_info,
2088 &sandybridge_cursor_srwm_info,
2089 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2090 !ironlake_compute_srwm(dev, 3, enabled,
2091 dev_priv->wm.cur_latency[3] * 500,
2092 &sandybridge_display_srwm_info,
2093 &sandybridge_cursor_srwm_info,
2094 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2095 return;
2097 I915_WRITE(WM3_LP_ILK,
2098 WM3_LP_EN |
2099 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2100 (fbc_wm << WM1_LP_FBC_SHIFT) |
2101 (plane_wm << WM1_LP_SR_SHIFT) |
2102 cursor_wm);
2105 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2106 struct drm_crtc *crtc)
2108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2109 uint32_t pixel_rate;
2111 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2113 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2114 * adjust the pixel_rate here. */
2116 if (intel_crtc->config.pch_pfit.enabled) {
2117 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2118 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2120 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2121 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2122 pfit_w = (pfit_size >> 16) & 0xFFFF;
2123 pfit_h = pfit_size & 0xFFFF;
2124 if (pipe_w < pfit_w)
2125 pipe_w = pfit_w;
2126 if (pipe_h < pfit_h)
2127 pipe_h = pfit_h;
2129 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2130 pfit_w * pfit_h);
2133 return pixel_rate;
2136 /* latency must be in 0.1us units. */
2137 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2138 uint32_t latency)
2140 uint64_t ret;
2142 if (WARN(latency == 0, "Latency value missing\n"))
2143 return UINT_MAX;
2145 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2146 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2148 return ret;
2151 /* latency must be in 0.1us units. */
2152 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2153 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2154 uint32_t latency)
2156 uint32_t ret;
2158 if (WARN(latency == 0, "Latency value missing\n"))
2159 return UINT_MAX;
2161 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2162 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2163 ret = DIV_ROUND_UP(ret, 64) + 2;
2164 return ret;
2167 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2168 uint8_t bytes_per_pixel)
2170 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2173 struct hsw_pipe_wm_parameters {
2174 bool active;
2175 uint32_t pipe_htotal;
2176 uint32_t pixel_rate;
2177 struct intel_plane_wm_parameters pri;
2178 struct intel_plane_wm_parameters spr;
2179 struct intel_plane_wm_parameters cur;
2182 struct hsw_wm_maximums {
2183 uint16_t pri;
2184 uint16_t spr;
2185 uint16_t cur;
2186 uint16_t fbc;
2189 struct hsw_wm_values {
2190 uint32_t wm_pipe[3];
2191 uint32_t wm_lp[3];
2192 uint32_t wm_lp_spr[3];
2193 uint32_t wm_linetime[3];
2194 bool enable_fbc_wm;
2197 /* used in computing the new watermarks state */
2198 struct intel_wm_config {
2199 unsigned int num_pipes_active;
2200 bool sprites_enabled;
2201 bool sprites_scaled;
2202 bool fbc_wm_enabled;
2206 * For both WM_PIPE and WM_LP.
2207 * mem_value must be in 0.1us units.
2209 static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2210 uint32_t mem_value,
2211 bool is_lp)
2213 uint32_t method1, method2;
2215 if (!params->active || !params->pri.enabled)
2216 return 0;
2218 method1 = ilk_wm_method1(params->pixel_rate,
2219 params->pri.bytes_per_pixel,
2220 mem_value);
2222 if (!is_lp)
2223 return method1;
2225 method2 = ilk_wm_method2(params->pixel_rate,
2226 params->pipe_htotal,
2227 params->pri.horiz_pixels,
2228 params->pri.bytes_per_pixel,
2229 mem_value);
2231 return min(method1, method2);
2235 * For both WM_PIPE and WM_LP.
2236 * mem_value must be in 0.1us units.
2238 static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2239 uint32_t mem_value)
2241 uint32_t method1, method2;
2243 if (!params->active || !params->spr.enabled)
2244 return 0;
2246 method1 = ilk_wm_method1(params->pixel_rate,
2247 params->spr.bytes_per_pixel,
2248 mem_value);
2249 method2 = ilk_wm_method2(params->pixel_rate,
2250 params->pipe_htotal,
2251 params->spr.horiz_pixels,
2252 params->spr.bytes_per_pixel,
2253 mem_value);
2254 return min(method1, method2);
2258 * For both WM_PIPE and WM_LP.
2259 * mem_value must be in 0.1us units.
2261 static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2262 uint32_t mem_value)
2264 if (!params->active || !params->cur.enabled)
2265 return 0;
2267 return ilk_wm_method2(params->pixel_rate,
2268 params->pipe_htotal,
2269 params->cur.horiz_pixels,
2270 params->cur.bytes_per_pixel,
2271 mem_value);
2274 /* Only for WM_LP. */
2275 static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2276 uint32_t pri_val)
2278 if (!params->active || !params->pri.enabled)
2279 return 0;
2281 return ilk_wm_fbc(pri_val,
2282 params->pri.horiz_pixels,
2283 params->pri.bytes_per_pixel);
2286 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2288 if (INTEL_INFO(dev)->gen >= 7)
2289 return 768;
2290 else
2291 return 512;
2294 /* Calculate the maximum primary/sprite plane watermark */
2295 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2296 int level,
2297 const struct intel_wm_config *config,
2298 enum intel_ddb_partitioning ddb_partitioning,
2299 bool is_sprite)
2301 unsigned int fifo_size = ilk_display_fifo_size(dev);
2302 unsigned int max;
2304 /* if sprites aren't enabled, sprites get nothing */
2305 if (is_sprite && !config->sprites_enabled)
2306 return 0;
2308 /* HSW allows LP1+ watermarks even with multiple pipes */
2309 if (level == 0 || config->num_pipes_active > 1) {
2310 fifo_size /= INTEL_INFO(dev)->num_pipes;
2313 * For some reason the non self refresh
2314 * FIFO size is only half of the self
2315 * refresh FIFO size on ILK/SNB.
2317 if (INTEL_INFO(dev)->gen <= 6)
2318 fifo_size /= 2;
2321 if (config->sprites_enabled) {
2322 /* level 0 is always calculated with 1:1 split */
2323 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2324 if (is_sprite)
2325 fifo_size *= 5;
2326 fifo_size /= 6;
2327 } else {
2328 fifo_size /= 2;
2332 /* clamp to max that the registers can hold */
2333 if (INTEL_INFO(dev)->gen >= 7)
2334 /* IVB/HSW primary/sprite plane watermarks */
2335 max = level == 0 ? 127 : 1023;
2336 else if (!is_sprite)
2337 /* ILK/SNB primary plane watermarks */
2338 max = level == 0 ? 127 : 511;
2339 else
2340 /* ILK/SNB sprite plane watermarks */
2341 max = level == 0 ? 63 : 255;
2343 return min(fifo_size, max);
2346 /* Calculate the maximum cursor plane watermark */
2347 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2348 int level,
2349 const struct intel_wm_config *config)
2351 /* HSW LP1+ watermarks w/ multiple pipes */
2352 if (level > 0 && config->num_pipes_active > 1)
2353 return 64;
2355 /* otherwise just report max that registers can hold */
2356 if (INTEL_INFO(dev)->gen >= 7)
2357 return level == 0 ? 63 : 255;
2358 else
2359 return level == 0 ? 31 : 63;
2362 /* Calculate the maximum FBC watermark */
2363 static unsigned int ilk_fbc_wm_max(void)
2365 /* max that registers can hold */
2366 return 15;
2369 static void ilk_wm_max(struct drm_device *dev,
2370 int level,
2371 const struct intel_wm_config *config,
2372 enum intel_ddb_partitioning ddb_partitioning,
2373 struct hsw_wm_maximums *max)
2375 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2376 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2377 max->cur = ilk_cursor_wm_max(dev, level, config);
2378 max->fbc = ilk_fbc_wm_max();
2381 static bool ilk_check_wm(int level,
2382 const struct hsw_wm_maximums *max,
2383 struct intel_wm_level *result)
2385 bool ret;
2387 /* already determined to be invalid? */
2388 if (!result->enable)
2389 return false;
2391 result->enable = result->pri_val <= max->pri &&
2392 result->spr_val <= max->spr &&
2393 result->cur_val <= max->cur;
2395 ret = result->enable;
2398 * HACK until we can pre-compute everything,
2399 * and thus fail gracefully if LP0 watermarks
2400 * are exceeded...
2402 if (level == 0 && !result->enable) {
2403 if (result->pri_val > max->pri)
2404 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2405 level, result->pri_val, max->pri);
2406 if (result->spr_val > max->spr)
2407 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2408 level, result->spr_val, max->spr);
2409 if (result->cur_val > max->cur)
2410 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2411 level, result->cur_val, max->cur);
2413 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2414 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2415 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2416 result->enable = true;
2419 DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2421 return ret;
2424 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2425 int level,
2426 struct hsw_pipe_wm_parameters *p,
2427 struct intel_wm_level *result)
2429 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2430 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2431 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2433 /* WM1+ latency values stored in 0.5us units */
2434 if (level > 0) {
2435 pri_latency *= 5;
2436 spr_latency *= 5;
2437 cur_latency *= 5;
2440 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2441 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2442 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2443 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2444 result->enable = true;
2447 static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
2448 int level, struct hsw_wm_maximums *max,
2449 struct hsw_pipe_wm_parameters *params,
2450 struct intel_wm_level *result)
2452 enum pipe pipe;
2453 struct intel_wm_level res[3];
2455 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
2456 ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
2458 result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
2459 result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
2460 result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
2461 result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
2462 result->enable = true;
2464 return ilk_check_wm(level, max, result);
2467 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2468 enum pipe pipe,
2469 struct hsw_pipe_wm_parameters *params)
2471 uint32_t pri_val, cur_val, spr_val;
2472 /* WM0 latency values stored in 0.1us units */
2473 uint16_t pri_latency = dev_priv->wm.pri_latency[0];
2474 uint16_t spr_latency = dev_priv->wm.spr_latency[0];
2475 uint16_t cur_latency = dev_priv->wm.cur_latency[0];
2477 pri_val = ilk_compute_pri_wm(params, pri_latency, false);
2478 spr_val = ilk_compute_spr_wm(params, spr_latency);
2479 cur_val = ilk_compute_cur_wm(params, cur_latency);
2481 WARN(pri_val > 127,
2482 "Primary WM error, mode not supported for pipe %c\n",
2483 pipe_name(pipe));
2484 WARN(spr_val > 127,
2485 "Sprite WM error, mode not supported for pipe %c\n",
2486 pipe_name(pipe));
2487 WARN(cur_val > 63,
2488 "Cursor WM error, mode not supported for pipe %c\n",
2489 pipe_name(pipe));
2491 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2492 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2493 cur_val;
2496 static uint32_t
2497 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2499 struct drm_i915_private *dev_priv = dev->dev_private;
2500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2501 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2502 u32 linetime, ips_linetime;
2504 if (!intel_crtc_active(crtc))
2505 return 0;
2507 /* The WM are computed with base on how long it takes to fill a single
2508 * row at the given clock rate, multiplied by 8.
2509 * */
2510 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2511 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2512 intel_ddi_get_cdclk_freq(dev_priv));
2514 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2515 PIPE_WM_LINETIME_TIME(linetime);
2518 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2520 struct drm_i915_private *dev_priv = dev->dev_private;
2522 if (IS_HASWELL(dev)) {
2523 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2525 wm[0] = (sskpd >> 56) & 0xFF;
2526 if (wm[0] == 0)
2527 wm[0] = sskpd & 0xF;
2528 wm[1] = (sskpd >> 4) & 0xFF;
2529 wm[2] = (sskpd >> 12) & 0xFF;
2530 wm[3] = (sskpd >> 20) & 0x1FF;
2531 wm[4] = (sskpd >> 32) & 0x1FF;
2532 } else if (INTEL_INFO(dev)->gen >= 6) {
2533 uint32_t sskpd = I915_READ(MCH_SSKPD);
2535 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2536 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2537 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2538 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2539 } else if (INTEL_INFO(dev)->gen >= 5) {
2540 uint32_t mltr = I915_READ(MLTR_ILK);
2542 /* ILK primary LP0 latency is 700 ns */
2543 wm[0] = 7;
2544 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2545 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2549 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2551 /* ILK sprite LP0 latency is 1300 ns */
2552 if (INTEL_INFO(dev)->gen == 5)
2553 wm[0] = 13;
2556 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2558 /* ILK cursor LP0 latency is 1300 ns */
2559 if (INTEL_INFO(dev)->gen == 5)
2560 wm[0] = 13;
2562 /* WaDoubleCursorLP3Latency:ivb */
2563 if (IS_IVYBRIDGE(dev))
2564 wm[3] *= 2;
2567 static void intel_print_wm_latency(struct drm_device *dev,
2568 const char *name,
2569 const uint16_t wm[5])
2571 int level, max_level;
2573 /* how many WM levels are we expecting */
2574 if (IS_HASWELL(dev))
2575 max_level = 4;
2576 else if (INTEL_INFO(dev)->gen >= 6)
2577 max_level = 3;
2578 else
2579 max_level = 2;
2581 for (level = 0; level <= max_level; level++) {
2582 unsigned int latency = wm[level];
2584 if (latency == 0) {
2585 DRM_ERROR("%s WM%d latency not provided\n",
2586 name, level);
2587 continue;
2590 /* WM1+ latency values in 0.5us units */
2591 if (level > 0)
2592 latency *= 5;
2594 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2595 name, level, wm[level],
2596 latency / 10, latency % 10);
2600 static void intel_setup_wm_latency(struct drm_device *dev)
2602 struct drm_i915_private *dev_priv = dev->dev_private;
2604 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2606 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2607 sizeof(dev_priv->wm.pri_latency));
2608 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2609 sizeof(dev_priv->wm.pri_latency));
2611 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2612 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2614 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2615 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2616 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2619 static void hsw_compute_wm_parameters(struct drm_device *dev,
2620 struct hsw_pipe_wm_parameters *params,
2621 struct hsw_wm_maximums *lp_max_1_2,
2622 struct hsw_wm_maximums *lp_max_5_6)
2624 struct drm_crtc *crtc;
2625 struct drm_plane *plane;
2626 enum pipe pipe;
2627 struct intel_wm_config config = {};
2629 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2631 struct hsw_pipe_wm_parameters *p;
2633 pipe = intel_crtc->pipe;
2634 p = &params[pipe];
2636 p->active = intel_crtc_active(crtc);
2637 if (!p->active)
2638 continue;
2640 config.num_pipes_active++;
2642 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2643 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2644 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2645 p->cur.bytes_per_pixel = 4;
2646 p->pri.horiz_pixels =
2647 intel_crtc->config.requested_mode.hdisplay;
2648 p->cur.horiz_pixels = 64;
2649 /* TODO: for now, assume primary and cursor planes are always enabled. */
2650 p->pri.enabled = true;
2651 p->cur.enabled = true;
2654 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2655 struct intel_plane *intel_plane = to_intel_plane(plane);
2656 struct hsw_pipe_wm_parameters *p;
2658 pipe = intel_plane->pipe;
2659 p = &params[pipe];
2661 p->spr = intel_plane->wm;
2663 config.sprites_enabled |= p->spr.enabled;
2664 config.sprites_scaled |= p->spr.scaled;
2667 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
2669 /* 5/6 split only in single pipe config on IVB+ */
2670 if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
2671 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
2672 else
2673 *lp_max_5_6 = *lp_max_1_2;
2676 static void hsw_compute_wm_results(struct drm_device *dev,
2677 struct hsw_pipe_wm_parameters *params,
2678 struct hsw_wm_maximums *lp_maximums,
2679 struct hsw_wm_values *results)
2681 struct drm_i915_private *dev_priv = dev->dev_private;
2682 struct drm_crtc *crtc;
2683 struct intel_wm_level lp_results[4] = {};
2684 enum pipe pipe;
2685 int level, max_level, wm_lp;
2687 for (level = 1; level <= 4; level++)
2688 if (!hsw_compute_lp_wm(dev_priv, level,
2689 lp_maximums, params,
2690 &lp_results[level - 1]))
2691 break;
2692 max_level = level - 1;
2694 memset(results, 0, sizeof(*results));
2696 /* The spec says it is preferred to disable FBC WMs instead of disabling
2697 * a WM level. */
2698 results->enable_fbc_wm = true;
2699 for (level = 1; level <= max_level; level++) {
2700 if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
2701 results->enable_fbc_wm = false;
2702 lp_results[level - 1].fbc_val = 0;
2706 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2707 const struct intel_wm_level *r;
2709 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2710 if (level > max_level)
2711 break;
2713 r = &lp_results[level - 1];
2714 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2715 r->fbc_val,
2716 r->pri_val,
2717 r->cur_val);
2718 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2721 for_each_pipe(pipe)
2722 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, pipe,
2723 &params[pipe]);
2725 for_each_pipe(pipe) {
2726 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2727 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2731 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2732 * case both are at the same level. Prefer r1 in case they're the same. */
2733 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2734 struct hsw_wm_values *r2)
2736 int i, val_r1 = 0, val_r2 = 0;
2738 for (i = 0; i < 3; i++) {
2739 if (r1->wm_lp[i] & WM3_LP_EN)
2740 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2741 if (r2->wm_lp[i] & WM3_LP_EN)
2742 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2745 if (val_r1 == val_r2) {
2746 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2747 return r2;
2748 else
2749 return r1;
2750 } else if (val_r1 > val_r2) {
2751 return r1;
2752 } else {
2753 return r2;
2758 * The spec says we shouldn't write when we don't need, because every write
2759 * causes WMs to be re-evaluated, expending some power.
2761 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2762 struct hsw_wm_values *results,
2763 enum intel_ddb_partitioning partitioning)
2765 struct hsw_wm_values previous;
2766 uint32_t val;
2767 enum intel_ddb_partitioning prev_partitioning;
2768 bool prev_enable_fbc_wm;
2770 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2771 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2772 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2773 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2774 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2775 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2776 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2777 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2778 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2779 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2780 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2781 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2783 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2784 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2786 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2788 if (memcmp(results->wm_pipe, previous.wm_pipe,
2789 sizeof(results->wm_pipe)) == 0 &&
2790 memcmp(results->wm_lp, previous.wm_lp,
2791 sizeof(results->wm_lp)) == 0 &&
2792 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2793 sizeof(results->wm_lp_spr)) == 0 &&
2794 memcmp(results->wm_linetime, previous.wm_linetime,
2795 sizeof(results->wm_linetime)) == 0 &&
2796 partitioning == prev_partitioning &&
2797 results->enable_fbc_wm == prev_enable_fbc_wm)
2798 return;
2800 if (previous.wm_lp[2] != 0)
2801 I915_WRITE(WM3_LP_ILK, 0);
2802 if (previous.wm_lp[1] != 0)
2803 I915_WRITE(WM2_LP_ILK, 0);
2804 if (previous.wm_lp[0] != 0)
2805 I915_WRITE(WM1_LP_ILK, 0);
2807 if (previous.wm_pipe[0] != results->wm_pipe[0])
2808 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2809 if (previous.wm_pipe[1] != results->wm_pipe[1])
2810 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2811 if (previous.wm_pipe[2] != results->wm_pipe[2])
2812 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2814 if (previous.wm_linetime[0] != results->wm_linetime[0])
2815 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2816 if (previous.wm_linetime[1] != results->wm_linetime[1])
2817 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2818 if (previous.wm_linetime[2] != results->wm_linetime[2])
2819 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2821 if (prev_partitioning != partitioning) {
2822 val = I915_READ(WM_MISC);
2823 if (partitioning == INTEL_DDB_PART_1_2)
2824 val &= ~WM_MISC_DATA_PARTITION_5_6;
2825 else
2826 val |= WM_MISC_DATA_PARTITION_5_6;
2827 I915_WRITE(WM_MISC, val);
2830 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2831 val = I915_READ(DISP_ARB_CTL);
2832 if (results->enable_fbc_wm)
2833 val &= ~DISP_FBC_WM_DIS;
2834 else
2835 val |= DISP_FBC_WM_DIS;
2836 I915_WRITE(DISP_ARB_CTL, val);
2839 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2840 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2841 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2842 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2843 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2844 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2846 if (results->wm_lp[0] != 0)
2847 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848 if (results->wm_lp[1] != 0)
2849 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850 if (results->wm_lp[2] != 0)
2851 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2854 static void haswell_update_wm(struct drm_device *dev)
2856 struct drm_i915_private *dev_priv = dev->dev_private;
2857 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2858 struct hsw_pipe_wm_parameters params[3];
2859 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2860 enum intel_ddb_partitioning partitioning;
2862 hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2864 hsw_compute_wm_results(dev, params,
2865 &lp_max_1_2, &results_1_2);
2866 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2867 hsw_compute_wm_results(dev, params,
2868 &lp_max_5_6, &results_5_6);
2869 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2870 } else {
2871 best_results = &results_1_2;
2874 partitioning = (best_results == &results_1_2) ?
2875 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2877 hsw_write_wm_values(dev_priv, best_results, partitioning);
2880 static void haswell_update_sprite_wm(struct drm_plane *plane,
2881 struct drm_crtc *crtc,
2882 uint32_t sprite_width, int pixel_size,
2883 bool enabled, bool scaled)
2885 struct intel_plane *intel_plane = to_intel_plane(plane);
2887 intel_plane->wm.enabled = enabled;
2888 intel_plane->wm.scaled = scaled;
2889 intel_plane->wm.horiz_pixels = sprite_width;
2890 intel_plane->wm.bytes_per_pixel = pixel_size;
2892 haswell_update_wm(plane->dev);
2895 static bool
2896 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2897 uint32_t sprite_width, int pixel_size,
2898 const struct intel_watermark_params *display,
2899 int display_latency_ns, int *sprite_wm)
2901 struct drm_crtc *crtc;
2902 int clock;
2903 int entries, tlb_miss;
2905 crtc = intel_get_crtc_for_plane(dev, plane);
2906 if (!intel_crtc_active(crtc)) {
2907 *sprite_wm = display->guard_size;
2908 return false;
2911 clock = crtc->mode.clock;
2913 /* Use the small buffer method to calculate the sprite watermark */
2914 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2915 tlb_miss = display->fifo_size*display->cacheline_size -
2916 sprite_width * 8;
2917 if (tlb_miss > 0)
2918 entries += tlb_miss;
2919 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2920 *sprite_wm = entries + display->guard_size;
2921 if (*sprite_wm > (int)display->max_wm)
2922 *sprite_wm = display->max_wm;
2924 return true;
2927 static bool
2928 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2929 uint32_t sprite_width, int pixel_size,
2930 const struct intel_watermark_params *display,
2931 int latency_ns, int *sprite_wm)
2933 struct drm_crtc *crtc;
2934 unsigned long line_time_us;
2935 int clock;
2936 int line_count, line_size;
2937 int small, large;
2938 int entries;
2940 if (!latency_ns) {
2941 *sprite_wm = 0;
2942 return false;
2945 crtc = intel_get_crtc_for_plane(dev, plane);
2946 clock = crtc->mode.clock;
2947 if (!clock) {
2948 *sprite_wm = 0;
2949 return false;
2952 line_time_us = (sprite_width * 1000) / clock;
2953 if (!line_time_us) {
2954 *sprite_wm = 0;
2955 return false;
2958 line_count = (latency_ns / line_time_us + 1000) / 1000;
2959 line_size = sprite_width * pixel_size;
2961 /* Use the minimum of the small and large buffer method for primary */
2962 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2963 large = line_count * line_size;
2965 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2966 *sprite_wm = entries + display->guard_size;
2968 return *sprite_wm > 0x3ff ? false : true;
2971 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
2972 struct drm_crtc *crtc,
2973 uint32_t sprite_width, int pixel_size,
2974 bool enabled, bool scaled)
2976 struct drm_device *dev = plane->dev;
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 int pipe = to_intel_plane(plane)->pipe;
2979 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
2980 u32 val;
2981 int sprite_wm, reg;
2982 int ret;
2984 if (!enabled)
2985 return;
2987 switch (pipe) {
2988 case 0:
2989 reg = WM0_PIPEA_ILK;
2990 break;
2991 case 1:
2992 reg = WM0_PIPEB_ILK;
2993 break;
2994 case 2:
2995 reg = WM0_PIPEC_IVB;
2996 break;
2997 default:
2998 return; /* bad pipe */
3001 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3002 &sandybridge_display_wm_info,
3003 latency, &sprite_wm);
3004 if (!ret) {
3005 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3006 pipe_name(pipe));
3007 return;
3010 val = I915_READ(reg);
3011 val &= ~WM0_PIPE_SPRITE_MASK;
3012 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3013 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3016 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3017 pixel_size,
3018 &sandybridge_display_srwm_info,
3019 dev_priv->wm.spr_latency[1] * 500,
3020 &sprite_wm);
3021 if (!ret) {
3022 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3023 pipe_name(pipe));
3024 return;
3026 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3028 /* Only IVB has two more LP watermarks for sprite */
3029 if (!IS_IVYBRIDGE(dev))
3030 return;
3032 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3033 pixel_size,
3034 &sandybridge_display_srwm_info,
3035 dev_priv->wm.spr_latency[2] * 500,
3036 &sprite_wm);
3037 if (!ret) {
3038 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3039 pipe_name(pipe));
3040 return;
3042 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3044 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3045 pixel_size,
3046 &sandybridge_display_srwm_info,
3047 dev_priv->wm.spr_latency[3] * 500,
3048 &sprite_wm);
3049 if (!ret) {
3050 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3051 pipe_name(pipe));
3052 return;
3054 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3058 * intel_update_watermarks - update FIFO watermark values based on current modes
3060 * Calculate watermark values for the various WM regs based on current mode
3061 * and plane configuration.
3063 * There are several cases to deal with here:
3064 * - normal (i.e. non-self-refresh)
3065 * - self-refresh (SR) mode
3066 * - lines are large relative to FIFO size (buffer can hold up to 2)
3067 * - lines are small relative to FIFO size (buffer can hold more than 2
3068 * lines), so need to account for TLB latency
3070 * The normal calculation is:
3071 * watermark = dotclock * bytes per pixel * latency
3072 * where latency is platform & configuration dependent (we assume pessimal
3073 * values here).
3075 * The SR calculation is:
3076 * watermark = (trunc(latency/line time)+1) * surface width *
3077 * bytes per pixel
3078 * where
3079 * line time = htotal / dotclock
3080 * surface width = hdisplay for normal plane and 64 for cursor
3081 * and latency is assumed to be high, as above.
3083 * The final value programmed to the register should always be rounded up,
3084 * and include an extra 2 entries to account for clock crossings.
3086 * We don't use the sprite, so we can ignore that. And on Crestline we have
3087 * to set the non-SR watermarks to 8.
3089 void intel_update_watermarks(struct drm_device *dev)
3091 struct drm_i915_private *dev_priv = dev->dev_private;
3093 if (dev_priv->display.update_wm)
3094 dev_priv->display.update_wm(dev);
3097 void intel_update_sprite_watermarks(struct drm_plane *plane,
3098 struct drm_crtc *crtc,
3099 uint32_t sprite_width, int pixel_size,
3100 bool enabled, bool scaled)
3102 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3104 if (dev_priv->display.update_sprite_wm)
3105 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3106 pixel_size, enabled, scaled);
3109 static struct drm_i915_gem_object *
3110 intel_alloc_context_page(struct drm_device *dev)
3112 struct drm_i915_gem_object *ctx;
3113 int ret;
3115 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3117 ctx = i915_gem_alloc_object(dev, 4096);
3118 if (!ctx) {
3119 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3120 return NULL;
3123 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3124 if (ret) {
3125 DRM_ERROR("failed to pin power context: %d\n", ret);
3126 goto err_unref;
3129 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3130 if (ret) {
3131 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3132 goto err_unpin;
3135 return ctx;
3137 err_unpin:
3138 i915_gem_object_unpin(ctx);
3139 err_unref:
3140 drm_gem_object_unreference(&ctx->base);
3141 return NULL;
3145 * Lock protecting IPS related data structures
3147 DEFINE_SPINLOCK(mchdev_lock);
3149 /* Global for IPS driver to get at the current i915 device. Protected by
3150 * mchdev_lock. */
3151 static struct drm_i915_private *i915_mch_dev;
3153 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3155 struct drm_i915_private *dev_priv = dev->dev_private;
3156 u16 rgvswctl;
3158 assert_spin_locked(&mchdev_lock);
3160 rgvswctl = I915_READ16(MEMSWCTL);
3161 if (rgvswctl & MEMCTL_CMD_STS) {
3162 DRM_DEBUG("gpu busy, RCS change rejected\n");
3163 return false; /* still busy with another command */
3166 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3167 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3168 I915_WRITE16(MEMSWCTL, rgvswctl);
3169 POSTING_READ16(MEMSWCTL);
3171 rgvswctl |= MEMCTL_CMD_STS;
3172 I915_WRITE16(MEMSWCTL, rgvswctl);
3174 return true;
3177 static void ironlake_enable_drps(struct drm_device *dev)
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 u32 rgvmodectl = I915_READ(MEMMODECTL);
3181 u8 fmax, fmin, fstart, vstart;
3183 spin_lock_irq(&mchdev_lock);
3185 /* Enable temp reporting */
3186 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3187 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3189 /* 100ms RC evaluation intervals */
3190 I915_WRITE(RCUPEI, 100000);
3191 I915_WRITE(RCDNEI, 100000);
3193 /* Set max/min thresholds to 90ms and 80ms respectively */
3194 I915_WRITE(RCBMAXAVG, 90000);
3195 I915_WRITE(RCBMINAVG, 80000);
3197 I915_WRITE(MEMIHYST, 1);
3199 /* Set up min, max, and cur for interrupt handling */
3200 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3201 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3202 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3203 MEMMODE_FSTART_SHIFT;
3205 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3206 PXVFREQ_PX_SHIFT;
3208 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3209 dev_priv->ips.fstart = fstart;
3211 dev_priv->ips.max_delay = fstart;
3212 dev_priv->ips.min_delay = fmin;
3213 dev_priv->ips.cur_delay = fstart;
3215 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3216 fmax, fmin, fstart);
3218 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3221 * Interrupts will be enabled in ironlake_irq_postinstall
3224 I915_WRITE(VIDSTART, vstart);
3225 POSTING_READ(VIDSTART);
3227 rgvmodectl |= MEMMODE_SWMODE_EN;
3228 I915_WRITE(MEMMODECTL, rgvmodectl);
3230 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3231 DRM_ERROR("stuck trying to change perf mode\n");
3232 mdelay(1);
3234 ironlake_set_drps(dev, fstart);
3236 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3237 I915_READ(0x112e0);
3238 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3239 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3240 getrawmonotonic(&dev_priv->ips.last_time2);
3242 spin_unlock_irq(&mchdev_lock);
3245 static void ironlake_disable_drps(struct drm_device *dev)
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 u16 rgvswctl;
3250 spin_lock_irq(&mchdev_lock);
3252 rgvswctl = I915_READ16(MEMSWCTL);
3254 /* Ack interrupts, disable EFC interrupt */
3255 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3256 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3257 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3258 I915_WRITE(DEIIR, DE_PCU_EVENT);
3259 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3261 /* Go back to the starting frequency */
3262 ironlake_set_drps(dev, dev_priv->ips.fstart);
3263 mdelay(1);
3264 rgvswctl |= MEMCTL_CMD_STS;
3265 I915_WRITE(MEMSWCTL, rgvswctl);
3266 mdelay(1);
3268 spin_unlock_irq(&mchdev_lock);
3271 /* There's a funny hw issue where the hw returns all 0 when reading from
3272 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3273 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3274 * all limits and the gpu stuck at whatever frequency it is at atm).
3276 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3278 u32 limits;
3280 limits = 0;
3282 if (*val >= dev_priv->rps.max_delay)
3283 *val = dev_priv->rps.max_delay;
3284 limits |= dev_priv->rps.max_delay << 24;
3286 /* Only set the down limit when we've reached the lowest level to avoid
3287 * getting more interrupts, otherwise leave this clear. This prevents a
3288 * race in the hw when coming out of rc6: There's a tiny window where
3289 * the hw runs at the minimal clock before selecting the desired
3290 * frequency, if the down threshold expires in that window we will not
3291 * receive a down interrupt. */
3292 if (*val <= dev_priv->rps.min_delay) {
3293 *val = dev_priv->rps.min_delay;
3294 limits |= dev_priv->rps.min_delay << 16;
3297 return limits;
3300 void gen6_set_rps(struct drm_device *dev, u8 val)
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303 u32 limits = gen6_rps_limits(dev_priv, &val);
3305 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3306 WARN_ON(val > dev_priv->rps.max_delay);
3307 WARN_ON(val < dev_priv->rps.min_delay);
3309 if (val == dev_priv->rps.cur_delay)
3310 return;
3312 if (IS_HASWELL(dev))
3313 I915_WRITE(GEN6_RPNSWREQ,
3314 HSW_FREQUENCY(val));
3315 else
3316 I915_WRITE(GEN6_RPNSWREQ,
3317 GEN6_FREQUENCY(val) |
3318 GEN6_OFFSET(0) |
3319 GEN6_AGGRESSIVE_TURBO);
3321 /* Make sure we continue to get interrupts
3322 * until we hit the minimum or maximum frequencies.
3324 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3326 POSTING_READ(GEN6_RPNSWREQ);
3328 dev_priv->rps.cur_delay = val;
3330 trace_intel_gpu_freq_change(val * 50);
3334 * Wait until the previous freq change has completed,
3335 * or the timeout elapsed, and then update our notion
3336 * of the current GPU frequency.
3338 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3340 u32 pval;
3342 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3344 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3345 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3347 pval >>= 8;
3349 if (pval != dev_priv->rps.cur_delay)
3350 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3351 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3352 dev_priv->rps.cur_delay,
3353 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3355 dev_priv->rps.cur_delay = pval;
3358 void valleyview_set_rps(struct drm_device *dev, u8 val)
3360 struct drm_i915_private *dev_priv = dev->dev_private;
3362 gen6_rps_limits(dev_priv, &val);
3364 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3365 WARN_ON(val > dev_priv->rps.max_delay);
3366 WARN_ON(val < dev_priv->rps.min_delay);
3368 vlv_update_rps_cur_delay(dev_priv);
3370 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3371 vlv_gpu_freq(dev_priv->mem_freq,
3372 dev_priv->rps.cur_delay),
3373 dev_priv->rps.cur_delay,
3374 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3376 if (val == dev_priv->rps.cur_delay)
3377 return;
3379 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3381 dev_priv->rps.cur_delay = val;
3383 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3386 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3388 struct drm_i915_private *dev_priv = dev->dev_private;
3390 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3391 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3392 /* Complete PM interrupt masking here doesn't race with the rps work
3393 * item again unmasking PM interrupts because that is using a different
3394 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3395 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3397 spin_lock_irq(&dev_priv->irq_lock);
3398 dev_priv->rps.pm_iir = 0;
3399 spin_unlock_irq(&dev_priv->irq_lock);
3401 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3404 static void gen6_disable_rps(struct drm_device *dev)
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3408 I915_WRITE(GEN6_RC_CONTROL, 0);
3409 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3411 gen6_disable_rps_interrupts(dev);
3414 static void valleyview_disable_rps(struct drm_device *dev)
3416 struct drm_i915_private *dev_priv = dev->dev_private;
3418 I915_WRITE(GEN6_RC_CONTROL, 0);
3420 gen6_disable_rps_interrupts(dev);
3422 if (dev_priv->vlv_pctx) {
3423 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3424 dev_priv->vlv_pctx = NULL;
3428 int intel_enable_rc6(const struct drm_device *dev)
3430 /* No RC6 before Ironlake */
3431 if (INTEL_INFO(dev)->gen < 5)
3432 return 0;
3434 /* Respect the kernel parameter if it is set */
3435 if (i915_enable_rc6 >= 0)
3436 return i915_enable_rc6;
3438 /* Disable RC6 on Ironlake */
3439 if (INTEL_INFO(dev)->gen == 5)
3440 return 0;
3442 if (IS_HASWELL(dev)) {
3443 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3444 return INTEL_RC6_ENABLE;
3447 /* snb/ivb have more than one rc6 state. */
3448 if (INTEL_INFO(dev)->gen == 6) {
3449 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3450 return INTEL_RC6_ENABLE;
3453 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3454 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3457 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3459 struct drm_i915_private *dev_priv = dev->dev_private;
3460 u32 enabled_intrs;
3462 spin_lock_irq(&dev_priv->irq_lock);
3463 WARN_ON(dev_priv->rps.pm_iir);
3464 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3465 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3466 spin_unlock_irq(&dev_priv->irq_lock);
3468 /* only unmask PM interrupts we need. Mask all others. */
3469 enabled_intrs = GEN6_PM_RPS_EVENTS;
3471 /* IVB and SNB hard hangs on looping batchbuffer
3472 * if GEN6_PM_UP_EI_EXPIRED is masked.
3474 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3475 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3477 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3480 static void gen6_enable_rps(struct drm_device *dev)
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 struct intel_ring_buffer *ring;
3484 u32 rp_state_cap;
3485 u32 gt_perf_status;
3486 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3487 u32 gtfifodbg;
3488 int rc6_mode;
3489 int i, ret;
3491 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3493 /* Here begins a magic sequence of register writes to enable
3494 * auto-downclocking.
3496 * Perhaps there might be some value in exposing these to
3497 * userspace...
3499 I915_WRITE(GEN6_RC_STATE, 0);
3501 /* Clear the DBG now so we don't confuse earlier errors */
3502 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3503 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3504 I915_WRITE(GTFIFODBG, gtfifodbg);
3507 gen6_gt_force_wake_get(dev_priv);
3509 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3510 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3512 /* In units of 50MHz */
3513 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3514 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3515 dev_priv->rps.cur_delay = 0;
3517 /* disable the counters and set deterministic thresholds */
3518 I915_WRITE(GEN6_RC_CONTROL, 0);
3520 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3521 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3522 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3523 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3524 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3526 for_each_ring(ring, dev_priv, i)
3527 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3529 I915_WRITE(GEN6_RC_SLEEP, 0);
3530 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3531 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3532 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3533 else
3534 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3535 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3536 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3538 /* Check if we are enabling RC6 */
3539 rc6_mode = intel_enable_rc6(dev_priv->dev);
3540 if (rc6_mode & INTEL_RC6_ENABLE)
3541 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3543 /* We don't use those on Haswell */
3544 if (!IS_HASWELL(dev)) {
3545 if (rc6_mode & INTEL_RC6p_ENABLE)
3546 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3548 if (rc6_mode & INTEL_RC6pp_ENABLE)
3549 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3552 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3553 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3554 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3555 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3557 I915_WRITE(GEN6_RC_CONTROL,
3558 rc6_mask |
3559 GEN6_RC_CTL_EI_MODE(1) |
3560 GEN6_RC_CTL_HW_ENABLE);
3562 if (IS_HASWELL(dev)) {
3563 I915_WRITE(GEN6_RPNSWREQ,
3564 HSW_FREQUENCY(10));
3565 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3566 HSW_FREQUENCY(12));
3567 } else {
3568 I915_WRITE(GEN6_RPNSWREQ,
3569 GEN6_FREQUENCY(10) |
3570 GEN6_OFFSET(0) |
3571 GEN6_AGGRESSIVE_TURBO);
3572 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3573 GEN6_FREQUENCY(12));
3576 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3577 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3578 dev_priv->rps.max_delay << 24 |
3579 dev_priv->rps.min_delay << 16);
3581 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3582 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3583 I915_WRITE(GEN6_RP_UP_EI, 66000);
3584 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3586 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3587 I915_WRITE(GEN6_RP_CONTROL,
3588 GEN6_RP_MEDIA_TURBO |
3589 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3590 GEN6_RP_MEDIA_IS_GFX |
3591 GEN6_RP_ENABLE |
3592 GEN6_RP_UP_BUSY_AVG |
3593 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3595 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3596 if (!ret) {
3597 pcu_mbox = 0;
3598 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3599 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3600 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3601 (dev_priv->rps.max_delay & 0xff) * 50,
3602 (pcu_mbox & 0xff) * 50);
3603 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3605 } else {
3606 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3609 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3611 gen6_enable_rps_interrupts(dev);
3613 rc6vids = 0;
3614 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3615 if (IS_GEN6(dev) && ret) {
3616 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3617 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3618 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3619 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3620 rc6vids &= 0xffff00;
3621 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3622 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3623 if (ret)
3624 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3627 gen6_gt_force_wake_put(dev_priv);
3630 void gen6_update_ring_freq(struct drm_device *dev)
3632 struct drm_i915_private *dev_priv = dev->dev_private;
3633 int min_freq = 15;
3634 unsigned int gpu_freq;
3635 unsigned int max_ia_freq, min_ring_freq;
3636 int scaling_factor = 180;
3638 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3640 max_ia_freq = cpufreq_quick_get_max(0);
3642 * Default to measured freq if none found, PCU will ensure we don't go
3643 * over
3645 if (!max_ia_freq)
3646 max_ia_freq = tsc_khz;
3648 /* Convert from kHz to MHz */
3649 max_ia_freq /= 1000;
3651 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3652 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3653 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3656 * For each potential GPU frequency, load a ring frequency we'd like
3657 * to use for memory access. We do this by specifying the IA frequency
3658 * the PCU should use as a reference to determine the ring frequency.
3660 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3661 gpu_freq--) {
3662 int diff = dev_priv->rps.max_delay - gpu_freq;
3663 unsigned int ia_freq = 0, ring_freq = 0;
3665 if (IS_HASWELL(dev)) {
3666 ring_freq = (gpu_freq * 5 + 3) / 4;
3667 ring_freq = max(min_ring_freq, ring_freq);
3668 /* leave ia_freq as the default, chosen by cpufreq */
3669 } else {
3670 /* On older processors, there is no separate ring
3671 * clock domain, so in order to boost the bandwidth
3672 * of the ring, we need to upclock the CPU (ia_freq).
3674 * For GPU frequencies less than 750MHz,
3675 * just use the lowest ring freq.
3677 if (gpu_freq < min_freq)
3678 ia_freq = 800;
3679 else
3680 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3681 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3684 sandybridge_pcode_write(dev_priv,
3685 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3686 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3687 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3688 gpu_freq);
3692 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3694 u32 val, rp0;
3696 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3698 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3699 /* Clamp to max */
3700 rp0 = min_t(u32, rp0, 0xea);
3702 return rp0;
3705 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3707 u32 val, rpe;
3709 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3710 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3711 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3712 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3714 return rpe;
3717 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3719 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3722 static void vlv_rps_timer_work(struct work_struct *work)
3724 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3725 rps.vlv_work.work);
3728 * Timer fired, we must be idle. Drop to min voltage state.
3729 * Note: we use RPe here since it should match the
3730 * Vmin we were shooting for. That should give us better
3731 * perf when we come back out of RC6 than if we used the
3732 * min freq available.
3734 mutex_lock(&dev_priv->rps.hw_lock);
3735 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3736 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3737 mutex_unlock(&dev_priv->rps.hw_lock);
3740 static void valleyview_setup_pctx(struct drm_device *dev)
3742 struct drm_i915_private *dev_priv = dev->dev_private;
3743 struct drm_i915_gem_object *pctx;
3744 unsigned long pctx_paddr;
3745 u32 pcbr;
3746 int pctx_size = 24*1024;
3748 pcbr = I915_READ(VLV_PCBR);
3749 if (pcbr) {
3750 /* BIOS set it up already, grab the pre-alloc'd space */
3751 int pcbr_offset;
3753 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3754 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3755 pcbr_offset,
3756 I915_GTT_OFFSET_NONE,
3757 pctx_size);
3758 goto out;
3762 * From the Gunit register HAS:
3763 * The Gfx driver is expected to program this register and ensure
3764 * proper allocation within Gfx stolen memory. For example, this
3765 * register should be programmed such than the PCBR range does not
3766 * overlap with other ranges, such as the frame buffer, protected
3767 * memory, or any other relevant ranges.
3769 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3770 if (!pctx) {
3771 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3772 return;
3775 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3776 I915_WRITE(VLV_PCBR, pctx_paddr);
3778 out:
3779 dev_priv->vlv_pctx = pctx;
3782 static void valleyview_enable_rps(struct drm_device *dev)
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785 struct intel_ring_buffer *ring;
3786 u32 gtfifodbg, val;
3787 int i;
3789 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3791 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3792 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3793 I915_WRITE(GTFIFODBG, gtfifodbg);
3796 valleyview_setup_pctx(dev);
3798 gen6_gt_force_wake_get(dev_priv);
3800 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3801 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3802 I915_WRITE(GEN6_RP_UP_EI, 66000);
3803 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3805 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3807 I915_WRITE(GEN6_RP_CONTROL,
3808 GEN6_RP_MEDIA_TURBO |
3809 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3810 GEN6_RP_MEDIA_IS_GFX |
3811 GEN6_RP_ENABLE |
3812 GEN6_RP_UP_BUSY_AVG |
3813 GEN6_RP_DOWN_IDLE_CONT);
3815 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3816 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3817 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3819 for_each_ring(ring, dev_priv, i)
3820 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3822 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3824 /* allows RC6 residency counter to work */
3825 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3826 I915_WRITE(GEN6_RC_CONTROL,
3827 GEN7_RC_CTL_TO_MODE);
3829 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3830 switch ((val >> 6) & 3) {
3831 case 0:
3832 case 1:
3833 dev_priv->mem_freq = 800;
3834 break;
3835 case 2:
3836 dev_priv->mem_freq = 1066;
3837 break;
3838 case 3:
3839 dev_priv->mem_freq = 1333;
3840 break;
3842 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3844 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3845 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3847 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3848 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3849 vlv_gpu_freq(dev_priv->mem_freq,
3850 dev_priv->rps.cur_delay),
3851 dev_priv->rps.cur_delay);
3853 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3854 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3855 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3856 vlv_gpu_freq(dev_priv->mem_freq,
3857 dev_priv->rps.max_delay),
3858 dev_priv->rps.max_delay);
3860 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3861 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3862 vlv_gpu_freq(dev_priv->mem_freq,
3863 dev_priv->rps.rpe_delay),
3864 dev_priv->rps.rpe_delay);
3866 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3867 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3868 vlv_gpu_freq(dev_priv->mem_freq,
3869 dev_priv->rps.min_delay),
3870 dev_priv->rps.min_delay);
3872 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3873 vlv_gpu_freq(dev_priv->mem_freq,
3874 dev_priv->rps.rpe_delay),
3875 dev_priv->rps.rpe_delay);
3877 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3879 gen6_enable_rps_interrupts(dev);
3881 gen6_gt_force_wake_put(dev_priv);
3884 void ironlake_teardown_rc6(struct drm_device *dev)
3886 struct drm_i915_private *dev_priv = dev->dev_private;
3888 if (dev_priv->ips.renderctx) {
3889 i915_gem_object_unpin(dev_priv->ips.renderctx);
3890 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3891 dev_priv->ips.renderctx = NULL;
3894 if (dev_priv->ips.pwrctx) {
3895 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3896 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3897 dev_priv->ips.pwrctx = NULL;
3901 static void ironlake_disable_rc6(struct drm_device *dev)
3903 struct drm_i915_private *dev_priv = dev->dev_private;
3905 if (I915_READ(PWRCTXA)) {
3906 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3907 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3908 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3909 50);
3911 I915_WRITE(PWRCTXA, 0);
3912 POSTING_READ(PWRCTXA);
3914 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3915 POSTING_READ(RSTDBYCTL);
3919 static int ironlake_setup_rc6(struct drm_device *dev)
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3923 if (dev_priv->ips.renderctx == NULL)
3924 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3925 if (!dev_priv->ips.renderctx)
3926 return -ENOMEM;
3928 if (dev_priv->ips.pwrctx == NULL)
3929 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3930 if (!dev_priv->ips.pwrctx) {
3931 ironlake_teardown_rc6(dev);
3932 return -ENOMEM;
3935 return 0;
3938 static void ironlake_enable_rc6(struct drm_device *dev)
3940 struct drm_i915_private *dev_priv = dev->dev_private;
3941 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3942 bool was_interruptible;
3943 int ret;
3945 /* rc6 disabled by default due to repeated reports of hanging during
3946 * boot and resume.
3948 if (!intel_enable_rc6(dev))
3949 return;
3951 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3953 ret = ironlake_setup_rc6(dev);
3954 if (ret)
3955 return;
3957 was_interruptible = dev_priv->mm.interruptible;
3958 dev_priv->mm.interruptible = false;
3961 * GPU can automatically power down the render unit if given a page
3962 * to save state.
3964 ret = intel_ring_begin(ring, 6);
3965 if (ret) {
3966 ironlake_teardown_rc6(dev);
3967 dev_priv->mm.interruptible = was_interruptible;
3968 return;
3971 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3972 intel_ring_emit(ring, MI_SET_CONTEXT);
3973 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3974 MI_MM_SPACE_GTT |
3975 MI_SAVE_EXT_STATE_EN |
3976 MI_RESTORE_EXT_STATE_EN |
3977 MI_RESTORE_INHIBIT);
3978 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3979 intel_ring_emit(ring, MI_NOOP);
3980 intel_ring_emit(ring, MI_FLUSH);
3981 intel_ring_advance(ring);
3984 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3985 * does an implicit flush, combined with MI_FLUSH above, it should be
3986 * safe to assume that renderctx is valid
3988 ret = intel_ring_idle(ring);
3989 dev_priv->mm.interruptible = was_interruptible;
3990 if (ret) {
3991 DRM_ERROR("failed to enable ironlake power savings\n");
3992 ironlake_teardown_rc6(dev);
3993 return;
3996 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3997 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4000 static unsigned long intel_pxfreq(u32 vidfreq)
4002 unsigned long freq;
4003 int div = (vidfreq & 0x3f0000) >> 16;
4004 int post = (vidfreq & 0x3000) >> 12;
4005 int pre = (vidfreq & 0x7);
4007 if (!pre)
4008 return 0;
4010 freq = ((div * 133333) / ((1<<post) * pre));
4012 return freq;
4015 static const struct cparams {
4016 u16 i;
4017 u16 t;
4018 u16 m;
4019 u16 c;
4020 } cparams[] = {
4021 { 1, 1333, 301, 28664 },
4022 { 1, 1066, 294, 24460 },
4023 { 1, 800, 294, 25192 },
4024 { 0, 1333, 276, 27605 },
4025 { 0, 1066, 276, 27605 },
4026 { 0, 800, 231, 23784 },
4029 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4031 u64 total_count, diff, ret;
4032 u32 count1, count2, count3, m = 0, c = 0;
4033 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4034 int i;
4036 assert_spin_locked(&mchdev_lock);
4038 diff1 = now - dev_priv->ips.last_time1;
4040 /* Prevent division-by-zero if we are asking too fast.
4041 * Also, we don't get interesting results if we are polling
4042 * faster than once in 10ms, so just return the saved value
4043 * in such cases.
4045 if (diff1 <= 10)
4046 return dev_priv->ips.chipset_power;
4048 count1 = I915_READ(DMIEC);
4049 count2 = I915_READ(DDREC);
4050 count3 = I915_READ(CSIEC);
4052 total_count = count1 + count2 + count3;
4054 /* FIXME: handle per-counter overflow */
4055 if (total_count < dev_priv->ips.last_count1) {
4056 diff = ~0UL - dev_priv->ips.last_count1;
4057 diff += total_count;
4058 } else {
4059 diff = total_count - dev_priv->ips.last_count1;
4062 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4063 if (cparams[i].i == dev_priv->ips.c_m &&
4064 cparams[i].t == dev_priv->ips.r_t) {
4065 m = cparams[i].m;
4066 c = cparams[i].c;
4067 break;
4071 diff = div_u64(diff, diff1);
4072 ret = ((m * diff) + c);
4073 ret = div_u64(ret, 10);
4075 dev_priv->ips.last_count1 = total_count;
4076 dev_priv->ips.last_time1 = now;
4078 dev_priv->ips.chipset_power = ret;
4080 return ret;
4083 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4085 unsigned long val;
4087 if (dev_priv->info->gen != 5)
4088 return 0;
4090 spin_lock_irq(&mchdev_lock);
4092 val = __i915_chipset_val(dev_priv);
4094 spin_unlock_irq(&mchdev_lock);
4096 return val;
4099 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4101 unsigned long m, x, b;
4102 u32 tsfs;
4104 tsfs = I915_READ(TSFS);
4106 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4107 x = I915_READ8(TR1);
4109 b = tsfs & TSFS_INTR_MASK;
4111 return ((m * x) / 127) - b;
4114 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4116 static const struct v_table {
4117 u16 vd; /* in .1 mil */
4118 u16 vm; /* in .1 mil */
4119 } v_table[] = {
4120 { 0, 0, },
4121 { 375, 0, },
4122 { 500, 0, },
4123 { 625, 0, },
4124 { 750, 0, },
4125 { 875, 0, },
4126 { 1000, 0, },
4127 { 1125, 0, },
4128 { 4125, 3000, },
4129 { 4125, 3000, },
4130 { 4125, 3000, },
4131 { 4125, 3000, },
4132 { 4125, 3000, },
4133 { 4125, 3000, },
4134 { 4125, 3000, },
4135 { 4125, 3000, },
4136 { 4125, 3000, },
4137 { 4125, 3000, },
4138 { 4125, 3000, },
4139 { 4125, 3000, },
4140 { 4125, 3000, },
4141 { 4125, 3000, },
4142 { 4125, 3000, },
4143 { 4125, 3000, },
4144 { 4125, 3000, },
4145 { 4125, 3000, },
4146 { 4125, 3000, },
4147 { 4125, 3000, },
4148 { 4125, 3000, },
4149 { 4125, 3000, },
4150 { 4125, 3000, },
4151 { 4125, 3000, },
4152 { 4250, 3125, },
4153 { 4375, 3250, },
4154 { 4500, 3375, },
4155 { 4625, 3500, },
4156 { 4750, 3625, },
4157 { 4875, 3750, },
4158 { 5000, 3875, },
4159 { 5125, 4000, },
4160 { 5250, 4125, },
4161 { 5375, 4250, },
4162 { 5500, 4375, },
4163 { 5625, 4500, },
4164 { 5750, 4625, },
4165 { 5875, 4750, },
4166 { 6000, 4875, },
4167 { 6125, 5000, },
4168 { 6250, 5125, },
4169 { 6375, 5250, },
4170 { 6500, 5375, },
4171 { 6625, 5500, },
4172 { 6750, 5625, },
4173 { 6875, 5750, },
4174 { 7000, 5875, },
4175 { 7125, 6000, },
4176 { 7250, 6125, },
4177 { 7375, 6250, },
4178 { 7500, 6375, },
4179 { 7625, 6500, },
4180 { 7750, 6625, },
4181 { 7875, 6750, },
4182 { 8000, 6875, },
4183 { 8125, 7000, },
4184 { 8250, 7125, },
4185 { 8375, 7250, },
4186 { 8500, 7375, },
4187 { 8625, 7500, },
4188 { 8750, 7625, },
4189 { 8875, 7750, },
4190 { 9000, 7875, },
4191 { 9125, 8000, },
4192 { 9250, 8125, },
4193 { 9375, 8250, },
4194 { 9500, 8375, },
4195 { 9625, 8500, },
4196 { 9750, 8625, },
4197 { 9875, 8750, },
4198 { 10000, 8875, },
4199 { 10125, 9000, },
4200 { 10250, 9125, },
4201 { 10375, 9250, },
4202 { 10500, 9375, },
4203 { 10625, 9500, },
4204 { 10750, 9625, },
4205 { 10875, 9750, },
4206 { 11000, 9875, },
4207 { 11125, 10000, },
4208 { 11250, 10125, },
4209 { 11375, 10250, },
4210 { 11500, 10375, },
4211 { 11625, 10500, },
4212 { 11750, 10625, },
4213 { 11875, 10750, },
4214 { 12000, 10875, },
4215 { 12125, 11000, },
4216 { 12250, 11125, },
4217 { 12375, 11250, },
4218 { 12500, 11375, },
4219 { 12625, 11500, },
4220 { 12750, 11625, },
4221 { 12875, 11750, },
4222 { 13000, 11875, },
4223 { 13125, 12000, },
4224 { 13250, 12125, },
4225 { 13375, 12250, },
4226 { 13500, 12375, },
4227 { 13625, 12500, },
4228 { 13750, 12625, },
4229 { 13875, 12750, },
4230 { 14000, 12875, },
4231 { 14125, 13000, },
4232 { 14250, 13125, },
4233 { 14375, 13250, },
4234 { 14500, 13375, },
4235 { 14625, 13500, },
4236 { 14750, 13625, },
4237 { 14875, 13750, },
4238 { 15000, 13875, },
4239 { 15125, 14000, },
4240 { 15250, 14125, },
4241 { 15375, 14250, },
4242 { 15500, 14375, },
4243 { 15625, 14500, },
4244 { 15750, 14625, },
4245 { 15875, 14750, },
4246 { 16000, 14875, },
4247 { 16125, 15000, },
4249 if (dev_priv->info->is_mobile)
4250 return v_table[pxvid].vm;
4251 else
4252 return v_table[pxvid].vd;
4255 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4257 struct timespec now, diff1;
4258 u64 diff;
4259 unsigned long diffms;
4260 u32 count;
4262 assert_spin_locked(&mchdev_lock);
4264 getrawmonotonic(&now);
4265 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4267 /* Don't divide by 0 */
4268 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4269 if (!diffms)
4270 return;
4272 count = I915_READ(GFXEC);
4274 if (count < dev_priv->ips.last_count2) {
4275 diff = ~0UL - dev_priv->ips.last_count2;
4276 diff += count;
4277 } else {
4278 diff = count - dev_priv->ips.last_count2;
4281 dev_priv->ips.last_count2 = count;
4282 dev_priv->ips.last_time2 = now;
4284 /* More magic constants... */
4285 diff = diff * 1181;
4286 diff = div_u64(diff, diffms * 10);
4287 dev_priv->ips.gfx_power = diff;
4290 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4292 if (dev_priv->info->gen != 5)
4293 return;
4295 spin_lock_irq(&mchdev_lock);
4297 __i915_update_gfx_val(dev_priv);
4299 spin_unlock_irq(&mchdev_lock);
4302 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4304 unsigned long t, corr, state1, corr2, state2;
4305 u32 pxvid, ext_v;
4307 assert_spin_locked(&mchdev_lock);
4309 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4310 pxvid = (pxvid >> 24) & 0x7f;
4311 ext_v = pvid_to_extvid(dev_priv, pxvid);
4313 state1 = ext_v;
4315 t = i915_mch_val(dev_priv);
4317 /* Revel in the empirically derived constants */
4319 /* Correction factor in 1/100000 units */
4320 if (t > 80)
4321 corr = ((t * 2349) + 135940);
4322 else if (t >= 50)
4323 corr = ((t * 964) + 29317);
4324 else /* < 50 */
4325 corr = ((t * 301) + 1004);
4327 corr = corr * ((150142 * state1) / 10000 - 78642);
4328 corr /= 100000;
4329 corr2 = (corr * dev_priv->ips.corr);
4331 state2 = (corr2 * state1) / 10000;
4332 state2 /= 100; /* convert to mW */
4334 __i915_update_gfx_val(dev_priv);
4336 return dev_priv->ips.gfx_power + state2;
4339 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4341 unsigned long val;
4343 if (dev_priv->info->gen != 5)
4344 return 0;
4346 spin_lock_irq(&mchdev_lock);
4348 val = __i915_gfx_val(dev_priv);
4350 spin_unlock_irq(&mchdev_lock);
4352 return val;
4356 * i915_read_mch_val - return value for IPS use
4358 * Calculate and return a value for the IPS driver to use when deciding whether
4359 * we have thermal and power headroom to increase CPU or GPU power budget.
4361 unsigned long i915_read_mch_val(void)
4363 struct drm_i915_private *dev_priv;
4364 unsigned long chipset_val, graphics_val, ret = 0;
4366 spin_lock_irq(&mchdev_lock);
4367 if (!i915_mch_dev)
4368 goto out_unlock;
4369 dev_priv = i915_mch_dev;
4371 chipset_val = __i915_chipset_val(dev_priv);
4372 graphics_val = __i915_gfx_val(dev_priv);
4374 ret = chipset_val + graphics_val;
4376 out_unlock:
4377 spin_unlock_irq(&mchdev_lock);
4379 return ret;
4381 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4384 * i915_gpu_raise - raise GPU frequency limit
4386 * Raise the limit; IPS indicates we have thermal headroom.
4388 bool i915_gpu_raise(void)
4390 struct drm_i915_private *dev_priv;
4391 bool ret = true;
4393 spin_lock_irq(&mchdev_lock);
4394 if (!i915_mch_dev) {
4395 ret = false;
4396 goto out_unlock;
4398 dev_priv = i915_mch_dev;
4400 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4401 dev_priv->ips.max_delay--;
4403 out_unlock:
4404 spin_unlock_irq(&mchdev_lock);
4406 return ret;
4408 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4411 * i915_gpu_lower - lower GPU frequency limit
4413 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4414 * frequency maximum.
4416 bool i915_gpu_lower(void)
4418 struct drm_i915_private *dev_priv;
4419 bool ret = true;
4421 spin_lock_irq(&mchdev_lock);
4422 if (!i915_mch_dev) {
4423 ret = false;
4424 goto out_unlock;
4426 dev_priv = i915_mch_dev;
4428 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4429 dev_priv->ips.max_delay++;
4431 out_unlock:
4432 spin_unlock_irq(&mchdev_lock);
4434 return ret;
4436 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4439 * i915_gpu_busy - indicate GPU business to IPS
4441 * Tell the IPS driver whether or not the GPU is busy.
4443 bool i915_gpu_busy(void)
4445 struct drm_i915_private *dev_priv;
4446 struct intel_ring_buffer *ring;
4447 bool ret = false;
4448 int i;
4450 spin_lock_irq(&mchdev_lock);
4451 if (!i915_mch_dev)
4452 goto out_unlock;
4453 dev_priv = i915_mch_dev;
4455 for_each_ring(ring, dev_priv, i)
4456 ret |= !list_empty(&ring->request_list);
4458 out_unlock:
4459 spin_unlock_irq(&mchdev_lock);
4461 return ret;
4463 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4466 * i915_gpu_turbo_disable - disable graphics turbo
4468 * Disable graphics turbo by resetting the max frequency and setting the
4469 * current frequency to the default.
4471 bool i915_gpu_turbo_disable(void)
4473 struct drm_i915_private *dev_priv;
4474 bool ret = true;
4476 spin_lock_irq(&mchdev_lock);
4477 if (!i915_mch_dev) {
4478 ret = false;
4479 goto out_unlock;
4481 dev_priv = i915_mch_dev;
4483 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4485 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4486 ret = false;
4488 out_unlock:
4489 spin_unlock_irq(&mchdev_lock);
4491 return ret;
4493 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4496 * Tells the intel_ips driver that the i915 driver is now loaded, if
4497 * IPS got loaded first.
4499 * This awkward dance is so that neither module has to depend on the
4500 * other in order for IPS to do the appropriate communication of
4501 * GPU turbo limits to i915.
4503 static void
4504 ips_ping_for_i915_load(void)
4506 void (*link)(void);
4508 link = symbol_get(ips_link_to_i915_driver);
4509 if (link) {
4510 link();
4511 symbol_put(ips_link_to_i915_driver);
4515 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4517 /* We only register the i915 ips part with intel-ips once everything is
4518 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4519 spin_lock_irq(&mchdev_lock);
4520 i915_mch_dev = dev_priv;
4521 spin_unlock_irq(&mchdev_lock);
4523 ips_ping_for_i915_load();
4526 void intel_gpu_ips_teardown(void)
4528 spin_lock_irq(&mchdev_lock);
4529 i915_mch_dev = NULL;
4530 spin_unlock_irq(&mchdev_lock);
4532 static void intel_init_emon(struct drm_device *dev)
4534 struct drm_i915_private *dev_priv = dev->dev_private;
4535 u32 lcfuse;
4536 u8 pxw[16];
4537 int i;
4539 /* Disable to program */
4540 I915_WRITE(ECR, 0);
4541 POSTING_READ(ECR);
4543 /* Program energy weights for various events */
4544 I915_WRITE(SDEW, 0x15040d00);
4545 I915_WRITE(CSIEW0, 0x007f0000);
4546 I915_WRITE(CSIEW1, 0x1e220004);
4547 I915_WRITE(CSIEW2, 0x04000004);
4549 for (i = 0; i < 5; i++)
4550 I915_WRITE(PEW + (i * 4), 0);
4551 for (i = 0; i < 3; i++)
4552 I915_WRITE(DEW + (i * 4), 0);
4554 /* Program P-state weights to account for frequency power adjustment */
4555 for (i = 0; i < 16; i++) {
4556 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4557 unsigned long freq = intel_pxfreq(pxvidfreq);
4558 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4559 PXVFREQ_PX_SHIFT;
4560 unsigned long val;
4562 val = vid * vid;
4563 val *= (freq / 1000);
4564 val *= 255;
4565 val /= (127*127*900);
4566 if (val > 0xff)
4567 DRM_ERROR("bad pxval: %ld\n", val);
4568 pxw[i] = val;
4570 /* Render standby states get 0 weight */
4571 pxw[14] = 0;
4572 pxw[15] = 0;
4574 for (i = 0; i < 4; i++) {
4575 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4576 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4577 I915_WRITE(PXW + (i * 4), val);
4580 /* Adjust magic regs to magic values (more experimental results) */
4581 I915_WRITE(OGW0, 0);
4582 I915_WRITE(OGW1, 0);
4583 I915_WRITE(EG0, 0x00007f00);
4584 I915_WRITE(EG1, 0x0000000e);
4585 I915_WRITE(EG2, 0x000e0000);
4586 I915_WRITE(EG3, 0x68000300);
4587 I915_WRITE(EG4, 0x42000000);
4588 I915_WRITE(EG5, 0x00140031);
4589 I915_WRITE(EG6, 0);
4590 I915_WRITE(EG7, 0);
4592 for (i = 0; i < 8; i++)
4593 I915_WRITE(PXWL + (i * 4), 0);
4595 /* Enable PMON + select events */
4596 I915_WRITE(ECR, 0x80000019);
4598 lcfuse = I915_READ(LCFUSE02);
4600 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4603 void intel_disable_gt_powersave(struct drm_device *dev)
4605 struct drm_i915_private *dev_priv = dev->dev_private;
4607 /* Interrupts should be disabled already to avoid re-arming. */
4608 WARN_ON(dev->irq_enabled);
4610 if (IS_IRONLAKE_M(dev)) {
4611 ironlake_disable_drps(dev);
4612 ironlake_disable_rc6(dev);
4613 } else if (INTEL_INFO(dev)->gen >= 6) {
4614 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4615 cancel_work_sync(&dev_priv->rps.work);
4616 if (IS_VALLEYVIEW(dev))
4617 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4618 mutex_lock(&dev_priv->rps.hw_lock);
4619 if (IS_VALLEYVIEW(dev))
4620 valleyview_disable_rps(dev);
4621 else
4622 gen6_disable_rps(dev);
4623 mutex_unlock(&dev_priv->rps.hw_lock);
4627 static void intel_gen6_powersave_work(struct work_struct *work)
4629 struct drm_i915_private *dev_priv =
4630 container_of(work, struct drm_i915_private,
4631 rps.delayed_resume_work.work);
4632 struct drm_device *dev = dev_priv->dev;
4634 mutex_lock(&dev_priv->rps.hw_lock);
4636 if (IS_VALLEYVIEW(dev)) {
4637 valleyview_enable_rps(dev);
4638 } else {
4639 gen6_enable_rps(dev);
4640 gen6_update_ring_freq(dev);
4642 mutex_unlock(&dev_priv->rps.hw_lock);
4645 void intel_enable_gt_powersave(struct drm_device *dev)
4647 struct drm_i915_private *dev_priv = dev->dev_private;
4649 if (IS_IRONLAKE_M(dev)) {
4650 ironlake_enable_drps(dev);
4651 ironlake_enable_rc6(dev);
4652 intel_init_emon(dev);
4653 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4655 * PCU communication is slow and this doesn't need to be
4656 * done at any specific time, so do this out of our fast path
4657 * to make resume and init faster.
4659 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4660 round_jiffies_up_relative(HZ));
4664 static void ibx_init_clock_gating(struct drm_device *dev)
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4669 * On Ibex Peak and Cougar Point, we need to disable clock
4670 * gating for the panel power sequencer or it will fail to
4671 * start up when no ports are active.
4673 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4676 static void g4x_disable_trickle_feed(struct drm_device *dev)
4678 struct drm_i915_private *dev_priv = dev->dev_private;
4679 int pipe;
4681 for_each_pipe(pipe) {
4682 I915_WRITE(DSPCNTR(pipe),
4683 I915_READ(DSPCNTR(pipe)) |
4684 DISPPLANE_TRICKLE_FEED_DISABLE);
4685 intel_flush_display_plane(dev_priv, pipe);
4689 static void ironlake_init_clock_gating(struct drm_device *dev)
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4695 * Required for FBC
4696 * WaFbcDisableDpfcClockGating:ilk
4698 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4699 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4700 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4702 I915_WRITE(PCH_3DCGDIS0,
4703 MARIUNIT_CLOCK_GATE_DISABLE |
4704 SVSMUNIT_CLOCK_GATE_DISABLE);
4705 I915_WRITE(PCH_3DCGDIS1,
4706 VFMUNIT_CLOCK_GATE_DISABLE);
4709 * According to the spec the following bits should be set in
4710 * order to enable memory self-refresh
4711 * The bit 22/21 of 0x42004
4712 * The bit 5 of 0x42020
4713 * The bit 15 of 0x45000
4715 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4716 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4717 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4718 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4719 I915_WRITE(DISP_ARB_CTL,
4720 (I915_READ(DISP_ARB_CTL) |
4721 DISP_FBC_WM_DIS));
4722 I915_WRITE(WM3_LP_ILK, 0);
4723 I915_WRITE(WM2_LP_ILK, 0);
4724 I915_WRITE(WM1_LP_ILK, 0);
4727 * Based on the document from hardware guys the following bits
4728 * should be set unconditionally in order to enable FBC.
4729 * The bit 22 of 0x42000
4730 * The bit 22 of 0x42004
4731 * The bit 7,8,9 of 0x42020.
4733 if (IS_IRONLAKE_M(dev)) {
4734 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4735 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4736 I915_READ(ILK_DISPLAY_CHICKEN1) |
4737 ILK_FBCQ_DIS);
4738 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4739 I915_READ(ILK_DISPLAY_CHICKEN2) |
4740 ILK_DPARB_GATE);
4743 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4745 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4746 I915_READ(ILK_DISPLAY_CHICKEN2) |
4747 ILK_ELPIN_409_SELECT);
4748 I915_WRITE(_3D_CHICKEN2,
4749 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4750 _3D_CHICKEN2_WM_READ_PIPELINED);
4752 /* WaDisableRenderCachePipelinedFlush:ilk */
4753 I915_WRITE(CACHE_MODE_0,
4754 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4756 g4x_disable_trickle_feed(dev);
4758 ibx_init_clock_gating(dev);
4761 static void cpt_init_clock_gating(struct drm_device *dev)
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764 int pipe;
4765 uint32_t val;
4768 * On Ibex Peak and Cougar Point, we need to disable clock
4769 * gating for the panel power sequencer or it will fail to
4770 * start up when no ports are active.
4772 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4773 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4774 PCH_CPUNIT_CLOCK_GATE_DISABLE);
4775 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4776 DPLS_EDP_PPS_FIX_DIS);
4777 /* The below fixes the weird display corruption, a few pixels shifted
4778 * downward, on (only) LVDS of some HP laptops with IVY.
4780 for_each_pipe(pipe) {
4781 val = I915_READ(TRANS_CHICKEN2(pipe));
4782 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4783 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4784 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4785 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4786 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4787 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4788 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4789 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4791 /* WADP0ClockGatingDisable */
4792 for_each_pipe(pipe) {
4793 I915_WRITE(TRANS_CHICKEN1(pipe),
4794 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4798 static void gen6_check_mch_setup(struct drm_device *dev)
4800 struct drm_i915_private *dev_priv = dev->dev_private;
4801 uint32_t tmp;
4803 tmp = I915_READ(MCH_SSKPD);
4804 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4805 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4806 DRM_INFO("This can cause pipe underruns and display issues.\n");
4807 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4811 static void gen6_init_clock_gating(struct drm_device *dev)
4813 struct drm_i915_private *dev_priv = dev->dev_private;
4814 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4816 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4818 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4819 I915_READ(ILK_DISPLAY_CHICKEN2) |
4820 ILK_ELPIN_409_SELECT);
4822 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4823 I915_WRITE(_3D_CHICKEN,
4824 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4826 /* WaSetupGtModeTdRowDispatch:snb */
4827 if (IS_SNB_GT1(dev))
4828 I915_WRITE(GEN6_GT_MODE,
4829 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4831 I915_WRITE(WM3_LP_ILK, 0);
4832 I915_WRITE(WM2_LP_ILK, 0);
4833 I915_WRITE(WM1_LP_ILK, 0);
4835 I915_WRITE(CACHE_MODE_0,
4836 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4838 I915_WRITE(GEN6_UCGCTL1,
4839 I915_READ(GEN6_UCGCTL1) |
4840 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4841 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4843 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4844 * gating disable must be set. Failure to set it results in
4845 * flickering pixels due to Z write ordering failures after
4846 * some amount of runtime in the Mesa "fire" demo, and Unigine
4847 * Sanctuary and Tropics, and apparently anything else with
4848 * alpha test or pixel discard.
4850 * According to the spec, bit 11 (RCCUNIT) must also be set,
4851 * but we didn't debug actual testcases to find it out.
4853 * Also apply WaDisableVDSUnitClockGating:snb and
4854 * WaDisableRCPBUnitClockGating:snb.
4856 I915_WRITE(GEN6_UCGCTL2,
4857 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4858 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4859 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4861 /* Bspec says we need to always set all mask bits. */
4862 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4863 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4866 * According to the spec the following bits should be
4867 * set in order to enable memory self-refresh and fbc:
4868 * The bit21 and bit22 of 0x42000
4869 * The bit21 and bit22 of 0x42004
4870 * The bit5 and bit7 of 0x42020
4871 * The bit14 of 0x70180
4872 * The bit14 of 0x71180
4874 * WaFbcAsynchFlipDisableFbcQueue:snb
4876 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4877 I915_READ(ILK_DISPLAY_CHICKEN1) |
4878 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4879 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4880 I915_READ(ILK_DISPLAY_CHICKEN2) |
4881 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4882 I915_WRITE(ILK_DSPCLK_GATE_D,
4883 I915_READ(ILK_DSPCLK_GATE_D) |
4884 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4885 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4887 g4x_disable_trickle_feed(dev);
4889 /* The default value should be 0x200 according to docs, but the two
4890 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4891 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4892 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4894 cpt_init_clock_gating(dev);
4896 gen6_check_mch_setup(dev);
4899 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4901 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4903 reg &= ~GEN7_FF_SCHED_MASK;
4904 reg |= GEN7_FF_TS_SCHED_HW;
4905 reg |= GEN7_FF_VS_SCHED_HW;
4906 reg |= GEN7_FF_DS_SCHED_HW;
4908 if (IS_HASWELL(dev_priv->dev))
4909 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4911 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4914 static void lpt_init_clock_gating(struct drm_device *dev)
4916 struct drm_i915_private *dev_priv = dev->dev_private;
4919 * TODO: this bit should only be enabled when really needed, then
4920 * disabled when not needed anymore in order to save power.
4922 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4923 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4924 I915_READ(SOUTH_DSPCLK_GATE_D) |
4925 PCH_LP_PARTITION_LEVEL_DISABLE);
4927 /* WADPOClockGatingDisable:hsw */
4928 I915_WRITE(_TRANSA_CHICKEN1,
4929 I915_READ(_TRANSA_CHICKEN1) |
4930 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4933 static void lpt_suspend_hw(struct drm_device *dev)
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4937 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4938 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4940 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4941 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4945 static void haswell_init_clock_gating(struct drm_device *dev)
4947 struct drm_i915_private *dev_priv = dev->dev_private;
4949 I915_WRITE(WM3_LP_ILK, 0);
4950 I915_WRITE(WM2_LP_ILK, 0);
4951 I915_WRITE(WM1_LP_ILK, 0);
4953 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4954 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4956 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4958 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4959 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4960 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4962 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4963 I915_WRITE(GEN7_L3CNTLREG1,
4964 GEN7_WA_FOR_GEN7_L3_CONTROL);
4965 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4966 GEN7_WA_L3_CHICKEN_MODE);
4968 /* L3 caching of data atomics doesn't work -- disable it. */
4969 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4970 I915_WRITE(HSW_ROW_CHICKEN3,
4971 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4973 /* This is required by WaCatErrorRejectionIssue:hsw */
4974 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4975 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4976 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4978 /* WaVSRefCountFullforceMissDisable:hsw */
4979 gen7_setup_fixed_func_scheduler(dev_priv);
4981 /* WaDisable4x2SubspanOptimization:hsw */
4982 I915_WRITE(CACHE_MODE_1,
4983 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4985 /* WaSwitchSolVfFArbitrationPriority:hsw */
4986 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4988 /* WaRsPkgCStateDisplayPMReq:hsw */
4989 I915_WRITE(CHICKEN_PAR1_1,
4990 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4992 lpt_init_clock_gating(dev);
4995 static void ivybridge_init_clock_gating(struct drm_device *dev)
4997 struct drm_i915_private *dev_priv = dev->dev_private;
4998 uint32_t snpcr;
5000 I915_WRITE(WM3_LP_ILK, 0);
5001 I915_WRITE(WM2_LP_ILK, 0);
5002 I915_WRITE(WM1_LP_ILK, 0);
5004 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5006 /* WaDisableEarlyCull:ivb */
5007 I915_WRITE(_3D_CHICKEN3,
5008 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5010 /* WaDisableBackToBackFlipFix:ivb */
5011 I915_WRITE(IVB_CHICKEN3,
5012 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5013 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5015 /* WaDisablePSDDualDispatchEnable:ivb */
5016 if (IS_IVB_GT1(dev))
5017 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5018 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5019 else
5020 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5021 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5023 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5024 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5025 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5027 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5028 I915_WRITE(GEN7_L3CNTLREG1,
5029 GEN7_WA_FOR_GEN7_L3_CONTROL);
5030 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5031 GEN7_WA_L3_CHICKEN_MODE);
5032 if (IS_IVB_GT1(dev))
5033 I915_WRITE(GEN7_ROW_CHICKEN2,
5034 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5035 else
5036 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5037 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5040 /* WaForceL3Serialization:ivb */
5041 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5042 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5044 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5045 * gating disable must be set. Failure to set it results in
5046 * flickering pixels due to Z write ordering failures after
5047 * some amount of runtime in the Mesa "fire" demo, and Unigine
5048 * Sanctuary and Tropics, and apparently anything else with
5049 * alpha test or pixel discard.
5051 * According to the spec, bit 11 (RCCUNIT) must also be set,
5052 * but we didn't debug actual testcases to find it out.
5054 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5055 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5057 I915_WRITE(GEN6_UCGCTL2,
5058 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5059 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5061 /* This is required by WaCatErrorRejectionIssue:ivb */
5062 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5063 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5064 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5066 g4x_disable_trickle_feed(dev);
5068 /* WaVSRefCountFullforceMissDisable:ivb */
5069 gen7_setup_fixed_func_scheduler(dev_priv);
5071 /* WaDisable4x2SubspanOptimization:ivb */
5072 I915_WRITE(CACHE_MODE_1,
5073 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5075 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5076 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5077 snpcr |= GEN6_MBC_SNPCR_MED;
5078 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5080 if (!HAS_PCH_NOP(dev))
5081 cpt_init_clock_gating(dev);
5083 gen6_check_mch_setup(dev);
5086 static void valleyview_init_clock_gating(struct drm_device *dev)
5088 struct drm_i915_private *dev_priv = dev->dev_private;
5090 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5092 /* WaDisableEarlyCull:vlv */
5093 I915_WRITE(_3D_CHICKEN3,
5094 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5096 /* WaDisableBackToBackFlipFix:vlv */
5097 I915_WRITE(IVB_CHICKEN3,
5098 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5099 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5101 /* WaDisablePSDDualDispatchEnable:vlv */
5102 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5103 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5104 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5106 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5107 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5108 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5110 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5111 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5112 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5114 /* WaForceL3Serialization:vlv */
5115 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5116 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5118 /* WaDisableDopClockGating:vlv */
5119 I915_WRITE(GEN7_ROW_CHICKEN2,
5120 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5122 /* This is required by WaCatErrorRejectionIssue:vlv */
5123 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5124 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5125 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5127 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5128 * gating disable must be set. Failure to set it results in
5129 * flickering pixels due to Z write ordering failures after
5130 * some amount of runtime in the Mesa "fire" demo, and Unigine
5131 * Sanctuary and Tropics, and apparently anything else with
5132 * alpha test or pixel discard.
5134 * According to the spec, bit 11 (RCCUNIT) must also be set,
5135 * but we didn't debug actual testcases to find it out.
5137 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5138 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5140 * Also apply WaDisableVDSUnitClockGating:vlv and
5141 * WaDisableRCPBUnitClockGating:vlv.
5143 I915_WRITE(GEN6_UCGCTL2,
5144 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5145 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5146 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5147 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5148 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5150 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5152 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5154 I915_WRITE(CACHE_MODE_1,
5155 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5158 * WaDisableVLVClockGating_VBIIssue:vlv
5159 * Disable clock gating on th GCFG unit to prevent a delay
5160 * in the reporting of vblank events.
5162 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5164 /* Conservative clock gating settings for now */
5165 I915_WRITE(0x9400, 0xffffffff);
5166 I915_WRITE(0x9404, 0xffffffff);
5167 I915_WRITE(0x9408, 0xffffffff);
5168 I915_WRITE(0x940c, 0xffffffff);
5169 I915_WRITE(0x9410, 0xffffffff);
5170 I915_WRITE(0x9414, 0xffffffff);
5171 I915_WRITE(0x9418, 0xffffffff);
5174 static void g4x_init_clock_gating(struct drm_device *dev)
5176 struct drm_i915_private *dev_priv = dev->dev_private;
5177 uint32_t dspclk_gate;
5179 I915_WRITE(RENCLK_GATE_D1, 0);
5180 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5181 GS_UNIT_CLOCK_GATE_DISABLE |
5182 CL_UNIT_CLOCK_GATE_DISABLE);
5183 I915_WRITE(RAMCLK_GATE_D, 0);
5184 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5185 OVRUNIT_CLOCK_GATE_DISABLE |
5186 OVCUNIT_CLOCK_GATE_DISABLE;
5187 if (IS_GM45(dev))
5188 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5189 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5191 /* WaDisableRenderCachePipelinedFlush */
5192 I915_WRITE(CACHE_MODE_0,
5193 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5195 g4x_disable_trickle_feed(dev);
5198 static void crestline_init_clock_gating(struct drm_device *dev)
5200 struct drm_i915_private *dev_priv = dev->dev_private;
5202 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5203 I915_WRITE(RENCLK_GATE_D2, 0);
5204 I915_WRITE(DSPCLK_GATE_D, 0);
5205 I915_WRITE(RAMCLK_GATE_D, 0);
5206 I915_WRITE16(DEUC, 0);
5207 I915_WRITE(MI_ARB_STATE,
5208 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5211 static void broadwater_init_clock_gating(struct drm_device *dev)
5213 struct drm_i915_private *dev_priv = dev->dev_private;
5215 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5216 I965_RCC_CLOCK_GATE_DISABLE |
5217 I965_RCPB_CLOCK_GATE_DISABLE |
5218 I965_ISC_CLOCK_GATE_DISABLE |
5219 I965_FBC_CLOCK_GATE_DISABLE);
5220 I915_WRITE(RENCLK_GATE_D2, 0);
5221 I915_WRITE(MI_ARB_STATE,
5222 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5225 static void gen3_init_clock_gating(struct drm_device *dev)
5227 struct drm_i915_private *dev_priv = dev->dev_private;
5228 u32 dstate = I915_READ(D_STATE);
5230 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5231 DSTATE_DOT_CLOCK_GATING;
5232 I915_WRITE(D_STATE, dstate);
5234 if (IS_PINEVIEW(dev))
5235 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5237 /* IIR "flip pending" means done if this bit is set */
5238 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5241 static void i85x_init_clock_gating(struct drm_device *dev)
5243 struct drm_i915_private *dev_priv = dev->dev_private;
5245 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5248 static void i830_init_clock_gating(struct drm_device *dev)
5250 struct drm_i915_private *dev_priv = dev->dev_private;
5252 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5255 void intel_init_clock_gating(struct drm_device *dev)
5257 struct drm_i915_private *dev_priv = dev->dev_private;
5259 dev_priv->display.init_clock_gating(dev);
5262 void intel_suspend_hw(struct drm_device *dev)
5264 if (HAS_PCH_LPT(dev))
5265 lpt_suspend_hw(dev);
5269 * We should only use the power well if we explicitly asked the hardware to
5270 * enable it, so check if it's enabled and also check if we've requested it to
5271 * be enabled.
5273 bool intel_display_power_enabled(struct drm_device *dev,
5274 enum intel_display_power_domain domain)
5276 struct drm_i915_private *dev_priv = dev->dev_private;
5278 if (!HAS_POWER_WELL(dev))
5279 return true;
5281 switch (domain) {
5282 case POWER_DOMAIN_PIPE_A:
5283 case POWER_DOMAIN_TRANSCODER_EDP:
5284 return true;
5285 case POWER_DOMAIN_PIPE_B:
5286 case POWER_DOMAIN_PIPE_C:
5287 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5288 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5289 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5290 case POWER_DOMAIN_TRANSCODER_A:
5291 case POWER_DOMAIN_TRANSCODER_B:
5292 case POWER_DOMAIN_TRANSCODER_C:
5293 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5294 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5295 default:
5296 BUG();
5300 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5302 struct drm_i915_private *dev_priv = dev->dev_private;
5303 bool is_enabled, enable_requested;
5304 uint32_t tmp;
5306 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5307 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5308 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5310 if (enable) {
5311 if (!enable_requested)
5312 I915_WRITE(HSW_PWR_WELL_DRIVER,
5313 HSW_PWR_WELL_ENABLE_REQUEST);
5315 if (!is_enabled) {
5316 DRM_DEBUG_KMS("Enabling power well\n");
5317 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5318 HSW_PWR_WELL_STATE_ENABLED), 20))
5319 DRM_ERROR("Timeout enabling power well\n");
5321 } else {
5322 if (enable_requested) {
5323 unsigned long irqflags;
5324 enum pipe p;
5326 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5327 POSTING_READ(HSW_PWR_WELL_DRIVER);
5328 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5331 * After this, the registers on the pipes that are part
5332 * of the power well will become zero, so we have to
5333 * adjust our counters according to that.
5335 * FIXME: Should we do this in general in
5336 * drm_vblank_post_modeset?
5338 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5339 for_each_pipe(p)
5340 if (p != PIPE_A)
5341 dev->last_vblank[p] = 0;
5342 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5347 static struct i915_power_well *hsw_pwr;
5349 /* Display audio driver power well request */
5350 void i915_request_power_well(void)
5352 if (WARN_ON(!hsw_pwr))
5353 return;
5355 spin_lock_irq(&hsw_pwr->lock);
5356 if (!hsw_pwr->count++ &&
5357 !hsw_pwr->i915_request)
5358 __intel_set_power_well(hsw_pwr->device, true);
5359 spin_unlock_irq(&hsw_pwr->lock);
5361 EXPORT_SYMBOL_GPL(i915_request_power_well);
5363 /* Display audio driver power well release */
5364 void i915_release_power_well(void)
5366 if (WARN_ON(!hsw_pwr))
5367 return;
5369 spin_lock_irq(&hsw_pwr->lock);
5370 WARN_ON(!hsw_pwr->count);
5371 if (!--hsw_pwr->count &&
5372 !hsw_pwr->i915_request)
5373 __intel_set_power_well(hsw_pwr->device, false);
5374 spin_unlock_irq(&hsw_pwr->lock);
5376 EXPORT_SYMBOL_GPL(i915_release_power_well);
5378 int i915_init_power_well(struct drm_device *dev)
5380 struct drm_i915_private *dev_priv = dev->dev_private;
5382 hsw_pwr = &dev_priv->power_well;
5384 hsw_pwr->device = dev;
5385 spin_lock_init(&hsw_pwr->lock);
5386 hsw_pwr->count = 0;
5388 return 0;
5391 void i915_remove_power_well(struct drm_device *dev)
5393 hsw_pwr = NULL;
5396 void intel_set_power_well(struct drm_device *dev, bool enable)
5398 struct drm_i915_private *dev_priv = dev->dev_private;
5399 struct i915_power_well *power_well = &dev_priv->power_well;
5401 if (!HAS_POWER_WELL(dev))
5402 return;
5404 if (!i915_disable_power_well && !enable)
5405 return;
5407 spin_lock_irq(&power_well->lock);
5408 power_well->i915_request = enable;
5410 /* only reject "disable" power well request */
5411 if (power_well->count && !enable) {
5412 spin_unlock_irq(&power_well->lock);
5413 return;
5416 __intel_set_power_well(dev, enable);
5417 spin_unlock_irq(&power_well->lock);
5421 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5422 * when not needed anymore. We have 4 registers that can request the power well
5423 * to be enabled, and it will only be disabled if none of the registers is
5424 * requesting it to be enabled.
5426 void intel_init_power_well(struct drm_device *dev)
5428 struct drm_i915_private *dev_priv = dev->dev_private;
5430 if (!HAS_POWER_WELL(dev))
5431 return;
5433 /* For now, we need the power well to be always enabled. */
5434 intel_set_power_well(dev, true);
5436 /* We're taking over the BIOS, so clear any requests made by it since
5437 * the driver is in charge now. */
5438 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5439 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5442 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5443 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5445 hsw_disable_package_c8(dev_priv);
5448 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5450 hsw_enable_package_c8(dev_priv);
5453 /* Set up chip specific power management-related functions */
5454 void intel_init_pm(struct drm_device *dev)
5456 struct drm_i915_private *dev_priv = dev->dev_private;
5458 if (I915_HAS_FBC(dev)) {
5459 if (HAS_PCH_SPLIT(dev)) {
5460 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5461 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5462 dev_priv->display.enable_fbc =
5463 gen7_enable_fbc;
5464 else
5465 dev_priv->display.enable_fbc =
5466 ironlake_enable_fbc;
5467 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5468 } else if (IS_GM45(dev)) {
5469 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5470 dev_priv->display.enable_fbc = g4x_enable_fbc;
5471 dev_priv->display.disable_fbc = g4x_disable_fbc;
5472 } else if (IS_CRESTLINE(dev)) {
5473 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5474 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5475 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5477 /* 855GM needs testing */
5480 /* For cxsr */
5481 if (IS_PINEVIEW(dev))
5482 i915_pineview_get_mem_freq(dev);
5483 else if (IS_GEN5(dev))
5484 i915_ironlake_get_mem_freq(dev);
5486 /* For FIFO watermark updates */
5487 if (HAS_PCH_SPLIT(dev)) {
5488 intel_setup_wm_latency(dev);
5490 if (IS_GEN5(dev)) {
5491 if (dev_priv->wm.pri_latency[1] &&
5492 dev_priv->wm.spr_latency[1] &&
5493 dev_priv->wm.cur_latency[1])
5494 dev_priv->display.update_wm = ironlake_update_wm;
5495 else {
5496 DRM_DEBUG_KMS("Failed to get proper latency. "
5497 "Disable CxSR\n");
5498 dev_priv->display.update_wm = NULL;
5500 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5501 } else if (IS_GEN6(dev)) {
5502 if (dev_priv->wm.pri_latency[0] &&
5503 dev_priv->wm.spr_latency[0] &&
5504 dev_priv->wm.cur_latency[0]) {
5505 dev_priv->display.update_wm = sandybridge_update_wm;
5506 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5507 } else {
5508 DRM_DEBUG_KMS("Failed to read display plane latency. "
5509 "Disable CxSR\n");
5510 dev_priv->display.update_wm = NULL;
5512 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5513 } else if (IS_IVYBRIDGE(dev)) {
5514 if (dev_priv->wm.pri_latency[0] &&
5515 dev_priv->wm.spr_latency[0] &&
5516 dev_priv->wm.cur_latency[0]) {
5517 dev_priv->display.update_wm = ivybridge_update_wm;
5518 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5519 } else {
5520 DRM_DEBUG_KMS("Failed to read display plane latency. "
5521 "Disable CxSR\n");
5522 dev_priv->display.update_wm = NULL;
5524 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5525 } else if (IS_HASWELL(dev)) {
5526 if (dev_priv->wm.pri_latency[0] &&
5527 dev_priv->wm.spr_latency[0] &&
5528 dev_priv->wm.cur_latency[0]) {
5529 dev_priv->display.update_wm = haswell_update_wm;
5530 dev_priv->display.update_sprite_wm =
5531 haswell_update_sprite_wm;
5532 } else {
5533 DRM_DEBUG_KMS("Failed to read display plane latency. "
5534 "Disable CxSR\n");
5535 dev_priv->display.update_wm = NULL;
5537 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5538 } else
5539 dev_priv->display.update_wm = NULL;
5540 } else if (IS_VALLEYVIEW(dev)) {
5541 dev_priv->display.update_wm = valleyview_update_wm;
5542 dev_priv->display.init_clock_gating =
5543 valleyview_init_clock_gating;
5544 } else if (IS_PINEVIEW(dev)) {
5545 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5546 dev_priv->is_ddr3,
5547 dev_priv->fsb_freq,
5548 dev_priv->mem_freq)) {
5549 DRM_INFO("failed to find known CxSR latency "
5550 "(found ddr%s fsb freq %d, mem freq %d), "
5551 "disabling CxSR\n",
5552 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5553 dev_priv->fsb_freq, dev_priv->mem_freq);
5554 /* Disable CxSR and never update its watermark again */
5555 pineview_disable_cxsr(dev);
5556 dev_priv->display.update_wm = NULL;
5557 } else
5558 dev_priv->display.update_wm = pineview_update_wm;
5559 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5560 } else if (IS_G4X(dev)) {
5561 dev_priv->display.update_wm = g4x_update_wm;
5562 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5563 } else if (IS_GEN4(dev)) {
5564 dev_priv->display.update_wm = i965_update_wm;
5565 if (IS_CRESTLINE(dev))
5566 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5567 else if (IS_BROADWATER(dev))
5568 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5569 } else if (IS_GEN3(dev)) {
5570 dev_priv->display.update_wm = i9xx_update_wm;
5571 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5572 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5573 } else if (IS_I865G(dev)) {
5574 dev_priv->display.update_wm = i830_update_wm;
5575 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5576 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5577 } else if (IS_I85X(dev)) {
5578 dev_priv->display.update_wm = i9xx_update_wm;
5579 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5580 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5581 } else {
5582 dev_priv->display.update_wm = i830_update_wm;
5583 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5584 if (IS_845G(dev))
5585 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5586 else
5587 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5591 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5593 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5595 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5596 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5597 return -EAGAIN;
5600 I915_WRITE(GEN6_PCODE_DATA, *val);
5601 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5603 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5604 500)) {
5605 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5606 return -ETIMEDOUT;
5609 *val = I915_READ(GEN6_PCODE_DATA);
5610 I915_WRITE(GEN6_PCODE_DATA, 0);
5612 return 0;
5615 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5617 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5619 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5620 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5621 return -EAGAIN;
5624 I915_WRITE(GEN6_PCODE_DATA, val);
5625 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5627 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5628 500)) {
5629 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5630 return -ETIMEDOUT;
5633 I915_WRITE(GEN6_PCODE_DATA, 0);
5635 return 0;
5638 int vlv_gpu_freq(int ddr_freq, int val)
5640 int mult, base;
5642 switch (ddr_freq) {
5643 case 800:
5644 mult = 20;
5645 base = 120;
5646 break;
5647 case 1066:
5648 mult = 22;
5649 base = 133;
5650 break;
5651 case 1333:
5652 mult = 21;
5653 base = 125;
5654 break;
5655 default:
5656 return -1;
5659 return ((val - 0xbd) * mult) + base;
5662 int vlv_freq_opcode(int ddr_freq, int val)
5664 int mult, base;
5666 switch (ddr_freq) {
5667 case 800:
5668 mult = 20;
5669 base = 120;
5670 break;
5671 case 1066:
5672 mult = 22;
5673 base = 133;
5674 break;
5675 case 1333:
5676 mult = 21;
5677 base = 125;
5678 break;
5679 default:
5680 return -1;
5683 val /= mult;
5684 val -= base / mult;
5685 val += 0xbd;
5687 if (val > 0xea)
5688 val = 0xea;
5690 return val;
5693 void intel_pm_init(struct drm_device *dev)
5695 struct drm_i915_private *dev_priv = dev->dev_private;
5697 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5698 intel_gen6_powersave_work);
5700 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);