2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
46 static bool intel_crtc_active(struct drm_crtc
*crtc
)
48 /* Be paranoid as we can arrive here with only partial
49 * state retrieved from the hardware during setup.
51 return to_intel_crtc(crtc
)->active
&& crtc
->fb
&& crtc
->mode
.clock
;
54 static void i8xx_disable_fbc(struct drm_device
*dev
)
56 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
59 /* Disable compression */
60 fbc_ctl
= I915_READ(FBC_CONTROL
);
61 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
64 fbc_ctl
&= ~FBC_CTL_EN
;
65 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
67 /* Wait for compressing bit to clear */
68 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
69 DRM_DEBUG_KMS("FBC idle timed out\n");
73 DRM_DEBUG_KMS("disabled FBC\n");
76 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
78 struct drm_device
*dev
= crtc
->dev
;
79 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
80 struct drm_framebuffer
*fb
= crtc
->fb
;
81 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
82 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
83 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
86 u32 fbc_ctl
, fbc_ctl2
;
88 cfb_pitch
= dev_priv
->fbc
.size
/ FBC_LL_SIZE
;
89 if (fb
->pitches
[0] < cfb_pitch
)
90 cfb_pitch
= fb
->pitches
[0];
92 /* FBC_CTL wants 64B units */
93 cfb_pitch
= (cfb_pitch
/ 64) - 1;
94 plane
= intel_crtc
->plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
97 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
98 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
101 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| FBC_CTL_CPU_FENCE
;
103 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
104 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
107 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
109 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
110 fbc_ctl
|= (cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
111 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
112 fbc_ctl
|= obj
->fence_reg
;
113 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
115 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116 cfb_pitch
, crtc
->y
, plane_name(intel_crtc
->plane
));
119 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
121 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
123 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
126 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
128 struct drm_device
*dev
= crtc
->dev
;
129 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
130 struct drm_framebuffer
*fb
= crtc
->fb
;
131 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
132 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
133 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
134 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
135 unsigned long stall_watermark
= 200;
138 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
139 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| obj
->fence_reg
;
140 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
142 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
143 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
144 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
145 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
148 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
150 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc
->plane
));
153 static void g4x_disable_fbc(struct drm_device
*dev
)
155 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
158 /* Disable compression */
159 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
160 if (dpfc_ctl
& DPFC_CTL_EN
) {
161 dpfc_ctl
&= ~DPFC_CTL_EN
;
162 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
164 DRM_DEBUG_KMS("disabled FBC\n");
168 static bool g4x_fbc_enabled(struct drm_device
*dev
)
170 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
172 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
175 static void sandybridge_blit_fbc_update(struct drm_device
*dev
)
177 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
180 /* Make sure blitter notifies FBC of writes */
181 gen6_gt_force_wake_get(dev_priv
);
182 blt_ecoskpd
= I915_READ(GEN6_BLITTER_ECOSKPD
);
183 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
<<
184 GEN6_BLITTER_LOCK_SHIFT
;
185 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
186 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
188 blt_ecoskpd
&= ~(GEN6_BLITTER_FBC_NOTIFY
<<
189 GEN6_BLITTER_LOCK_SHIFT
);
190 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
191 POSTING_READ(GEN6_BLITTER_ECOSKPD
);
192 gen6_gt_force_wake_put(dev_priv
);
195 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
197 struct drm_device
*dev
= crtc
->dev
;
198 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
199 struct drm_framebuffer
*fb
= crtc
->fb
;
200 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
201 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
202 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
203 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
204 unsigned long stall_watermark
= 200;
207 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
208 dpfc_ctl
&= DPFC_RESERVED
;
209 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
210 /* Set persistent mode for front-buffer rendering, ala X. */
211 dpfc_ctl
|= DPFC_CTL_PERSISTENT_MODE
;
212 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| obj
->fence_reg
);
213 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
215 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
216 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
217 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
218 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
219 I915_WRITE(ILK_FBC_RT_BASE
, i915_gem_obj_ggtt_offset(obj
) | ILK_FBC_RT_VALID
);
221 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
224 I915_WRITE(SNB_DPFC_CTL_SA
,
225 SNB_CPU_FENCE_ENABLE
| obj
->fence_reg
);
226 I915_WRITE(DPFC_CPU_FENCE_OFFSET
, crtc
->y
);
227 sandybridge_blit_fbc_update(dev
);
230 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc
->plane
));
233 static void ironlake_disable_fbc(struct drm_device
*dev
)
235 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
238 /* Disable compression */
239 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
240 if (dpfc_ctl
& DPFC_CTL_EN
) {
241 dpfc_ctl
&= ~DPFC_CTL_EN
;
242 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
244 if (IS_IVYBRIDGE(dev
))
245 /* WaFbcDisableDpfcClockGating:ivb */
246 I915_WRITE(ILK_DSPCLK_GATE_D
,
247 I915_READ(ILK_DSPCLK_GATE_D
) &
248 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE
);
251 /* WaFbcDisableDpfcClockGating:hsw */
252 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1
,
253 I915_READ(HSW_CLKGATE_DISABLE_PART_1
) &
254 ~HSW_DPFC_GATING_DISABLE
);
256 DRM_DEBUG_KMS("disabled FBC\n");
260 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
262 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
264 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
267 static void gen7_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
269 struct drm_device
*dev
= crtc
->dev
;
270 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
271 struct drm_framebuffer
*fb
= crtc
->fb
;
272 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
273 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
274 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
276 I915_WRITE(IVB_FBC_RT_BASE
, i915_gem_obj_ggtt_offset(obj
));
278 I915_WRITE(ILK_DPFC_CONTROL
, DPFC_CTL_EN
| DPFC_CTL_LIMIT_1X
|
279 IVB_DPFC_CTL_FENCE_EN
|
280 intel_crtc
->plane
<< IVB_DPFC_CTL_PLANE_SHIFT
);
282 if (IS_IVYBRIDGE(dev
)) {
283 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284 I915_WRITE(ILK_DISPLAY_CHICKEN1
, ILK_FBCQ_DIS
);
285 /* WaFbcDisableDpfcClockGating:ivb */
286 I915_WRITE(ILK_DSPCLK_GATE_D
,
287 I915_READ(ILK_DSPCLK_GATE_D
) |
288 ILK_DPFCUNIT_CLOCK_GATE_DISABLE
);
290 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc
->pipe
),
292 HSW_BYPASS_FBC_QUEUE
);
293 /* WaFbcDisableDpfcClockGating:hsw */
294 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1
,
295 I915_READ(HSW_CLKGATE_DISABLE_PART_1
) |
296 HSW_DPFC_GATING_DISABLE
);
299 I915_WRITE(SNB_DPFC_CTL_SA
,
300 SNB_CPU_FENCE_ENABLE
| obj
->fence_reg
);
301 I915_WRITE(DPFC_CPU_FENCE_OFFSET
, crtc
->y
);
303 sandybridge_blit_fbc_update(dev
);
305 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
308 bool intel_fbc_enabled(struct drm_device
*dev
)
310 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
312 if (!dev_priv
->display
.fbc_enabled
)
315 return dev_priv
->display
.fbc_enabled(dev
);
318 static void intel_fbc_work_fn(struct work_struct
*__work
)
320 struct intel_fbc_work
*work
=
321 container_of(to_delayed_work(__work
),
322 struct intel_fbc_work
, work
);
323 struct drm_device
*dev
= work
->crtc
->dev
;
324 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
326 mutex_lock(&dev
->struct_mutex
);
327 if (work
== dev_priv
->fbc
.fbc_work
) {
328 /* Double check that we haven't switched fb without cancelling
331 if (work
->crtc
->fb
== work
->fb
) {
332 dev_priv
->display
.enable_fbc(work
->crtc
,
335 dev_priv
->fbc
.plane
= to_intel_crtc(work
->crtc
)->plane
;
336 dev_priv
->fbc
.fb_id
= work
->crtc
->fb
->base
.id
;
337 dev_priv
->fbc
.y
= work
->crtc
->y
;
340 dev_priv
->fbc
.fbc_work
= NULL
;
342 mutex_unlock(&dev
->struct_mutex
);
347 static void intel_cancel_fbc_work(struct drm_i915_private
*dev_priv
)
349 if (dev_priv
->fbc
.fbc_work
== NULL
)
352 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354 /* Synchronisation is provided by struct_mutex and checking of
355 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 * entirely asynchronously.
358 if (cancel_delayed_work(&dev_priv
->fbc
.fbc_work
->work
))
359 /* tasklet was killed before being run, clean up */
360 kfree(dev_priv
->fbc
.fbc_work
);
362 /* Mark the work as no longer wanted so that if it does
363 * wake-up (because the work was already running and waiting
364 * for our mutex), it will discover that is no longer
367 dev_priv
->fbc
.fbc_work
= NULL
;
370 static void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
372 struct intel_fbc_work
*work
;
373 struct drm_device
*dev
= crtc
->dev
;
374 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
376 if (!dev_priv
->display
.enable_fbc
)
379 intel_cancel_fbc_work(dev_priv
);
381 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
383 DRM_ERROR("Failed to allocate FBC work structure\n");
384 dev_priv
->display
.enable_fbc(crtc
, interval
);
390 work
->interval
= interval
;
391 INIT_DELAYED_WORK(&work
->work
, intel_fbc_work_fn
);
393 dev_priv
->fbc
.fbc_work
= work
;
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
408 schedule_delayed_work(&work
->work
, msecs_to_jiffies(50));
411 void intel_disable_fbc(struct drm_device
*dev
)
413 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
415 intel_cancel_fbc_work(dev_priv
);
417 if (!dev_priv
->display
.disable_fbc
)
420 dev_priv
->display
.disable_fbc(dev
);
421 dev_priv
->fbc
.plane
= -1;
424 static bool set_no_fbc_reason(struct drm_i915_private
*dev_priv
,
425 enum no_fbc_reason reason
)
427 if (dev_priv
->fbc
.no_fbc_reason
== reason
)
430 dev_priv
->fbc
.no_fbc_reason
= reason
;
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
451 * We need to enable/disable FBC on a global basis.
453 void intel_update_fbc(struct drm_device
*dev
)
455 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
456 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
457 struct intel_crtc
*intel_crtc
;
458 struct drm_framebuffer
*fb
;
459 struct intel_framebuffer
*intel_fb
;
460 struct drm_i915_gem_object
*obj
;
461 unsigned int max_hdisplay
, max_vdisplay
;
463 if (!I915_HAS_FBC(dev
)) {
464 set_no_fbc_reason(dev_priv
, FBC_UNSUPPORTED
);
468 if (!i915_powersave
) {
469 if (set_no_fbc_reason(dev_priv
, FBC_MODULE_PARAM
))
470 DRM_DEBUG_KMS("fbc disabled per module param\n");
475 * If FBC is already on, we just have to verify that we can
476 * keep it that way...
477 * Need to disable if:
478 * - more than one pipe is active
479 * - changing FBC params (stride, fence, mode)
480 * - new fb is too large to fit in compressed buffer
481 * - going to an unsupported config (interlace, pixel multiply, etc.)
483 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
484 if (intel_crtc_active(tmp_crtc
) &&
485 !to_intel_crtc(tmp_crtc
)->primary_disabled
) {
487 if (set_no_fbc_reason(dev_priv
, FBC_MULTIPLE_PIPES
))
488 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
495 if (!crtc
|| crtc
->fb
== NULL
) {
496 if (set_no_fbc_reason(dev_priv
, FBC_NO_OUTPUT
))
497 DRM_DEBUG_KMS("no output, disabling\n");
501 intel_crtc
= to_intel_crtc(crtc
);
503 intel_fb
= to_intel_framebuffer(fb
);
506 if (i915_enable_fbc
< 0 &&
507 INTEL_INFO(dev
)->gen
<= 7 && !IS_HASWELL(dev
)) {
508 if (set_no_fbc_reason(dev_priv
, FBC_CHIP_DEFAULT
))
509 DRM_DEBUG_KMS("disabled per chip default\n");
512 if (!i915_enable_fbc
) {
513 if (set_no_fbc_reason(dev_priv
, FBC_MODULE_PARAM
))
514 DRM_DEBUG_KMS("fbc disabled per module param\n");
517 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
518 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
519 if (set_no_fbc_reason(dev_priv
, FBC_UNSUPPORTED_MODE
))
520 DRM_DEBUG_KMS("mode incompatible with compression, "
525 if (IS_G4X(dev
) || INTEL_INFO(dev
)->gen
>= 5) {
532 if ((crtc
->mode
.hdisplay
> max_hdisplay
) ||
533 (crtc
->mode
.vdisplay
> max_vdisplay
)) {
534 if (set_no_fbc_reason(dev_priv
, FBC_MODE_TOO_LARGE
))
535 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
538 if ((IS_I915GM(dev
) || IS_I945GM(dev
) || IS_HASWELL(dev
)) &&
539 intel_crtc
->plane
!= 0) {
540 if (set_no_fbc_reason(dev_priv
, FBC_BAD_PLANE
))
541 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
545 /* The use of a CPU fence is mandatory in order to detect writes
546 * by the CPU to the scanout and trigger updates to the FBC.
548 if (obj
->tiling_mode
!= I915_TILING_X
||
549 obj
->fence_reg
== I915_FENCE_REG_NONE
) {
550 if (set_no_fbc_reason(dev_priv
, FBC_NOT_TILED
))
551 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
555 /* If the kernel debugger is active, always disable compression */
559 if (i915_gem_stolen_setup_compression(dev
, intel_fb
->obj
->base
.size
)) {
560 if (set_no_fbc_reason(dev_priv
, FBC_STOLEN_TOO_SMALL
))
561 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
565 /* If the scanout has not changed, don't modify the FBC settings.
566 * Note that we make the fundamental assumption that the fb->obj
567 * cannot be unpinned (and have its GTT offset and fence revoked)
568 * without first being decoupled from the scanout and FBC disabled.
570 if (dev_priv
->fbc
.plane
== intel_crtc
->plane
&&
571 dev_priv
->fbc
.fb_id
== fb
->base
.id
&&
572 dev_priv
->fbc
.y
== crtc
->y
)
575 if (intel_fbc_enabled(dev
)) {
576 /* We update FBC along two paths, after changing fb/crtc
577 * configuration (modeswitching) and after page-flipping
578 * finishes. For the latter, we know that not only did
579 * we disable the FBC at the start of the page-flip
580 * sequence, but also more than one vblank has passed.
582 * For the former case of modeswitching, it is possible
583 * to switch between two FBC valid configurations
584 * instantaneously so we do need to disable the FBC
585 * before we can modify its control registers. We also
586 * have to wait for the next vblank for that to take
587 * effect. However, since we delay enabling FBC we can
588 * assume that a vblank has passed since disabling and
589 * that we can safely alter the registers in the deferred
592 * In the scenario that we go from a valid to invalid
593 * and then back to valid FBC configuration we have
594 * no strict enforcement that a vblank occurred since
595 * disabling the FBC. However, along all current pipe
596 * disabling paths we do need to wait for a vblank at
597 * some point. And we wait before enabling FBC anyway.
599 DRM_DEBUG_KMS("disabling active FBC for update\n");
600 intel_disable_fbc(dev
);
603 intel_enable_fbc(crtc
, 500);
604 dev_priv
->fbc
.no_fbc_reason
= FBC_OK
;
608 /* Multiple disables should be harmless */
609 if (intel_fbc_enabled(dev
)) {
610 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611 intel_disable_fbc(dev
);
613 i915_gem_stolen_cleanup_compression(dev
);
616 static void i915_pineview_get_mem_freq(struct drm_device
*dev
)
618 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
621 tmp
= I915_READ(CLKCFG
);
623 switch (tmp
& CLKCFG_FSB_MASK
) {
625 dev_priv
->fsb_freq
= 533; /* 133*4 */
628 dev_priv
->fsb_freq
= 800; /* 200*4 */
631 dev_priv
->fsb_freq
= 667; /* 167*4 */
634 dev_priv
->fsb_freq
= 400; /* 100*4 */
638 switch (tmp
& CLKCFG_MEM_MASK
) {
640 dev_priv
->mem_freq
= 533;
643 dev_priv
->mem_freq
= 667;
646 dev_priv
->mem_freq
= 800;
650 /* detect pineview DDR3 setting */
651 tmp
= I915_READ(CSHRDDR3CTL
);
652 dev_priv
->is_ddr3
= (tmp
& CSHRDDR3CTL_DDR3
) ? 1 : 0;
655 static void i915_ironlake_get_mem_freq(struct drm_device
*dev
)
657 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
660 ddrpll
= I915_READ16(DDRMPLL1
);
661 csipll
= I915_READ16(CSIPLL0
);
663 switch (ddrpll
& 0xff) {
665 dev_priv
->mem_freq
= 800;
668 dev_priv
->mem_freq
= 1066;
671 dev_priv
->mem_freq
= 1333;
674 dev_priv
->mem_freq
= 1600;
677 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
679 dev_priv
->mem_freq
= 0;
683 dev_priv
->ips
.r_t
= dev_priv
->mem_freq
;
685 switch (csipll
& 0x3ff) {
687 dev_priv
->fsb_freq
= 3200;
690 dev_priv
->fsb_freq
= 3733;
693 dev_priv
->fsb_freq
= 4266;
696 dev_priv
->fsb_freq
= 4800;
699 dev_priv
->fsb_freq
= 5333;
702 dev_priv
->fsb_freq
= 5866;
705 dev_priv
->fsb_freq
= 6400;
708 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
710 dev_priv
->fsb_freq
= 0;
714 if (dev_priv
->fsb_freq
== 3200) {
715 dev_priv
->ips
.c_m
= 0;
716 } else if (dev_priv
->fsb_freq
> 3200 && dev_priv
->fsb_freq
<= 4800) {
717 dev_priv
->ips
.c_m
= 1;
719 dev_priv
->ips
.c_m
= 2;
723 static const struct cxsr_latency cxsr_latency_table
[] = {
724 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
725 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
726 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
727 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
728 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
730 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
731 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
732 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
733 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
734 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
736 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
737 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
738 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
739 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
740 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
742 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
743 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
744 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
745 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
746 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
748 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
749 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
750 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
751 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
752 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
754 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
755 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
756 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
757 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
758 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
761 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
766 const struct cxsr_latency
*latency
;
769 if (fsb
== 0 || mem
== 0)
772 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
773 latency
= &cxsr_latency_table
[i
];
774 if (is_desktop
== latency
->is_desktop
&&
775 is_ddr3
== latency
->is_ddr3
&&
776 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
780 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
785 static void pineview_disable_cxsr(struct drm_device
*dev
)
787 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
789 /* deactivate cxsr */
790 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
794 * Latency for FIFO fetches is dependent on several factors:
795 * - memory configuration (speed, channels)
797 * - current MCH state
798 * It can be fairly high in some situations, so here we assume a fairly
799 * pessimal value. It's a tradeoff between extra memory fetches (if we
800 * set this value too high, the FIFO will fetch frequently to stay full)
801 * and power consumption (set it too low to save power and we might see
802 * FIFO underruns and display "flicker").
804 * A value of 5us seems to be a good balance; safe for very low end
805 * platforms but not overly aggressive on lower latency configs.
807 static const int latency_ns
= 5000;
809 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
811 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
812 uint32_t dsparb
= I915_READ(DSPARB
);
815 size
= dsparb
& 0x7f;
817 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
820 plane
? "B" : "A", size
);
825 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
827 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
828 uint32_t dsparb
= I915_READ(DSPARB
);
831 size
= dsparb
& 0x1ff;
833 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
834 size
>>= 1; /* Convert to cachelines */
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
837 plane
? "B" : "A", size
);
842 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
844 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
845 uint32_t dsparb
= I915_READ(DSPARB
);
848 size
= dsparb
& 0x7f;
849 size
>>= 2; /* Convert to cachelines */
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
858 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
860 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
861 uint32_t dsparb
= I915_READ(DSPARB
);
864 size
= dsparb
& 0x7f;
865 size
>>= 1; /* Convert to cachelines */
867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
868 plane
? "B" : "A", size
);
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm
= {
875 PINEVIEW_DISPLAY_FIFO
,
879 PINEVIEW_FIFO_LINE_SIZE
881 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
882 PINEVIEW_DISPLAY_FIFO
,
884 PINEVIEW_DFT_HPLLOFF_WM
,
886 PINEVIEW_FIFO_LINE_SIZE
888 static const struct intel_watermark_params pineview_cursor_wm
= {
889 PINEVIEW_CURSOR_FIFO
,
890 PINEVIEW_CURSOR_MAX_WM
,
891 PINEVIEW_CURSOR_DFT_WM
,
892 PINEVIEW_CURSOR_GUARD_WM
,
893 PINEVIEW_FIFO_LINE_SIZE
,
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
896 PINEVIEW_CURSOR_FIFO
,
897 PINEVIEW_CURSOR_MAX_WM
,
898 PINEVIEW_CURSOR_DFT_WM
,
899 PINEVIEW_CURSOR_GUARD_WM
,
900 PINEVIEW_FIFO_LINE_SIZE
902 static const struct intel_watermark_params g4x_wm_info
= {
909 static const struct intel_watermark_params g4x_cursor_wm_info
= {
916 static const struct intel_watermark_params valleyview_wm_info
= {
917 VALLEYVIEW_FIFO_SIZE
,
923 static const struct intel_watermark_params valleyview_cursor_wm_info
= {
925 VALLEYVIEW_CURSOR_MAX_WM
,
930 static const struct intel_watermark_params i965_cursor_wm_info
= {
937 static const struct intel_watermark_params i945_wm_info
= {
944 static const struct intel_watermark_params i915_wm_info
= {
951 static const struct intel_watermark_params i855_wm_info
= {
958 static const struct intel_watermark_params i830_wm_info
= {
966 static const struct intel_watermark_params ironlake_display_wm_info
= {
973 static const struct intel_watermark_params ironlake_cursor_wm_info
= {
980 static const struct intel_watermark_params ironlake_display_srwm_info
= {
982 ILK_DISPLAY_MAX_SRWM
,
983 ILK_DISPLAY_DFT_SRWM
,
987 static const struct intel_watermark_params ironlake_cursor_srwm_info
= {
995 static const struct intel_watermark_params sandybridge_display_wm_info
= {
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info
= {
1009 static const struct intel_watermark_params sandybridge_display_srwm_info
= {
1010 SNB_DISPLAY_SR_FIFO
,
1011 SNB_DISPLAY_MAX_SRWM
,
1012 SNB_DISPLAY_DFT_SRWM
,
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info
= {
1018 SNB_CURSOR_MAX_SRWM
,
1019 SNB_CURSOR_DFT_SRWM
,
1026 * intel_calculate_wm - calculate watermark level
1027 * @clock_in_khz: pixel clock
1028 * @wm: chip FIFO params
1029 * @pixel_size: display pixel size
1030 * @latency_ns: memory latency for the platform
1032 * Calculate the watermark level (the level at which the display plane will
1033 * start fetching from memory again). Each chip has a different display
1034 * FIFO size and allocation, so the caller needs to figure that out and pass
1035 * in the correct intel_watermark_params structure.
1037 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038 * on the pixel size. When it reaches the watermark level, it'll start
1039 * fetching FIFO line sized based chunks from memory until the FIFO fills
1040 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1041 * will occur, and a display engine hang could result.
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
1044 const struct intel_watermark_params
*wm
,
1047 unsigned long latency_ns
)
1049 long entries_required
, wm_size
;
1052 * Note: we need to make sure we don't overflow for various clock &
1054 * clocks go from a few thousand to several hundred thousand.
1055 * latency is usually a few thousand
1057 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
1059 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
1061 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
1063 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
1065 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
1067 /* Don't promote wm_size to unsigned... */
1068 if (wm_size
> (long)wm
->max_wm
)
1069 wm_size
= wm
->max_wm
;
1071 wm_size
= wm
->default_wm
;
1075 static struct drm_crtc
*single_enabled_crtc(struct drm_device
*dev
)
1077 struct drm_crtc
*crtc
, *enabled
= NULL
;
1079 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
1080 if (intel_crtc_active(crtc
)) {
1090 static void pineview_update_wm(struct drm_device
*dev
)
1092 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1093 struct drm_crtc
*crtc
;
1094 const struct cxsr_latency
*latency
;
1098 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
1099 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev
);
1106 crtc
= single_enabled_crtc(dev
);
1108 int clock
= crtc
->mode
.clock
;
1109 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
1112 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
1113 pineview_display_wm
.fifo_size
,
1114 pixel_size
, latency
->display_sr
);
1115 reg
= I915_READ(DSPFW1
);
1116 reg
&= ~DSPFW_SR_MASK
;
1117 reg
|= wm
<< DSPFW_SR_SHIFT
;
1118 I915_WRITE(DSPFW1
, reg
);
1119 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
1122 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
1123 pineview_display_wm
.fifo_size
,
1124 pixel_size
, latency
->cursor_sr
);
1125 reg
= I915_READ(DSPFW3
);
1126 reg
&= ~DSPFW_CURSOR_SR_MASK
;
1127 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
1128 I915_WRITE(DSPFW3
, reg
);
1130 /* Display HPLL off SR */
1131 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
1132 pineview_display_hplloff_wm
.fifo_size
,
1133 pixel_size
, latency
->display_hpll_disable
);
1134 reg
= I915_READ(DSPFW3
);
1135 reg
&= ~DSPFW_HPLL_SR_MASK
;
1136 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
1137 I915_WRITE(DSPFW3
, reg
);
1139 /* cursor HPLL off SR */
1140 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
1141 pineview_display_hplloff_wm
.fifo_size
,
1142 pixel_size
, latency
->cursor_hpll_disable
);
1143 reg
= I915_READ(DSPFW3
);
1144 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
1145 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
1146 I915_WRITE(DSPFW3
, reg
);
1147 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
1151 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
1152 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1154 pineview_disable_cxsr(dev
);
1155 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1159 static bool g4x_compute_wm0(struct drm_device
*dev
,
1161 const struct intel_watermark_params
*display
,
1162 int display_latency_ns
,
1163 const struct intel_watermark_params
*cursor
,
1164 int cursor_latency_ns
,
1168 struct drm_crtc
*crtc
;
1169 int htotal
, hdisplay
, clock
, pixel_size
;
1170 int line_time_us
, line_count
;
1171 int entries
, tlb_miss
;
1173 crtc
= intel_get_crtc_for_plane(dev
, plane
);
1174 if (!intel_crtc_active(crtc
)) {
1175 *cursor_wm
= cursor
->guard_size
;
1176 *plane_wm
= display
->guard_size
;
1180 htotal
= crtc
->mode
.htotal
;
1181 hdisplay
= crtc
->mode
.hdisplay
;
1182 clock
= crtc
->mode
.clock
;
1183 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
1185 /* Use the small buffer method to calculate plane watermark */
1186 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
1187 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
1189 entries
+= tlb_miss
;
1190 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
1191 *plane_wm
= entries
+ display
->guard_size
;
1192 if (*plane_wm
> (int)display
->max_wm
)
1193 *plane_wm
= display
->max_wm
;
1195 /* Use the large buffer method to calculate cursor watermark */
1196 line_time_us
= ((htotal
* 1000) / clock
);
1197 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
1198 entries
= line_count
* 64 * pixel_size
;
1199 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
1201 entries
+= tlb_miss
;
1202 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
1203 *cursor_wm
= entries
+ cursor
->guard_size
;
1204 if (*cursor_wm
> (int)cursor
->max_wm
)
1205 *cursor_wm
= (int)cursor
->max_wm
;
1211 * Check the wm result.
1213 * If any calculated watermark values is larger than the maximum value that
1214 * can be programmed into the associated watermark register, that watermark
1217 static bool g4x_check_srwm(struct drm_device
*dev
,
1218 int display_wm
, int cursor_wm
,
1219 const struct intel_watermark_params
*display
,
1220 const struct intel_watermark_params
*cursor
)
1222 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223 display_wm
, cursor_wm
);
1225 if (display_wm
> display
->max_wm
) {
1226 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227 display_wm
, display
->max_wm
);
1231 if (cursor_wm
> cursor
->max_wm
) {
1232 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233 cursor_wm
, cursor
->max_wm
);
1237 if (!(display_wm
|| cursor_wm
)) {
1238 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1245 static bool g4x_compute_srwm(struct drm_device
*dev
,
1248 const struct intel_watermark_params
*display
,
1249 const struct intel_watermark_params
*cursor
,
1250 int *display_wm
, int *cursor_wm
)
1252 struct drm_crtc
*crtc
;
1253 int hdisplay
, htotal
, pixel_size
, clock
;
1254 unsigned long line_time_us
;
1255 int line_count
, line_size
;
1260 *display_wm
= *cursor_wm
= 0;
1264 crtc
= intel_get_crtc_for_plane(dev
, plane
);
1265 hdisplay
= crtc
->mode
.hdisplay
;
1266 htotal
= crtc
->mode
.htotal
;
1267 clock
= crtc
->mode
.clock
;
1268 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
1270 line_time_us
= (htotal
* 1000) / clock
;
1271 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
1272 line_size
= hdisplay
* pixel_size
;
1274 /* Use the minimum of the small and large buffer method for primary */
1275 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
1276 large
= line_count
* line_size
;
1278 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
1279 *display_wm
= entries
+ display
->guard_size
;
1281 /* calculate the self-refresh watermark for display cursor */
1282 entries
= line_count
* pixel_size
* 64;
1283 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
1284 *cursor_wm
= entries
+ cursor
->guard_size
;
1286 return g4x_check_srwm(dev
,
1287 *display_wm
, *cursor_wm
,
1291 static bool vlv_compute_drain_latency(struct drm_device
*dev
,
1293 int *plane_prec_mult
,
1295 int *cursor_prec_mult
,
1298 struct drm_crtc
*crtc
;
1299 int clock
, pixel_size
;
1302 crtc
= intel_get_crtc_for_plane(dev
, plane
);
1303 if (!intel_crtc_active(crtc
))
1306 clock
= crtc
->mode
.clock
; /* VESA DOT Clock */
1307 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8; /* BPP */
1309 entries
= (clock
/ 1000) * pixel_size
;
1310 *plane_prec_mult
= (entries
> 256) ?
1311 DRAIN_LATENCY_PRECISION_32
: DRAIN_LATENCY_PRECISION_16
;
1312 *plane_dl
= (64 * (*plane_prec_mult
) * 4) / ((clock
/ 1000) *
1315 entries
= (clock
/ 1000) * 4; /* BPP is always 4 for cursor */
1316 *cursor_prec_mult
= (entries
> 256) ?
1317 DRAIN_LATENCY_PRECISION_32
: DRAIN_LATENCY_PRECISION_16
;
1318 *cursor_dl
= (64 * (*cursor_prec_mult
) * 4) / ((clock
/ 1000) * 4);
1324 * Update drain latency registers of memory arbiter
1326 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327 * to be programmed. Each plane has a drain latency multiplier and a drain
1331 static void vlv_update_drain_latency(struct drm_device
*dev
)
1333 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1334 int planea_prec
, planea_dl
, planeb_prec
, planeb_dl
;
1335 int cursora_prec
, cursora_dl
, cursorb_prec
, cursorb_dl
;
1336 int plane_prec_mult
, cursor_prec_mult
; /* Precision multiplier is
1339 /* For plane A, Cursor A */
1340 if (vlv_compute_drain_latency(dev
, 0, &plane_prec_mult
, &planea_dl
,
1341 &cursor_prec_mult
, &cursora_dl
)) {
1342 cursora_prec
= (cursor_prec_mult
== DRAIN_LATENCY_PRECISION_32
) ?
1343 DDL_CURSORA_PRECISION_32
: DDL_CURSORA_PRECISION_16
;
1344 planea_prec
= (plane_prec_mult
== DRAIN_LATENCY_PRECISION_32
) ?
1345 DDL_PLANEA_PRECISION_32
: DDL_PLANEA_PRECISION_16
;
1347 I915_WRITE(VLV_DDL1
, cursora_prec
|
1348 (cursora_dl
<< DDL_CURSORA_SHIFT
) |
1349 planea_prec
| planea_dl
);
1352 /* For plane B, Cursor B */
1353 if (vlv_compute_drain_latency(dev
, 1, &plane_prec_mult
, &planeb_dl
,
1354 &cursor_prec_mult
, &cursorb_dl
)) {
1355 cursorb_prec
= (cursor_prec_mult
== DRAIN_LATENCY_PRECISION_32
) ?
1356 DDL_CURSORB_PRECISION_32
: DDL_CURSORB_PRECISION_16
;
1357 planeb_prec
= (plane_prec_mult
== DRAIN_LATENCY_PRECISION_32
) ?
1358 DDL_PLANEB_PRECISION_32
: DDL_PLANEB_PRECISION_16
;
1360 I915_WRITE(VLV_DDL2
, cursorb_prec
|
1361 (cursorb_dl
<< DDL_CURSORB_SHIFT
) |
1362 planeb_prec
| planeb_dl
);
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1368 static void valleyview_update_wm(struct drm_device
*dev
)
1370 static const int sr_latency_ns
= 12000;
1371 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1372 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
1373 int plane_sr
, cursor_sr
;
1374 int ignore_plane_sr
, ignore_cursor_sr
;
1375 unsigned int enabled
= 0;
1377 vlv_update_drain_latency(dev
);
1379 if (g4x_compute_wm0(dev
, PIPE_A
,
1380 &valleyview_wm_info
, latency_ns
,
1381 &valleyview_cursor_wm_info
, latency_ns
,
1382 &planea_wm
, &cursora_wm
))
1383 enabled
|= 1 << PIPE_A
;
1385 if (g4x_compute_wm0(dev
, PIPE_B
,
1386 &valleyview_wm_info
, latency_ns
,
1387 &valleyview_cursor_wm_info
, latency_ns
,
1388 &planeb_wm
, &cursorb_wm
))
1389 enabled
|= 1 << PIPE_B
;
1391 if (single_plane_enabled(enabled
) &&
1392 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
1394 &valleyview_wm_info
,
1395 &valleyview_cursor_wm_info
,
1396 &plane_sr
, &ignore_cursor_sr
) &&
1397 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
1399 &valleyview_wm_info
,
1400 &valleyview_cursor_wm_info
,
1401 &ignore_plane_sr
, &cursor_sr
)) {
1402 I915_WRITE(FW_BLC_SELF_VLV
, FW_CSPWRDWNEN
);
1404 I915_WRITE(FW_BLC_SELF_VLV
,
1405 I915_READ(FW_BLC_SELF_VLV
) & ~FW_CSPWRDWNEN
);
1406 plane_sr
= cursor_sr
= 0;
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410 planea_wm
, cursora_wm
,
1411 planeb_wm
, cursorb_wm
,
1412 plane_sr
, cursor_sr
);
1415 (plane_sr
<< DSPFW_SR_SHIFT
) |
1416 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
1417 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) |
1420 (I915_READ(DSPFW2
) & ~DSPFW_CURSORA_MASK
) |
1421 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
1423 (I915_READ(DSPFW3
) & ~DSPFW_CURSOR_SR_MASK
) |
1424 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
1427 static void g4x_update_wm(struct drm_device
*dev
)
1429 static const int sr_latency_ns
= 12000;
1430 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1431 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
1432 int plane_sr
, cursor_sr
;
1433 unsigned int enabled
= 0;
1435 if (g4x_compute_wm0(dev
, PIPE_A
,
1436 &g4x_wm_info
, latency_ns
,
1437 &g4x_cursor_wm_info
, latency_ns
,
1438 &planea_wm
, &cursora_wm
))
1439 enabled
|= 1 << PIPE_A
;
1441 if (g4x_compute_wm0(dev
, PIPE_B
,
1442 &g4x_wm_info
, latency_ns
,
1443 &g4x_cursor_wm_info
, latency_ns
,
1444 &planeb_wm
, &cursorb_wm
))
1445 enabled
|= 1 << PIPE_B
;
1447 if (single_plane_enabled(enabled
) &&
1448 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
1451 &g4x_cursor_wm_info
,
1452 &plane_sr
, &cursor_sr
)) {
1453 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
1455 I915_WRITE(FW_BLC_SELF
,
1456 I915_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
);
1457 plane_sr
= cursor_sr
= 0;
1460 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461 planea_wm
, cursora_wm
,
1462 planeb_wm
, cursorb_wm
,
1463 plane_sr
, cursor_sr
);
1466 (plane_sr
<< DSPFW_SR_SHIFT
) |
1467 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
1468 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) |
1471 (I915_READ(DSPFW2
) & ~DSPFW_CURSORA_MASK
) |
1472 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
1473 /* HPLL off in SR has some issues on G4x... disable it */
1475 (I915_READ(DSPFW3
) & ~(DSPFW_HPLL_SR_EN
| DSPFW_CURSOR_SR_MASK
)) |
1476 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
1479 static void i965_update_wm(struct drm_device
*dev
)
1481 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1482 struct drm_crtc
*crtc
;
1486 /* Calc sr entries for one plane configs */
1487 crtc
= single_enabled_crtc(dev
);
1489 /* self-refresh has much higher latency */
1490 static const int sr_latency_ns
= 12000;
1491 int clock
= crtc
->mode
.clock
;
1492 int htotal
= crtc
->mode
.htotal
;
1493 int hdisplay
= crtc
->mode
.hdisplay
;
1494 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
1495 unsigned long line_time_us
;
1498 line_time_us
= ((htotal
* 1000) / clock
);
1500 /* Use ns/us then divide to preserve precision */
1501 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1502 pixel_size
* hdisplay
;
1503 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
1504 srwm
= I965_FIFO_SIZE
- entries
;
1508 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1511 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1513 entries
= DIV_ROUND_UP(entries
,
1514 i965_cursor_wm_info
.cacheline_size
);
1515 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
1516 (entries
+ i965_cursor_wm_info
.guard_size
);
1518 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
1519 cursor_sr
= i965_cursor_wm_info
.max_wm
;
1521 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522 "cursor %d\n", srwm
, cursor_sr
);
1524 if (IS_CRESTLINE(dev
))
1525 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
1527 /* Turn off self refresh if both pipes are enabled */
1528 if (IS_CRESTLINE(dev
))
1529 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1536 /* 965 has limitations... */
1537 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) |
1538 (8 << 16) | (8 << 8) | (8 << 0));
1539 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
1540 /* update cursor SR watermark */
1541 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
1544 static void i9xx_update_wm(struct drm_device
*dev
)
1546 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1547 const struct intel_watermark_params
*wm_info
;
1552 int planea_wm
, planeb_wm
;
1553 struct drm_crtc
*crtc
, *enabled
= NULL
;
1556 wm_info
= &i945_wm_info
;
1557 else if (!IS_GEN2(dev
))
1558 wm_info
= &i915_wm_info
;
1560 wm_info
= &i855_wm_info
;
1562 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
1563 crtc
= intel_get_crtc_for_plane(dev
, 0);
1564 if (intel_crtc_active(crtc
)) {
1565 int cpp
= crtc
->fb
->bits_per_pixel
/ 8;
1569 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
,
1570 wm_info
, fifo_size
, cpp
,
1574 planea_wm
= fifo_size
- wm_info
->guard_size
;
1576 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
1577 crtc
= intel_get_crtc_for_plane(dev
, 1);
1578 if (intel_crtc_active(crtc
)) {
1579 int cpp
= crtc
->fb
->bits_per_pixel
/ 8;
1583 planeb_wm
= intel_calculate_wm(crtc
->mode
.clock
,
1584 wm_info
, fifo_size
, cpp
,
1586 if (enabled
== NULL
)
1591 planeb_wm
= fifo_size
- wm_info
->guard_size
;
1593 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
1595 if (IS_I915GM(dev
) && enabled
) {
1596 struct intel_framebuffer
*fb
;
1598 fb
= to_intel_framebuffer(enabled
->fb
);
1600 /* self-refresh seems busted with untiled */
1601 if (fb
->obj
->tiling_mode
== I915_TILING_NONE
)
1606 * Overlay gets an aggressive default since video jitter is bad.
1610 /* Play safe and disable self-refresh before adjusting watermarks. */
1611 if (IS_I945G(dev
) || IS_I945GM(dev
))
1612 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| 0);
1613 else if (IS_I915GM(dev
))
1614 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
1616 /* Calc sr entries for one plane configs */
1617 if (HAS_FW_BLC(dev
) && enabled
) {
1618 /* self-refresh has much higher latency */
1619 static const int sr_latency_ns
= 6000;
1620 int clock
= enabled
->mode
.clock
;
1621 int htotal
= enabled
->mode
.htotal
;
1622 int hdisplay
= enabled
->mode
.hdisplay
;
1623 int pixel_size
= enabled
->fb
->bits_per_pixel
/ 8;
1624 unsigned long line_time_us
;
1627 line_time_us
= (htotal
* 1000) / clock
;
1629 /* Use ns/us then divide to preserve precision */
1630 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1631 pixel_size
* hdisplay
;
1632 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
1633 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
1634 srwm
= wm_info
->fifo_size
- entries
;
1638 if (IS_I945G(dev
) || IS_I945GM(dev
))
1639 I915_WRITE(FW_BLC_SELF
,
1640 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
1641 else if (IS_I915GM(dev
))
1642 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
1645 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1646 planea_wm
, planeb_wm
, cwm
, srwm
);
1648 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
1649 fwater_hi
= (cwm
& 0x1f);
1651 /* Set request length to 8 cachelines per fetch */
1652 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
1653 fwater_hi
= fwater_hi
| (1 << 8);
1655 I915_WRITE(FW_BLC
, fwater_lo
);
1656 I915_WRITE(FW_BLC2
, fwater_hi
);
1658 if (HAS_FW_BLC(dev
)) {
1660 if (IS_I945G(dev
) || IS_I945GM(dev
))
1661 I915_WRITE(FW_BLC_SELF
,
1662 FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
1663 else if (IS_I915GM(dev
))
1664 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
1665 DRM_DEBUG_KMS("memory self refresh enabled\n");
1667 DRM_DEBUG_KMS("memory self refresh disabled\n");
1671 static void i830_update_wm(struct drm_device
*dev
)
1673 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1674 struct drm_crtc
*crtc
;
1678 crtc
= single_enabled_crtc(dev
);
1682 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
, &i830_wm_info
,
1683 dev_priv
->display
.get_fifo_size(dev
, 0),
1685 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
1686 fwater_lo
|= (3<<8) | planea_wm
;
1688 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
1690 I915_WRITE(FW_BLC
, fwater_lo
);
1694 * Check the wm result.
1696 * If any calculated watermark values is larger than the maximum value that
1697 * can be programmed into the associated watermark register, that watermark
1700 static bool ironlake_check_srwm(struct drm_device
*dev
, int level
,
1701 int fbc_wm
, int display_wm
, int cursor_wm
,
1702 const struct intel_watermark_params
*display
,
1703 const struct intel_watermark_params
*cursor
)
1705 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1707 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1708 " cursor %d\n", level
, display_wm
, fbc_wm
, cursor_wm
);
1710 if (fbc_wm
> SNB_FBC_MAX_SRWM
) {
1711 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1712 fbc_wm
, SNB_FBC_MAX_SRWM
, level
);
1714 /* fbc has it's own way to disable FBC WM */
1715 I915_WRITE(DISP_ARB_CTL
,
1716 I915_READ(DISP_ARB_CTL
) | DISP_FBC_WM_DIS
);
1718 } else if (INTEL_INFO(dev
)->gen
>= 6) {
1719 /* enable FBC WM (except on ILK, where it must remain off) */
1720 I915_WRITE(DISP_ARB_CTL
,
1721 I915_READ(DISP_ARB_CTL
) & ~DISP_FBC_WM_DIS
);
1724 if (display_wm
> display
->max_wm
) {
1725 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1726 display_wm
, SNB_DISPLAY_MAX_SRWM
, level
);
1730 if (cursor_wm
> cursor
->max_wm
) {
1731 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1732 cursor_wm
, SNB_CURSOR_MAX_SRWM
, level
);
1736 if (!(fbc_wm
|| display_wm
|| cursor_wm
)) {
1737 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level
, level
);
1745 * Compute watermark values of WM[1-3],
1747 static bool ironlake_compute_srwm(struct drm_device
*dev
, int level
, int plane
,
1749 const struct intel_watermark_params
*display
,
1750 const struct intel_watermark_params
*cursor
,
1751 int *fbc_wm
, int *display_wm
, int *cursor_wm
)
1753 struct drm_crtc
*crtc
;
1754 unsigned long line_time_us
;
1755 int hdisplay
, htotal
, pixel_size
, clock
;
1756 int line_count
, line_size
;
1761 *fbc_wm
= *display_wm
= *cursor_wm
= 0;
1765 crtc
= intel_get_crtc_for_plane(dev
, plane
);
1766 hdisplay
= crtc
->mode
.hdisplay
;
1767 htotal
= crtc
->mode
.htotal
;
1768 clock
= crtc
->mode
.clock
;
1769 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
1771 line_time_us
= (htotal
* 1000) / clock
;
1772 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
1773 line_size
= hdisplay
* pixel_size
;
1775 /* Use the minimum of the small and large buffer method for primary */
1776 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
1777 large
= line_count
* line_size
;
1779 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
1780 *display_wm
= entries
+ display
->guard_size
;
1784 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1786 *fbc_wm
= DIV_ROUND_UP(*display_wm
* 64, line_size
) + 2;
1788 /* calculate the self-refresh watermark for display cursor */
1789 entries
= line_count
* pixel_size
* 64;
1790 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
1791 *cursor_wm
= entries
+ cursor
->guard_size
;
1793 return ironlake_check_srwm(dev
, level
,
1794 *fbc_wm
, *display_wm
, *cursor_wm
,
1798 static void ironlake_update_wm(struct drm_device
*dev
)
1800 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1801 int fbc_wm
, plane_wm
, cursor_wm
;
1802 unsigned int enabled
;
1805 if (g4x_compute_wm0(dev
, PIPE_A
,
1806 &ironlake_display_wm_info
,
1807 dev_priv
->wm
.pri_latency
[0] * 100,
1808 &ironlake_cursor_wm_info
,
1809 dev_priv
->wm
.cur_latency
[0] * 100,
1810 &plane_wm
, &cursor_wm
)) {
1811 I915_WRITE(WM0_PIPEA_ILK
,
1812 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
1813 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814 " plane %d, " "cursor: %d\n",
1815 plane_wm
, cursor_wm
);
1816 enabled
|= 1 << PIPE_A
;
1819 if (g4x_compute_wm0(dev
, PIPE_B
,
1820 &ironlake_display_wm_info
,
1821 dev_priv
->wm
.pri_latency
[0] * 100,
1822 &ironlake_cursor_wm_info
,
1823 dev_priv
->wm
.cur_latency
[0] * 100,
1824 &plane_wm
, &cursor_wm
)) {
1825 I915_WRITE(WM0_PIPEB_ILK
,
1826 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
1827 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828 " plane %d, cursor: %d\n",
1829 plane_wm
, cursor_wm
);
1830 enabled
|= 1 << PIPE_B
;
1834 * Calculate and update the self-refresh watermark only when one
1835 * display plane is used.
1837 I915_WRITE(WM3_LP_ILK
, 0);
1838 I915_WRITE(WM2_LP_ILK
, 0);
1839 I915_WRITE(WM1_LP_ILK
, 0);
1841 if (!single_plane_enabled(enabled
))
1843 enabled
= ffs(enabled
) - 1;
1846 if (!ironlake_compute_srwm(dev
, 1, enabled
,
1847 dev_priv
->wm
.pri_latency
[1] * 500,
1848 &ironlake_display_srwm_info
,
1849 &ironlake_cursor_srwm_info
,
1850 &fbc_wm
, &plane_wm
, &cursor_wm
))
1853 I915_WRITE(WM1_LP_ILK
,
1855 (dev_priv
->wm
.pri_latency
[1] << WM1_LP_LATENCY_SHIFT
) |
1856 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
1857 (plane_wm
<< WM1_LP_SR_SHIFT
) |
1861 if (!ironlake_compute_srwm(dev
, 2, enabled
,
1862 dev_priv
->wm
.pri_latency
[2] * 500,
1863 &ironlake_display_srwm_info
,
1864 &ironlake_cursor_srwm_info
,
1865 &fbc_wm
, &plane_wm
, &cursor_wm
))
1868 I915_WRITE(WM2_LP_ILK
,
1870 (dev_priv
->wm
.pri_latency
[2] << WM1_LP_LATENCY_SHIFT
) |
1871 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
1872 (plane_wm
<< WM1_LP_SR_SHIFT
) |
1876 * WM3 is unsupported on ILK, probably because we don't have latency
1877 * data for that power state
1881 static void sandybridge_update_wm(struct drm_device
*dev
)
1883 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1884 int latency
= dev_priv
->wm
.pri_latency
[0] * 100; /* In unit 0.1us */
1886 int fbc_wm
, plane_wm
, cursor_wm
;
1887 unsigned int enabled
;
1890 if (g4x_compute_wm0(dev
, PIPE_A
,
1891 &sandybridge_display_wm_info
, latency
,
1892 &sandybridge_cursor_wm_info
, latency
,
1893 &plane_wm
, &cursor_wm
)) {
1894 val
= I915_READ(WM0_PIPEA_ILK
);
1895 val
&= ~(WM0_PIPE_PLANE_MASK
| WM0_PIPE_CURSOR_MASK
);
1896 I915_WRITE(WM0_PIPEA_ILK
, val
|
1897 ((plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
));
1898 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1899 " plane %d, " "cursor: %d\n",
1900 plane_wm
, cursor_wm
);
1901 enabled
|= 1 << PIPE_A
;
1904 if (g4x_compute_wm0(dev
, PIPE_B
,
1905 &sandybridge_display_wm_info
, latency
,
1906 &sandybridge_cursor_wm_info
, latency
,
1907 &plane_wm
, &cursor_wm
)) {
1908 val
= I915_READ(WM0_PIPEB_ILK
);
1909 val
&= ~(WM0_PIPE_PLANE_MASK
| WM0_PIPE_CURSOR_MASK
);
1910 I915_WRITE(WM0_PIPEB_ILK
, val
|
1911 ((plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
));
1912 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1913 " plane %d, cursor: %d\n",
1914 plane_wm
, cursor_wm
);
1915 enabled
|= 1 << PIPE_B
;
1919 * Calculate and update the self-refresh watermark only when one
1920 * display plane is used.
1922 * SNB support 3 levels of watermark.
1924 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1925 * and disabled in the descending order
1928 I915_WRITE(WM3_LP_ILK
, 0);
1929 I915_WRITE(WM2_LP_ILK
, 0);
1930 I915_WRITE(WM1_LP_ILK
, 0);
1932 if (!single_plane_enabled(enabled
) ||
1933 dev_priv
->sprite_scaling_enabled
)
1935 enabled
= ffs(enabled
) - 1;
1938 if (!ironlake_compute_srwm(dev
, 1, enabled
,
1939 dev_priv
->wm
.pri_latency
[1] * 500,
1940 &sandybridge_display_srwm_info
,
1941 &sandybridge_cursor_srwm_info
,
1942 &fbc_wm
, &plane_wm
, &cursor_wm
))
1945 I915_WRITE(WM1_LP_ILK
,
1947 (dev_priv
->wm
.pri_latency
[1] << WM1_LP_LATENCY_SHIFT
) |
1948 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
1949 (plane_wm
<< WM1_LP_SR_SHIFT
) |
1953 if (!ironlake_compute_srwm(dev
, 2, enabled
,
1954 dev_priv
->wm
.pri_latency
[2] * 500,
1955 &sandybridge_display_srwm_info
,
1956 &sandybridge_cursor_srwm_info
,
1957 &fbc_wm
, &plane_wm
, &cursor_wm
))
1960 I915_WRITE(WM2_LP_ILK
,
1962 (dev_priv
->wm
.pri_latency
[2] << WM1_LP_LATENCY_SHIFT
) |
1963 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
1964 (plane_wm
<< WM1_LP_SR_SHIFT
) |
1968 if (!ironlake_compute_srwm(dev
, 3, enabled
,
1969 dev_priv
->wm
.pri_latency
[3] * 500,
1970 &sandybridge_display_srwm_info
,
1971 &sandybridge_cursor_srwm_info
,
1972 &fbc_wm
, &plane_wm
, &cursor_wm
))
1975 I915_WRITE(WM3_LP_ILK
,
1977 (dev_priv
->wm
.pri_latency
[3] << WM1_LP_LATENCY_SHIFT
) |
1978 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
1979 (plane_wm
<< WM1_LP_SR_SHIFT
) |
1983 static void ivybridge_update_wm(struct drm_device
*dev
)
1985 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1986 int latency
= dev_priv
->wm
.pri_latency
[0] * 100; /* In unit 0.1us */
1988 int fbc_wm
, plane_wm
, cursor_wm
;
1989 int ignore_fbc_wm
, ignore_plane_wm
, ignore_cursor_wm
;
1990 unsigned int enabled
;
1993 if (g4x_compute_wm0(dev
, PIPE_A
,
1994 &sandybridge_display_wm_info
, latency
,
1995 &sandybridge_cursor_wm_info
, latency
,
1996 &plane_wm
, &cursor_wm
)) {
1997 val
= I915_READ(WM0_PIPEA_ILK
);
1998 val
&= ~(WM0_PIPE_PLANE_MASK
| WM0_PIPE_CURSOR_MASK
);
1999 I915_WRITE(WM0_PIPEA_ILK
, val
|
2000 ((plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
));
2001 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2002 " plane %d, " "cursor: %d\n",
2003 plane_wm
, cursor_wm
);
2004 enabled
|= 1 << PIPE_A
;
2007 if (g4x_compute_wm0(dev
, PIPE_B
,
2008 &sandybridge_display_wm_info
, latency
,
2009 &sandybridge_cursor_wm_info
, latency
,
2010 &plane_wm
, &cursor_wm
)) {
2011 val
= I915_READ(WM0_PIPEB_ILK
);
2012 val
&= ~(WM0_PIPE_PLANE_MASK
| WM0_PIPE_CURSOR_MASK
);
2013 I915_WRITE(WM0_PIPEB_ILK
, val
|
2014 ((plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
));
2015 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2016 " plane %d, cursor: %d\n",
2017 plane_wm
, cursor_wm
);
2018 enabled
|= 1 << PIPE_B
;
2021 if (g4x_compute_wm0(dev
, PIPE_C
,
2022 &sandybridge_display_wm_info
, latency
,
2023 &sandybridge_cursor_wm_info
, latency
,
2024 &plane_wm
, &cursor_wm
)) {
2025 val
= I915_READ(WM0_PIPEC_IVB
);
2026 val
&= ~(WM0_PIPE_PLANE_MASK
| WM0_PIPE_CURSOR_MASK
);
2027 I915_WRITE(WM0_PIPEC_IVB
, val
|
2028 ((plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
));
2029 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2030 " plane %d, cursor: %d\n",
2031 plane_wm
, cursor_wm
);
2032 enabled
|= 1 << PIPE_C
;
2036 * Calculate and update the self-refresh watermark only when one
2037 * display plane is used.
2039 * SNB support 3 levels of watermark.
2041 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2042 * and disabled in the descending order
2045 I915_WRITE(WM3_LP_ILK
, 0);
2046 I915_WRITE(WM2_LP_ILK
, 0);
2047 I915_WRITE(WM1_LP_ILK
, 0);
2049 if (!single_plane_enabled(enabled
) ||
2050 dev_priv
->sprite_scaling_enabled
)
2052 enabled
= ffs(enabled
) - 1;
2055 if (!ironlake_compute_srwm(dev
, 1, enabled
,
2056 dev_priv
->wm
.pri_latency
[1] * 500,
2057 &sandybridge_display_srwm_info
,
2058 &sandybridge_cursor_srwm_info
,
2059 &fbc_wm
, &plane_wm
, &cursor_wm
))
2062 I915_WRITE(WM1_LP_ILK
,
2064 (dev_priv
->wm
.pri_latency
[1] << WM1_LP_LATENCY_SHIFT
) |
2065 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
2066 (plane_wm
<< WM1_LP_SR_SHIFT
) |
2070 if (!ironlake_compute_srwm(dev
, 2, enabled
,
2071 dev_priv
->wm
.pri_latency
[2] * 500,
2072 &sandybridge_display_srwm_info
,
2073 &sandybridge_cursor_srwm_info
,
2074 &fbc_wm
, &plane_wm
, &cursor_wm
))
2077 I915_WRITE(WM2_LP_ILK
,
2079 (dev_priv
->wm
.pri_latency
[2] << WM1_LP_LATENCY_SHIFT
) |
2080 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
2081 (plane_wm
<< WM1_LP_SR_SHIFT
) |
2084 /* WM3, note we have to correct the cursor latency */
2085 if (!ironlake_compute_srwm(dev
, 3, enabled
,
2086 dev_priv
->wm
.pri_latency
[3] * 500,
2087 &sandybridge_display_srwm_info
,
2088 &sandybridge_cursor_srwm_info
,
2089 &fbc_wm
, &plane_wm
, &ignore_cursor_wm
) ||
2090 !ironlake_compute_srwm(dev
, 3, enabled
,
2091 dev_priv
->wm
.cur_latency
[3] * 500,
2092 &sandybridge_display_srwm_info
,
2093 &sandybridge_cursor_srwm_info
,
2094 &ignore_fbc_wm
, &ignore_plane_wm
, &cursor_wm
))
2097 I915_WRITE(WM3_LP_ILK
,
2099 (dev_priv
->wm
.pri_latency
[3] << WM1_LP_LATENCY_SHIFT
) |
2100 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
2101 (plane_wm
<< WM1_LP_SR_SHIFT
) |
2105 static uint32_t ilk_pipe_pixel_rate(struct drm_device
*dev
,
2106 struct drm_crtc
*crtc
)
2108 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2109 uint32_t pixel_rate
;
2111 pixel_rate
= intel_crtc
->config
.adjusted_mode
.clock
;
2113 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2114 * adjust the pixel_rate here. */
2116 if (intel_crtc
->config
.pch_pfit
.enabled
) {
2117 uint64_t pipe_w
, pipe_h
, pfit_w
, pfit_h
;
2118 uint32_t pfit_size
= intel_crtc
->config
.pch_pfit
.size
;
2120 pipe_w
= intel_crtc
->config
.requested_mode
.hdisplay
;
2121 pipe_h
= intel_crtc
->config
.requested_mode
.vdisplay
;
2122 pfit_w
= (pfit_size
>> 16) & 0xFFFF;
2123 pfit_h
= pfit_size
& 0xFFFF;
2124 if (pipe_w
< pfit_w
)
2126 if (pipe_h
< pfit_h
)
2129 pixel_rate
= div_u64((uint64_t) pixel_rate
* pipe_w
* pipe_h
,
2136 /* latency must be in 0.1us units. */
2137 static uint32_t ilk_wm_method1(uint32_t pixel_rate
, uint8_t bytes_per_pixel
,
2142 if (WARN(latency
== 0, "Latency value missing\n"))
2145 ret
= (uint64_t) pixel_rate
* bytes_per_pixel
* latency
;
2146 ret
= DIV_ROUND_UP_ULL(ret
, 64 * 10000) + 2;
2151 /* latency must be in 0.1us units. */
2152 static uint32_t ilk_wm_method2(uint32_t pixel_rate
, uint32_t pipe_htotal
,
2153 uint32_t horiz_pixels
, uint8_t bytes_per_pixel
,
2158 if (WARN(latency
== 0, "Latency value missing\n"))
2161 ret
= (latency
* pixel_rate
) / (pipe_htotal
* 10000);
2162 ret
= (ret
+ 1) * horiz_pixels
* bytes_per_pixel
;
2163 ret
= DIV_ROUND_UP(ret
, 64) + 2;
2167 static uint32_t ilk_wm_fbc(uint32_t pri_val
, uint32_t horiz_pixels
,
2168 uint8_t bytes_per_pixel
)
2170 return DIV_ROUND_UP(pri_val
* 64, horiz_pixels
* bytes_per_pixel
) + 2;
2173 struct hsw_pipe_wm_parameters
{
2175 uint32_t pipe_htotal
;
2176 uint32_t pixel_rate
;
2177 struct intel_plane_wm_parameters pri
;
2178 struct intel_plane_wm_parameters spr
;
2179 struct intel_plane_wm_parameters cur
;
2182 struct hsw_wm_maximums
{
2189 struct hsw_wm_values
{
2190 uint32_t wm_pipe
[3];
2192 uint32_t wm_lp_spr
[3];
2193 uint32_t wm_linetime
[3];
2197 /* used in computing the new watermarks state */
2198 struct intel_wm_config
{
2199 unsigned int num_pipes_active
;
2200 bool sprites_enabled
;
2201 bool sprites_scaled
;
2202 bool fbc_wm_enabled
;
2206 * For both WM_PIPE and WM_LP.
2207 * mem_value must be in 0.1us units.
2209 static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters
*params
,
2213 uint32_t method1
, method2
;
2215 if (!params
->active
|| !params
->pri
.enabled
)
2218 method1
= ilk_wm_method1(params
->pixel_rate
,
2219 params
->pri
.bytes_per_pixel
,
2225 method2
= ilk_wm_method2(params
->pixel_rate
,
2226 params
->pipe_htotal
,
2227 params
->pri
.horiz_pixels
,
2228 params
->pri
.bytes_per_pixel
,
2231 return min(method1
, method2
);
2235 * For both WM_PIPE and WM_LP.
2236 * mem_value must be in 0.1us units.
2238 static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters
*params
,
2241 uint32_t method1
, method2
;
2243 if (!params
->active
|| !params
->spr
.enabled
)
2246 method1
= ilk_wm_method1(params
->pixel_rate
,
2247 params
->spr
.bytes_per_pixel
,
2249 method2
= ilk_wm_method2(params
->pixel_rate
,
2250 params
->pipe_htotal
,
2251 params
->spr
.horiz_pixels
,
2252 params
->spr
.bytes_per_pixel
,
2254 return min(method1
, method2
);
2258 * For both WM_PIPE and WM_LP.
2259 * mem_value must be in 0.1us units.
2261 static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters
*params
,
2264 if (!params
->active
|| !params
->cur
.enabled
)
2267 return ilk_wm_method2(params
->pixel_rate
,
2268 params
->pipe_htotal
,
2269 params
->cur
.horiz_pixels
,
2270 params
->cur
.bytes_per_pixel
,
2274 /* Only for WM_LP. */
2275 static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters
*params
,
2278 if (!params
->active
|| !params
->pri
.enabled
)
2281 return ilk_wm_fbc(pri_val
,
2282 params
->pri
.horiz_pixels
,
2283 params
->pri
.bytes_per_pixel
);
2286 static unsigned int ilk_display_fifo_size(const struct drm_device
*dev
)
2288 if (INTEL_INFO(dev
)->gen
>= 7)
2294 /* Calculate the maximum primary/sprite plane watermark */
2295 static unsigned int ilk_plane_wm_max(const struct drm_device
*dev
,
2297 const struct intel_wm_config
*config
,
2298 enum intel_ddb_partitioning ddb_partitioning
,
2301 unsigned int fifo_size
= ilk_display_fifo_size(dev
);
2304 /* if sprites aren't enabled, sprites get nothing */
2305 if (is_sprite
&& !config
->sprites_enabled
)
2308 /* HSW allows LP1+ watermarks even with multiple pipes */
2309 if (level
== 0 || config
->num_pipes_active
> 1) {
2310 fifo_size
/= INTEL_INFO(dev
)->num_pipes
;
2313 * For some reason the non self refresh
2314 * FIFO size is only half of the self
2315 * refresh FIFO size on ILK/SNB.
2317 if (INTEL_INFO(dev
)->gen
<= 6)
2321 if (config
->sprites_enabled
) {
2322 /* level 0 is always calculated with 1:1 split */
2323 if (level
> 0 && ddb_partitioning
== INTEL_DDB_PART_5_6
) {
2332 /* clamp to max that the registers can hold */
2333 if (INTEL_INFO(dev
)->gen
>= 7)
2334 /* IVB/HSW primary/sprite plane watermarks */
2335 max
= level
== 0 ? 127 : 1023;
2336 else if (!is_sprite
)
2337 /* ILK/SNB primary plane watermarks */
2338 max
= level
== 0 ? 127 : 511;
2340 /* ILK/SNB sprite plane watermarks */
2341 max
= level
== 0 ? 63 : 255;
2343 return min(fifo_size
, max
);
2346 /* Calculate the maximum cursor plane watermark */
2347 static unsigned int ilk_cursor_wm_max(const struct drm_device
*dev
,
2349 const struct intel_wm_config
*config
)
2351 /* HSW LP1+ watermarks w/ multiple pipes */
2352 if (level
> 0 && config
->num_pipes_active
> 1)
2355 /* otherwise just report max that registers can hold */
2356 if (INTEL_INFO(dev
)->gen
>= 7)
2357 return level
== 0 ? 63 : 255;
2359 return level
== 0 ? 31 : 63;
2362 /* Calculate the maximum FBC watermark */
2363 static unsigned int ilk_fbc_wm_max(void)
2365 /* max that registers can hold */
2369 static void ilk_wm_max(struct drm_device
*dev
,
2371 const struct intel_wm_config
*config
,
2372 enum intel_ddb_partitioning ddb_partitioning
,
2373 struct hsw_wm_maximums
*max
)
2375 max
->pri
= ilk_plane_wm_max(dev
, level
, config
, ddb_partitioning
, false);
2376 max
->spr
= ilk_plane_wm_max(dev
, level
, config
, ddb_partitioning
, true);
2377 max
->cur
= ilk_cursor_wm_max(dev
, level
, config
);
2378 max
->fbc
= ilk_fbc_wm_max();
2381 static bool ilk_check_wm(int level
,
2382 const struct hsw_wm_maximums
*max
,
2383 struct intel_wm_level
*result
)
2387 /* already determined to be invalid? */
2388 if (!result
->enable
)
2391 result
->enable
= result
->pri_val
<= max
->pri
&&
2392 result
->spr_val
<= max
->spr
&&
2393 result
->cur_val
<= max
->cur
;
2395 ret
= result
->enable
;
2398 * HACK until we can pre-compute everything,
2399 * and thus fail gracefully if LP0 watermarks
2402 if (level
== 0 && !result
->enable
) {
2403 if (result
->pri_val
> max
->pri
)
2404 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2405 level
, result
->pri_val
, max
->pri
);
2406 if (result
->spr_val
> max
->spr
)
2407 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2408 level
, result
->spr_val
, max
->spr
);
2409 if (result
->cur_val
> max
->cur
)
2410 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2411 level
, result
->cur_val
, max
->cur
);
2413 result
->pri_val
= min_t(uint32_t, result
->pri_val
, max
->pri
);
2414 result
->spr_val
= min_t(uint32_t, result
->spr_val
, max
->spr
);
2415 result
->cur_val
= min_t(uint32_t, result
->cur_val
, max
->cur
);
2416 result
->enable
= true;
2419 DRM_DEBUG_KMS("WM%d: %sabled\n", level
, result
->enable
? "en" : "dis");
2424 static void ilk_compute_wm_level(struct drm_i915_private
*dev_priv
,
2426 struct hsw_pipe_wm_parameters
*p
,
2427 struct intel_wm_level
*result
)
2429 uint16_t pri_latency
= dev_priv
->wm
.pri_latency
[level
];
2430 uint16_t spr_latency
= dev_priv
->wm
.spr_latency
[level
];
2431 uint16_t cur_latency
= dev_priv
->wm
.cur_latency
[level
];
2433 /* WM1+ latency values stored in 0.5us units */
2440 result
->pri_val
= ilk_compute_pri_wm(p
, pri_latency
, level
);
2441 result
->spr_val
= ilk_compute_spr_wm(p
, spr_latency
);
2442 result
->cur_val
= ilk_compute_cur_wm(p
, cur_latency
);
2443 result
->fbc_val
= ilk_compute_fbc_wm(p
, result
->pri_val
);
2444 result
->enable
= true;
2447 static bool hsw_compute_lp_wm(struct drm_i915_private
*dev_priv
,
2448 int level
, struct hsw_wm_maximums
*max
,
2449 struct hsw_pipe_wm_parameters
*params
,
2450 struct intel_wm_level
*result
)
2453 struct intel_wm_level res
[3];
2455 for (pipe
= PIPE_A
; pipe
<= PIPE_C
; pipe
++)
2456 ilk_compute_wm_level(dev_priv
, level
, ¶ms
[pipe
], &res
[pipe
]);
2458 result
->pri_val
= max3(res
[0].pri_val
, res
[1].pri_val
, res
[2].pri_val
);
2459 result
->spr_val
= max3(res
[0].spr_val
, res
[1].spr_val
, res
[2].spr_val
);
2460 result
->cur_val
= max3(res
[0].cur_val
, res
[1].cur_val
, res
[2].cur_val
);
2461 result
->fbc_val
= max3(res
[0].fbc_val
, res
[1].fbc_val
, res
[2].fbc_val
);
2462 result
->enable
= true;
2464 return ilk_check_wm(level
, max
, result
);
2467 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private
*dev_priv
,
2469 struct hsw_pipe_wm_parameters
*params
)
2471 uint32_t pri_val
, cur_val
, spr_val
;
2472 /* WM0 latency values stored in 0.1us units */
2473 uint16_t pri_latency
= dev_priv
->wm
.pri_latency
[0];
2474 uint16_t spr_latency
= dev_priv
->wm
.spr_latency
[0];
2475 uint16_t cur_latency
= dev_priv
->wm
.cur_latency
[0];
2477 pri_val
= ilk_compute_pri_wm(params
, pri_latency
, false);
2478 spr_val
= ilk_compute_spr_wm(params
, spr_latency
);
2479 cur_val
= ilk_compute_cur_wm(params
, cur_latency
);
2482 "Primary WM error, mode not supported for pipe %c\n",
2485 "Sprite WM error, mode not supported for pipe %c\n",
2488 "Cursor WM error, mode not supported for pipe %c\n",
2491 return (pri_val
<< WM0_PIPE_PLANE_SHIFT
) |
2492 (spr_val
<< WM0_PIPE_SPRITE_SHIFT
) |
2497 hsw_compute_linetime_wm(struct drm_device
*dev
, struct drm_crtc
*crtc
)
2499 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2500 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2501 struct drm_display_mode
*mode
= &intel_crtc
->config
.adjusted_mode
;
2502 u32 linetime
, ips_linetime
;
2504 if (!intel_crtc_active(crtc
))
2507 /* The WM are computed with base on how long it takes to fill a single
2508 * row at the given clock rate, multiplied by 8.
2510 linetime
= DIV_ROUND_CLOSEST(mode
->htotal
* 1000 * 8, mode
->clock
);
2511 ips_linetime
= DIV_ROUND_CLOSEST(mode
->htotal
* 1000 * 8,
2512 intel_ddi_get_cdclk_freq(dev_priv
));
2514 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime
) |
2515 PIPE_WM_LINETIME_TIME(linetime
);
2518 static void intel_read_wm_latency(struct drm_device
*dev
, uint16_t wm
[5])
2520 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2522 if (IS_HASWELL(dev
)) {
2523 uint64_t sskpd
= I915_READ64(MCH_SSKPD
);
2525 wm
[0] = (sskpd
>> 56) & 0xFF;
2527 wm
[0] = sskpd
& 0xF;
2528 wm
[1] = (sskpd
>> 4) & 0xFF;
2529 wm
[2] = (sskpd
>> 12) & 0xFF;
2530 wm
[3] = (sskpd
>> 20) & 0x1FF;
2531 wm
[4] = (sskpd
>> 32) & 0x1FF;
2532 } else if (INTEL_INFO(dev
)->gen
>= 6) {
2533 uint32_t sskpd
= I915_READ(MCH_SSKPD
);
2535 wm
[0] = (sskpd
>> SSKPD_WM0_SHIFT
) & SSKPD_WM_MASK
;
2536 wm
[1] = (sskpd
>> SSKPD_WM1_SHIFT
) & SSKPD_WM_MASK
;
2537 wm
[2] = (sskpd
>> SSKPD_WM2_SHIFT
) & SSKPD_WM_MASK
;
2538 wm
[3] = (sskpd
>> SSKPD_WM3_SHIFT
) & SSKPD_WM_MASK
;
2539 } else if (INTEL_INFO(dev
)->gen
>= 5) {
2540 uint32_t mltr
= I915_READ(MLTR_ILK
);
2542 /* ILK primary LP0 latency is 700 ns */
2544 wm
[1] = (mltr
>> MLTR_WM1_SHIFT
) & ILK_SRLT_MASK
;
2545 wm
[2] = (mltr
>> MLTR_WM2_SHIFT
) & ILK_SRLT_MASK
;
2549 static void intel_fixup_spr_wm_latency(struct drm_device
*dev
, uint16_t wm
[5])
2551 /* ILK sprite LP0 latency is 1300 ns */
2552 if (INTEL_INFO(dev
)->gen
== 5)
2556 static void intel_fixup_cur_wm_latency(struct drm_device
*dev
, uint16_t wm
[5])
2558 /* ILK cursor LP0 latency is 1300 ns */
2559 if (INTEL_INFO(dev
)->gen
== 5)
2562 /* WaDoubleCursorLP3Latency:ivb */
2563 if (IS_IVYBRIDGE(dev
))
2567 static void intel_print_wm_latency(struct drm_device
*dev
,
2569 const uint16_t wm
[5])
2571 int level
, max_level
;
2573 /* how many WM levels are we expecting */
2574 if (IS_HASWELL(dev
))
2576 else if (INTEL_INFO(dev
)->gen
>= 6)
2581 for (level
= 0; level
<= max_level
; level
++) {
2582 unsigned int latency
= wm
[level
];
2585 DRM_ERROR("%s WM%d latency not provided\n",
2590 /* WM1+ latency values in 0.5us units */
2594 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2595 name
, level
, wm
[level
],
2596 latency
/ 10, latency
% 10);
2600 static void intel_setup_wm_latency(struct drm_device
*dev
)
2602 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2604 intel_read_wm_latency(dev
, dev_priv
->wm
.pri_latency
);
2606 memcpy(dev_priv
->wm
.spr_latency
, dev_priv
->wm
.pri_latency
,
2607 sizeof(dev_priv
->wm
.pri_latency
));
2608 memcpy(dev_priv
->wm
.cur_latency
, dev_priv
->wm
.pri_latency
,
2609 sizeof(dev_priv
->wm
.pri_latency
));
2611 intel_fixup_spr_wm_latency(dev
, dev_priv
->wm
.spr_latency
);
2612 intel_fixup_cur_wm_latency(dev
, dev_priv
->wm
.cur_latency
);
2614 intel_print_wm_latency(dev
, "Primary", dev_priv
->wm
.pri_latency
);
2615 intel_print_wm_latency(dev
, "Sprite", dev_priv
->wm
.spr_latency
);
2616 intel_print_wm_latency(dev
, "Cursor", dev_priv
->wm
.cur_latency
);
2619 static void hsw_compute_wm_parameters(struct drm_device
*dev
,
2620 struct hsw_pipe_wm_parameters
*params
,
2621 struct hsw_wm_maximums
*lp_max_1_2
,
2622 struct hsw_wm_maximums
*lp_max_5_6
)
2624 struct drm_crtc
*crtc
;
2625 struct drm_plane
*plane
;
2627 struct intel_wm_config config
= {};
2629 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
2630 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2631 struct hsw_pipe_wm_parameters
*p
;
2633 pipe
= intel_crtc
->pipe
;
2636 p
->active
= intel_crtc_active(crtc
);
2640 config
.num_pipes_active
++;
2642 p
->pipe_htotal
= intel_crtc
->config
.adjusted_mode
.htotal
;
2643 p
->pixel_rate
= ilk_pipe_pixel_rate(dev
, crtc
);
2644 p
->pri
.bytes_per_pixel
= crtc
->fb
->bits_per_pixel
/ 8;
2645 p
->cur
.bytes_per_pixel
= 4;
2646 p
->pri
.horiz_pixels
=
2647 intel_crtc
->config
.requested_mode
.hdisplay
;
2648 p
->cur
.horiz_pixels
= 64;
2649 /* TODO: for now, assume primary and cursor planes are always enabled. */
2650 p
->pri
.enabled
= true;
2651 p
->cur
.enabled
= true;
2654 list_for_each_entry(plane
, &dev
->mode_config
.plane_list
, head
) {
2655 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
2656 struct hsw_pipe_wm_parameters
*p
;
2658 pipe
= intel_plane
->pipe
;
2661 p
->spr
= intel_plane
->wm
;
2663 config
.sprites_enabled
|= p
->spr
.enabled
;
2664 config
.sprites_scaled
|= p
->spr
.scaled
;
2667 ilk_wm_max(dev
, 1, &config
, INTEL_DDB_PART_1_2
, lp_max_1_2
);
2669 /* 5/6 split only in single pipe config on IVB+ */
2670 if (INTEL_INFO(dev
)->gen
>= 7 && config
.num_pipes_active
<= 1)
2671 ilk_wm_max(dev
, 1, &config
, INTEL_DDB_PART_5_6
, lp_max_5_6
);
2673 *lp_max_5_6
= *lp_max_1_2
;
2676 static void hsw_compute_wm_results(struct drm_device
*dev
,
2677 struct hsw_pipe_wm_parameters
*params
,
2678 struct hsw_wm_maximums
*lp_maximums
,
2679 struct hsw_wm_values
*results
)
2681 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2682 struct drm_crtc
*crtc
;
2683 struct intel_wm_level lp_results
[4] = {};
2685 int level
, max_level
, wm_lp
;
2687 for (level
= 1; level
<= 4; level
++)
2688 if (!hsw_compute_lp_wm(dev_priv
, level
,
2689 lp_maximums
, params
,
2690 &lp_results
[level
- 1]))
2692 max_level
= level
- 1;
2694 memset(results
, 0, sizeof(*results
));
2696 /* The spec says it is preferred to disable FBC WMs instead of disabling
2698 results
->enable_fbc_wm
= true;
2699 for (level
= 1; level
<= max_level
; level
++) {
2700 if (lp_results
[level
- 1].fbc_val
> lp_maximums
->fbc
) {
2701 results
->enable_fbc_wm
= false;
2702 lp_results
[level
- 1].fbc_val
= 0;
2706 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
2707 const struct intel_wm_level
*r
;
2709 level
= (max_level
== 4 && wm_lp
> 1) ? wm_lp
+ 1 : wm_lp
;
2710 if (level
> max_level
)
2713 r
= &lp_results
[level
- 1];
2714 results
->wm_lp
[wm_lp
- 1] = HSW_WM_LP_VAL(level
* 2,
2718 results
->wm_lp_spr
[wm_lp
- 1] = r
->spr_val
;
2722 results
->wm_pipe
[pipe
] = hsw_compute_wm_pipe(dev_priv
, pipe
,
2725 for_each_pipe(pipe
) {
2726 crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
2727 results
->wm_linetime
[pipe
] = hsw_compute_linetime_wm(dev
, crtc
);
2731 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2732 * case both are at the same level. Prefer r1 in case they're the same. */
2733 static struct hsw_wm_values
*hsw_find_best_result(struct hsw_wm_values
*r1
,
2734 struct hsw_wm_values
*r2
)
2736 int i
, val_r1
= 0, val_r2
= 0;
2738 for (i
= 0; i
< 3; i
++) {
2739 if (r1
->wm_lp
[i
] & WM3_LP_EN
)
2740 val_r1
= r1
->wm_lp
[i
] & WM1_LP_LATENCY_MASK
;
2741 if (r2
->wm_lp
[i
] & WM3_LP_EN
)
2742 val_r2
= r2
->wm_lp
[i
] & WM1_LP_LATENCY_MASK
;
2745 if (val_r1
== val_r2
) {
2746 if (r2
->enable_fbc_wm
&& !r1
->enable_fbc_wm
)
2750 } else if (val_r1
> val_r2
) {
2758 * The spec says we shouldn't write when we don't need, because every write
2759 * causes WMs to be re-evaluated, expending some power.
2761 static void hsw_write_wm_values(struct drm_i915_private
*dev_priv
,
2762 struct hsw_wm_values
*results
,
2763 enum intel_ddb_partitioning partitioning
)
2765 struct hsw_wm_values previous
;
2767 enum intel_ddb_partitioning prev_partitioning
;
2768 bool prev_enable_fbc_wm
;
2770 previous
.wm_pipe
[0] = I915_READ(WM0_PIPEA_ILK
);
2771 previous
.wm_pipe
[1] = I915_READ(WM0_PIPEB_ILK
);
2772 previous
.wm_pipe
[2] = I915_READ(WM0_PIPEC_IVB
);
2773 previous
.wm_lp
[0] = I915_READ(WM1_LP_ILK
);
2774 previous
.wm_lp
[1] = I915_READ(WM2_LP_ILK
);
2775 previous
.wm_lp
[2] = I915_READ(WM3_LP_ILK
);
2776 previous
.wm_lp_spr
[0] = I915_READ(WM1S_LP_ILK
);
2777 previous
.wm_lp_spr
[1] = I915_READ(WM2S_LP_IVB
);
2778 previous
.wm_lp_spr
[2] = I915_READ(WM3S_LP_IVB
);
2779 previous
.wm_linetime
[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A
));
2780 previous
.wm_linetime
[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B
));
2781 previous
.wm_linetime
[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C
));
2783 prev_partitioning
= (I915_READ(WM_MISC
) & WM_MISC_DATA_PARTITION_5_6
) ?
2784 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
2786 prev_enable_fbc_wm
= !(I915_READ(DISP_ARB_CTL
) & DISP_FBC_WM_DIS
);
2788 if (memcmp(results
->wm_pipe
, previous
.wm_pipe
,
2789 sizeof(results
->wm_pipe
)) == 0 &&
2790 memcmp(results
->wm_lp
, previous
.wm_lp
,
2791 sizeof(results
->wm_lp
)) == 0 &&
2792 memcmp(results
->wm_lp_spr
, previous
.wm_lp_spr
,
2793 sizeof(results
->wm_lp_spr
)) == 0 &&
2794 memcmp(results
->wm_linetime
, previous
.wm_linetime
,
2795 sizeof(results
->wm_linetime
)) == 0 &&
2796 partitioning
== prev_partitioning
&&
2797 results
->enable_fbc_wm
== prev_enable_fbc_wm
)
2800 if (previous
.wm_lp
[2] != 0)
2801 I915_WRITE(WM3_LP_ILK
, 0);
2802 if (previous
.wm_lp
[1] != 0)
2803 I915_WRITE(WM2_LP_ILK
, 0);
2804 if (previous
.wm_lp
[0] != 0)
2805 I915_WRITE(WM1_LP_ILK
, 0);
2807 if (previous
.wm_pipe
[0] != results
->wm_pipe
[0])
2808 I915_WRITE(WM0_PIPEA_ILK
, results
->wm_pipe
[0]);
2809 if (previous
.wm_pipe
[1] != results
->wm_pipe
[1])
2810 I915_WRITE(WM0_PIPEB_ILK
, results
->wm_pipe
[1]);
2811 if (previous
.wm_pipe
[2] != results
->wm_pipe
[2])
2812 I915_WRITE(WM0_PIPEC_IVB
, results
->wm_pipe
[2]);
2814 if (previous
.wm_linetime
[0] != results
->wm_linetime
[0])
2815 I915_WRITE(PIPE_WM_LINETIME(PIPE_A
), results
->wm_linetime
[0]);
2816 if (previous
.wm_linetime
[1] != results
->wm_linetime
[1])
2817 I915_WRITE(PIPE_WM_LINETIME(PIPE_B
), results
->wm_linetime
[1]);
2818 if (previous
.wm_linetime
[2] != results
->wm_linetime
[2])
2819 I915_WRITE(PIPE_WM_LINETIME(PIPE_C
), results
->wm_linetime
[2]);
2821 if (prev_partitioning
!= partitioning
) {
2822 val
= I915_READ(WM_MISC
);
2823 if (partitioning
== INTEL_DDB_PART_1_2
)
2824 val
&= ~WM_MISC_DATA_PARTITION_5_6
;
2826 val
|= WM_MISC_DATA_PARTITION_5_6
;
2827 I915_WRITE(WM_MISC
, val
);
2830 if (prev_enable_fbc_wm
!= results
->enable_fbc_wm
) {
2831 val
= I915_READ(DISP_ARB_CTL
);
2832 if (results
->enable_fbc_wm
)
2833 val
&= ~DISP_FBC_WM_DIS
;
2835 val
|= DISP_FBC_WM_DIS
;
2836 I915_WRITE(DISP_ARB_CTL
, val
);
2839 if (previous
.wm_lp_spr
[0] != results
->wm_lp_spr
[0])
2840 I915_WRITE(WM1S_LP_ILK
, results
->wm_lp_spr
[0]);
2841 if (previous
.wm_lp_spr
[1] != results
->wm_lp_spr
[1])
2842 I915_WRITE(WM2S_LP_IVB
, results
->wm_lp_spr
[1]);
2843 if (previous
.wm_lp_spr
[2] != results
->wm_lp_spr
[2])
2844 I915_WRITE(WM3S_LP_IVB
, results
->wm_lp_spr
[2]);
2846 if (results
->wm_lp
[0] != 0)
2847 I915_WRITE(WM1_LP_ILK
, results
->wm_lp
[0]);
2848 if (results
->wm_lp
[1] != 0)
2849 I915_WRITE(WM2_LP_ILK
, results
->wm_lp
[1]);
2850 if (results
->wm_lp
[2] != 0)
2851 I915_WRITE(WM3_LP_ILK
, results
->wm_lp
[2]);
2854 static void haswell_update_wm(struct drm_device
*dev
)
2856 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2857 struct hsw_wm_maximums lp_max_1_2
, lp_max_5_6
;
2858 struct hsw_pipe_wm_parameters params
[3];
2859 struct hsw_wm_values results_1_2
, results_5_6
, *best_results
;
2860 enum intel_ddb_partitioning partitioning
;
2862 hsw_compute_wm_parameters(dev
, params
, &lp_max_1_2
, &lp_max_5_6
);
2864 hsw_compute_wm_results(dev
, params
,
2865 &lp_max_1_2
, &results_1_2
);
2866 if (lp_max_1_2
.pri
!= lp_max_5_6
.pri
) {
2867 hsw_compute_wm_results(dev
, params
,
2868 &lp_max_5_6
, &results_5_6
);
2869 best_results
= hsw_find_best_result(&results_1_2
, &results_5_6
);
2871 best_results
= &results_1_2
;
2874 partitioning
= (best_results
== &results_1_2
) ?
2875 INTEL_DDB_PART_1_2
: INTEL_DDB_PART_5_6
;
2877 hsw_write_wm_values(dev_priv
, best_results
, partitioning
);
2880 static void haswell_update_sprite_wm(struct drm_plane
*plane
,
2881 struct drm_crtc
*crtc
,
2882 uint32_t sprite_width
, int pixel_size
,
2883 bool enabled
, bool scaled
)
2885 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
2887 intel_plane
->wm
.enabled
= enabled
;
2888 intel_plane
->wm
.scaled
= scaled
;
2889 intel_plane
->wm
.horiz_pixels
= sprite_width
;
2890 intel_plane
->wm
.bytes_per_pixel
= pixel_size
;
2892 haswell_update_wm(plane
->dev
);
2896 sandybridge_compute_sprite_wm(struct drm_device
*dev
, int plane
,
2897 uint32_t sprite_width
, int pixel_size
,
2898 const struct intel_watermark_params
*display
,
2899 int display_latency_ns
, int *sprite_wm
)
2901 struct drm_crtc
*crtc
;
2903 int entries
, tlb_miss
;
2905 crtc
= intel_get_crtc_for_plane(dev
, plane
);
2906 if (!intel_crtc_active(crtc
)) {
2907 *sprite_wm
= display
->guard_size
;
2911 clock
= crtc
->mode
.clock
;
2913 /* Use the small buffer method to calculate the sprite watermark */
2914 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
2915 tlb_miss
= display
->fifo_size
*display
->cacheline_size
-
2918 entries
+= tlb_miss
;
2919 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
2920 *sprite_wm
= entries
+ display
->guard_size
;
2921 if (*sprite_wm
> (int)display
->max_wm
)
2922 *sprite_wm
= display
->max_wm
;
2928 sandybridge_compute_sprite_srwm(struct drm_device
*dev
, int plane
,
2929 uint32_t sprite_width
, int pixel_size
,
2930 const struct intel_watermark_params
*display
,
2931 int latency_ns
, int *sprite_wm
)
2933 struct drm_crtc
*crtc
;
2934 unsigned long line_time_us
;
2936 int line_count
, line_size
;
2945 crtc
= intel_get_crtc_for_plane(dev
, plane
);
2946 clock
= crtc
->mode
.clock
;
2952 line_time_us
= (sprite_width
* 1000) / clock
;
2953 if (!line_time_us
) {
2958 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
2959 line_size
= sprite_width
* pixel_size
;
2961 /* Use the minimum of the small and large buffer method for primary */
2962 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
2963 large
= line_count
* line_size
;
2965 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
2966 *sprite_wm
= entries
+ display
->guard_size
;
2968 return *sprite_wm
> 0x3ff ? false : true;
2971 static void sandybridge_update_sprite_wm(struct drm_plane
*plane
,
2972 struct drm_crtc
*crtc
,
2973 uint32_t sprite_width
, int pixel_size
,
2974 bool enabled
, bool scaled
)
2976 struct drm_device
*dev
= plane
->dev
;
2977 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2978 int pipe
= to_intel_plane(plane
)->pipe
;
2979 int latency
= dev_priv
->wm
.spr_latency
[0] * 100; /* In unit 0.1us */
2989 reg
= WM0_PIPEA_ILK
;
2992 reg
= WM0_PIPEB_ILK
;
2995 reg
= WM0_PIPEC_IVB
;
2998 return; /* bad pipe */
3001 ret
= sandybridge_compute_sprite_wm(dev
, pipe
, sprite_width
, pixel_size
,
3002 &sandybridge_display_wm_info
,
3003 latency
, &sprite_wm
);
3005 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3010 val
= I915_READ(reg
);
3011 val
&= ~WM0_PIPE_SPRITE_MASK
;
3012 I915_WRITE(reg
, val
| (sprite_wm
<< WM0_PIPE_SPRITE_SHIFT
));
3013 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe
), sprite_wm
);
3016 ret
= sandybridge_compute_sprite_srwm(dev
, pipe
, sprite_width
,
3018 &sandybridge_display_srwm_info
,
3019 dev_priv
->wm
.spr_latency
[1] * 500,
3022 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3026 I915_WRITE(WM1S_LP_ILK
, sprite_wm
);
3028 /* Only IVB has two more LP watermarks for sprite */
3029 if (!IS_IVYBRIDGE(dev
))
3032 ret
= sandybridge_compute_sprite_srwm(dev
, pipe
, sprite_width
,
3034 &sandybridge_display_srwm_info
,
3035 dev_priv
->wm
.spr_latency
[2] * 500,
3038 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3042 I915_WRITE(WM2S_LP_IVB
, sprite_wm
);
3044 ret
= sandybridge_compute_sprite_srwm(dev
, pipe
, sprite_width
,
3046 &sandybridge_display_srwm_info
,
3047 dev_priv
->wm
.spr_latency
[3] * 500,
3050 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3054 I915_WRITE(WM3S_LP_IVB
, sprite_wm
);
3058 * intel_update_watermarks - update FIFO watermark values based on current modes
3060 * Calculate watermark values for the various WM regs based on current mode
3061 * and plane configuration.
3063 * There are several cases to deal with here:
3064 * - normal (i.e. non-self-refresh)
3065 * - self-refresh (SR) mode
3066 * - lines are large relative to FIFO size (buffer can hold up to 2)
3067 * - lines are small relative to FIFO size (buffer can hold more than 2
3068 * lines), so need to account for TLB latency
3070 * The normal calculation is:
3071 * watermark = dotclock * bytes per pixel * latency
3072 * where latency is platform & configuration dependent (we assume pessimal
3075 * The SR calculation is:
3076 * watermark = (trunc(latency/line time)+1) * surface width *
3079 * line time = htotal / dotclock
3080 * surface width = hdisplay for normal plane and 64 for cursor
3081 * and latency is assumed to be high, as above.
3083 * The final value programmed to the register should always be rounded up,
3084 * and include an extra 2 entries to account for clock crossings.
3086 * We don't use the sprite, so we can ignore that. And on Crestline we have
3087 * to set the non-SR watermarks to 8.
3089 void intel_update_watermarks(struct drm_device
*dev
)
3091 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3093 if (dev_priv
->display
.update_wm
)
3094 dev_priv
->display
.update_wm(dev
);
3097 void intel_update_sprite_watermarks(struct drm_plane
*plane
,
3098 struct drm_crtc
*crtc
,
3099 uint32_t sprite_width
, int pixel_size
,
3100 bool enabled
, bool scaled
)
3102 struct drm_i915_private
*dev_priv
= plane
->dev
->dev_private
;
3104 if (dev_priv
->display
.update_sprite_wm
)
3105 dev_priv
->display
.update_sprite_wm(plane
, crtc
, sprite_width
,
3106 pixel_size
, enabled
, scaled
);
3109 static struct drm_i915_gem_object
*
3110 intel_alloc_context_page(struct drm_device
*dev
)
3112 struct drm_i915_gem_object
*ctx
;
3115 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
3117 ctx
= i915_gem_alloc_object(dev
, 4096);
3119 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3123 ret
= i915_gem_obj_ggtt_pin(ctx
, 4096, true, false);
3125 DRM_ERROR("failed to pin power context: %d\n", ret
);
3129 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
3131 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
3138 i915_gem_object_unpin(ctx
);
3140 drm_gem_object_unreference(&ctx
->base
);
3145 * Lock protecting IPS related data structures
3147 DEFINE_SPINLOCK(mchdev_lock
);
3149 /* Global for IPS driver to get at the current i915 device. Protected by
3151 static struct drm_i915_private
*i915_mch_dev
;
3153 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
3155 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3158 assert_spin_locked(&mchdev_lock
);
3160 rgvswctl
= I915_READ16(MEMSWCTL
);
3161 if (rgvswctl
& MEMCTL_CMD_STS
) {
3162 DRM_DEBUG("gpu busy, RCS change rejected\n");
3163 return false; /* still busy with another command */
3166 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
3167 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
3168 I915_WRITE16(MEMSWCTL
, rgvswctl
);
3169 POSTING_READ16(MEMSWCTL
);
3171 rgvswctl
|= MEMCTL_CMD_STS
;
3172 I915_WRITE16(MEMSWCTL
, rgvswctl
);
3177 static void ironlake_enable_drps(struct drm_device
*dev
)
3179 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3180 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
3181 u8 fmax
, fmin
, fstart
, vstart
;
3183 spin_lock_irq(&mchdev_lock
);
3185 /* Enable temp reporting */
3186 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
3187 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
3189 /* 100ms RC evaluation intervals */
3190 I915_WRITE(RCUPEI
, 100000);
3191 I915_WRITE(RCDNEI
, 100000);
3193 /* Set max/min thresholds to 90ms and 80ms respectively */
3194 I915_WRITE(RCBMAXAVG
, 90000);
3195 I915_WRITE(RCBMINAVG
, 80000);
3197 I915_WRITE(MEMIHYST
, 1);
3199 /* Set up min, max, and cur for interrupt handling */
3200 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
3201 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
3202 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
3203 MEMMODE_FSTART_SHIFT
;
3205 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
3208 dev_priv
->ips
.fmax
= fmax
; /* IPS callback will increase this */
3209 dev_priv
->ips
.fstart
= fstart
;
3211 dev_priv
->ips
.max_delay
= fstart
;
3212 dev_priv
->ips
.min_delay
= fmin
;
3213 dev_priv
->ips
.cur_delay
= fstart
;
3215 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3216 fmax
, fmin
, fstart
);
3218 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
3221 * Interrupts will be enabled in ironlake_irq_postinstall
3224 I915_WRITE(VIDSTART
, vstart
);
3225 POSTING_READ(VIDSTART
);
3227 rgvmodectl
|= MEMMODE_SWMODE_EN
;
3228 I915_WRITE(MEMMODECTL
, rgvmodectl
);
3230 if (wait_for_atomic((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
3231 DRM_ERROR("stuck trying to change perf mode\n");
3234 ironlake_set_drps(dev
, fstart
);
3236 dev_priv
->ips
.last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
3238 dev_priv
->ips
.last_time1
= jiffies_to_msecs(jiffies
);
3239 dev_priv
->ips
.last_count2
= I915_READ(0x112f4);
3240 getrawmonotonic(&dev_priv
->ips
.last_time2
);
3242 spin_unlock_irq(&mchdev_lock
);
3245 static void ironlake_disable_drps(struct drm_device
*dev
)
3247 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3250 spin_lock_irq(&mchdev_lock
);
3252 rgvswctl
= I915_READ16(MEMSWCTL
);
3254 /* Ack interrupts, disable EFC interrupt */
3255 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
3256 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
3257 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
3258 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
3259 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
3261 /* Go back to the starting frequency */
3262 ironlake_set_drps(dev
, dev_priv
->ips
.fstart
);
3264 rgvswctl
|= MEMCTL_CMD_STS
;
3265 I915_WRITE(MEMSWCTL
, rgvswctl
);
3268 spin_unlock_irq(&mchdev_lock
);
3271 /* There's a funny hw issue where the hw returns all 0 when reading from
3272 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3273 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3274 * all limits and the gpu stuck at whatever frequency it is at atm).
3276 static u32
gen6_rps_limits(struct drm_i915_private
*dev_priv
, u8
*val
)
3282 if (*val
>= dev_priv
->rps
.max_delay
)
3283 *val
= dev_priv
->rps
.max_delay
;
3284 limits
|= dev_priv
->rps
.max_delay
<< 24;
3286 /* Only set the down limit when we've reached the lowest level to avoid
3287 * getting more interrupts, otherwise leave this clear. This prevents a
3288 * race in the hw when coming out of rc6: There's a tiny window where
3289 * the hw runs at the minimal clock before selecting the desired
3290 * frequency, if the down threshold expires in that window we will not
3291 * receive a down interrupt. */
3292 if (*val
<= dev_priv
->rps
.min_delay
) {
3293 *val
= dev_priv
->rps
.min_delay
;
3294 limits
|= dev_priv
->rps
.min_delay
<< 16;
3300 void gen6_set_rps(struct drm_device
*dev
, u8 val
)
3302 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3303 u32 limits
= gen6_rps_limits(dev_priv
, &val
);
3305 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
3306 WARN_ON(val
> dev_priv
->rps
.max_delay
);
3307 WARN_ON(val
< dev_priv
->rps
.min_delay
);
3309 if (val
== dev_priv
->rps
.cur_delay
)
3312 if (IS_HASWELL(dev
))
3313 I915_WRITE(GEN6_RPNSWREQ
,
3314 HSW_FREQUENCY(val
));
3316 I915_WRITE(GEN6_RPNSWREQ
,
3317 GEN6_FREQUENCY(val
) |
3319 GEN6_AGGRESSIVE_TURBO
);
3321 /* Make sure we continue to get interrupts
3322 * until we hit the minimum or maximum frequencies.
3324 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
, limits
);
3326 POSTING_READ(GEN6_RPNSWREQ
);
3328 dev_priv
->rps
.cur_delay
= val
;
3330 trace_intel_gpu_freq_change(val
* 50);
3334 * Wait until the previous freq change has completed,
3335 * or the timeout elapsed, and then update our notion
3336 * of the current GPU frequency.
3338 static void vlv_update_rps_cur_delay(struct drm_i915_private
*dev_priv
)
3342 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
3344 if (wait_for(((pval
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
)) & GENFREQSTATUS
) == 0, 10))
3345 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3349 if (pval
!= dev_priv
->rps
.cur_delay
)
3350 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3351 vlv_gpu_freq(dev_priv
->mem_freq
, dev_priv
->rps
.cur_delay
),
3352 dev_priv
->rps
.cur_delay
,
3353 vlv_gpu_freq(dev_priv
->mem_freq
, pval
), pval
);
3355 dev_priv
->rps
.cur_delay
= pval
;
3358 void valleyview_set_rps(struct drm_device
*dev
, u8 val
)
3360 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3362 gen6_rps_limits(dev_priv
, &val
);
3364 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
3365 WARN_ON(val
> dev_priv
->rps
.max_delay
);
3366 WARN_ON(val
< dev_priv
->rps
.min_delay
);
3368 vlv_update_rps_cur_delay(dev_priv
);
3370 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3371 vlv_gpu_freq(dev_priv
->mem_freq
,
3372 dev_priv
->rps
.cur_delay
),
3373 dev_priv
->rps
.cur_delay
,
3374 vlv_gpu_freq(dev_priv
->mem_freq
, val
), val
);
3376 if (val
== dev_priv
->rps
.cur_delay
)
3379 vlv_punit_write(dev_priv
, PUNIT_REG_GPU_FREQ_REQ
, val
);
3381 dev_priv
->rps
.cur_delay
= val
;
3383 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv
->mem_freq
, val
));
3386 static void gen6_disable_rps_interrupts(struct drm_device
*dev
)
3388 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3390 I915_WRITE(GEN6_PMINTRMSK
, 0xffffffff);
3391 I915_WRITE(GEN6_PMIER
, I915_READ(GEN6_PMIER
) & ~GEN6_PM_RPS_EVENTS
);
3392 /* Complete PM interrupt masking here doesn't race with the rps work
3393 * item again unmasking PM interrupts because that is using a different
3394 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3395 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3397 spin_lock_irq(&dev_priv
->irq_lock
);
3398 dev_priv
->rps
.pm_iir
= 0;
3399 spin_unlock_irq(&dev_priv
->irq_lock
);
3401 I915_WRITE(GEN6_PMIIR
, GEN6_PM_RPS_EVENTS
);
3404 static void gen6_disable_rps(struct drm_device
*dev
)
3406 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3408 I915_WRITE(GEN6_RC_CONTROL
, 0);
3409 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
3411 gen6_disable_rps_interrupts(dev
);
3414 static void valleyview_disable_rps(struct drm_device
*dev
)
3416 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3418 I915_WRITE(GEN6_RC_CONTROL
, 0);
3420 gen6_disable_rps_interrupts(dev
);
3422 if (dev_priv
->vlv_pctx
) {
3423 drm_gem_object_unreference(&dev_priv
->vlv_pctx
->base
);
3424 dev_priv
->vlv_pctx
= NULL
;
3428 int intel_enable_rc6(const struct drm_device
*dev
)
3430 /* No RC6 before Ironlake */
3431 if (INTEL_INFO(dev
)->gen
< 5)
3434 /* Respect the kernel parameter if it is set */
3435 if (i915_enable_rc6
>= 0)
3436 return i915_enable_rc6
;
3438 /* Disable RC6 on Ironlake */
3439 if (INTEL_INFO(dev
)->gen
== 5)
3442 if (IS_HASWELL(dev
)) {
3443 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3444 return INTEL_RC6_ENABLE
;
3447 /* snb/ivb have more than one rc6 state. */
3448 if (INTEL_INFO(dev
)->gen
== 6) {
3449 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3450 return INTEL_RC6_ENABLE
;
3453 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3454 return (INTEL_RC6_ENABLE
| INTEL_RC6p_ENABLE
);
3457 static void gen6_enable_rps_interrupts(struct drm_device
*dev
)
3459 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3462 spin_lock_irq(&dev_priv
->irq_lock
);
3463 WARN_ON(dev_priv
->rps
.pm_iir
);
3464 snb_enable_pm_irq(dev_priv
, GEN6_PM_RPS_EVENTS
);
3465 I915_WRITE(GEN6_PMIIR
, GEN6_PM_RPS_EVENTS
);
3466 spin_unlock_irq(&dev_priv
->irq_lock
);
3468 /* only unmask PM interrupts we need. Mask all others. */
3469 enabled_intrs
= GEN6_PM_RPS_EVENTS
;
3471 /* IVB and SNB hard hangs on looping batchbuffer
3472 * if GEN6_PM_UP_EI_EXPIRED is masked.
3474 if (INTEL_INFO(dev
)->gen
<= 7 && !IS_HASWELL(dev
))
3475 enabled_intrs
|= GEN6_PM_RP_UP_EI_EXPIRED
;
3477 I915_WRITE(GEN6_PMINTRMSK
, ~enabled_intrs
);
3480 static void gen6_enable_rps(struct drm_device
*dev
)
3482 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3483 struct intel_ring_buffer
*ring
;
3486 u32 rc6vids
, pcu_mbox
, rc6_mask
= 0;
3491 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
3493 /* Here begins a magic sequence of register writes to enable
3494 * auto-downclocking.
3496 * Perhaps there might be some value in exposing these to
3499 I915_WRITE(GEN6_RC_STATE
, 0);
3501 /* Clear the DBG now so we don't confuse earlier errors */
3502 if ((gtfifodbg
= I915_READ(GTFIFODBG
))) {
3503 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg
);
3504 I915_WRITE(GTFIFODBG
, gtfifodbg
);
3507 gen6_gt_force_wake_get(dev_priv
);
3509 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
3510 gt_perf_status
= I915_READ(GEN6_GT_PERF_STATUS
);
3512 /* In units of 50MHz */
3513 dev_priv
->rps
.hw_max
= dev_priv
->rps
.max_delay
= rp_state_cap
& 0xff;
3514 dev_priv
->rps
.min_delay
= (rp_state_cap
& 0xff0000) >> 16;
3515 dev_priv
->rps
.cur_delay
= 0;
3517 /* disable the counters and set deterministic thresholds */
3518 I915_WRITE(GEN6_RC_CONTROL
, 0);
3520 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
3521 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
3522 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
3523 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
3524 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
3526 for_each_ring(ring
, dev_priv
, i
)
3527 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
3529 I915_WRITE(GEN6_RC_SLEEP
, 0);
3530 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
3531 if (INTEL_INFO(dev
)->gen
<= 6 || IS_IVYBRIDGE(dev
))
3532 I915_WRITE(GEN6_RC6_THRESHOLD
, 125000);
3534 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
3535 I915_WRITE(GEN6_RC6p_THRESHOLD
, 150000);
3536 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
3538 /* Check if we are enabling RC6 */
3539 rc6_mode
= intel_enable_rc6(dev_priv
->dev
);
3540 if (rc6_mode
& INTEL_RC6_ENABLE
)
3541 rc6_mask
|= GEN6_RC_CTL_RC6_ENABLE
;
3543 /* We don't use those on Haswell */
3544 if (!IS_HASWELL(dev
)) {
3545 if (rc6_mode
& INTEL_RC6p_ENABLE
)
3546 rc6_mask
|= GEN6_RC_CTL_RC6p_ENABLE
;
3548 if (rc6_mode
& INTEL_RC6pp_ENABLE
)
3549 rc6_mask
|= GEN6_RC_CTL_RC6pp_ENABLE
;
3552 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3553 (rc6_mask
& GEN6_RC_CTL_RC6_ENABLE
) ? "on" : "off",
3554 (rc6_mask
& GEN6_RC_CTL_RC6p_ENABLE
) ? "on" : "off",
3555 (rc6_mask
& GEN6_RC_CTL_RC6pp_ENABLE
) ? "on" : "off");
3557 I915_WRITE(GEN6_RC_CONTROL
,
3559 GEN6_RC_CTL_EI_MODE(1) |
3560 GEN6_RC_CTL_HW_ENABLE
);
3562 if (IS_HASWELL(dev
)) {
3563 I915_WRITE(GEN6_RPNSWREQ
,
3565 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
3568 I915_WRITE(GEN6_RPNSWREQ
,
3569 GEN6_FREQUENCY(10) |
3571 GEN6_AGGRESSIVE_TURBO
);
3572 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
3573 GEN6_FREQUENCY(12));
3576 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
3577 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
3578 dev_priv
->rps
.max_delay
<< 24 |
3579 dev_priv
->rps
.min_delay
<< 16);
3581 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 59400);
3582 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 245000);
3583 I915_WRITE(GEN6_RP_UP_EI
, 66000);
3584 I915_WRITE(GEN6_RP_DOWN_EI
, 350000);
3586 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
3587 I915_WRITE(GEN6_RP_CONTROL
,
3588 GEN6_RP_MEDIA_TURBO
|
3589 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
3590 GEN6_RP_MEDIA_IS_GFX
|
3592 GEN6_RP_UP_BUSY_AVG
|
3593 (IS_HASWELL(dev
) ? GEN7_RP_DOWN_IDLE_AVG
: GEN6_RP_DOWN_IDLE_CONT
));
3595 ret
= sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_MIN_FREQ_TABLE
, 0);
3598 ret
= sandybridge_pcode_read(dev_priv
, GEN6_READ_OC_PARAMS
, &pcu_mbox
);
3599 if (!ret
&& (pcu_mbox
& (1<<31))) { /* OC supported */
3600 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3601 (dev_priv
->rps
.max_delay
& 0xff) * 50,
3602 (pcu_mbox
& 0xff) * 50);
3603 dev_priv
->rps
.hw_max
= pcu_mbox
& 0xff;
3606 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3609 gen6_set_rps(dev_priv
->dev
, (gt_perf_status
& 0xff00) >> 8);
3611 gen6_enable_rps_interrupts(dev
);
3614 ret
= sandybridge_pcode_read(dev_priv
, GEN6_PCODE_READ_RC6VIDS
, &rc6vids
);
3615 if (IS_GEN6(dev
) && ret
) {
3616 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3617 } else if (IS_GEN6(dev
) && (GEN6_DECODE_RC6_VID(rc6vids
& 0xff) < 450)) {
3618 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3619 GEN6_DECODE_RC6_VID(rc6vids
& 0xff), 450);
3620 rc6vids
&= 0xffff00;
3621 rc6vids
|= GEN6_ENCODE_RC6_VID(450);
3622 ret
= sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_RC6VIDS
, rc6vids
);
3624 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3627 gen6_gt_force_wake_put(dev_priv
);
3630 void gen6_update_ring_freq(struct drm_device
*dev
)
3632 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3634 unsigned int gpu_freq
;
3635 unsigned int max_ia_freq
, min_ring_freq
;
3636 int scaling_factor
= 180;
3638 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
3640 max_ia_freq
= cpufreq_quick_get_max(0);
3642 * Default to measured freq if none found, PCU will ensure we don't go
3646 max_ia_freq
= tsc_khz
;
3648 /* Convert from kHz to MHz */
3649 max_ia_freq
/= 1000;
3651 min_ring_freq
= I915_READ(MCHBAR_MIRROR_BASE_SNB
+ DCLK
);
3652 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3653 min_ring_freq
= (2 * 4 * min_ring_freq
+ 2) / 3;
3656 * For each potential GPU frequency, load a ring frequency we'd like
3657 * to use for memory access. We do this by specifying the IA frequency
3658 * the PCU should use as a reference to determine the ring frequency.
3660 for (gpu_freq
= dev_priv
->rps
.max_delay
; gpu_freq
>= dev_priv
->rps
.min_delay
;
3662 int diff
= dev_priv
->rps
.max_delay
- gpu_freq
;
3663 unsigned int ia_freq
= 0, ring_freq
= 0;
3665 if (IS_HASWELL(dev
)) {
3666 ring_freq
= (gpu_freq
* 5 + 3) / 4;
3667 ring_freq
= max(min_ring_freq
, ring_freq
);
3668 /* leave ia_freq as the default, chosen by cpufreq */
3670 /* On older processors, there is no separate ring
3671 * clock domain, so in order to boost the bandwidth
3672 * of the ring, we need to upclock the CPU (ia_freq).
3674 * For GPU frequencies less than 750MHz,
3675 * just use the lowest ring freq.
3677 if (gpu_freq
< min_freq
)
3680 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
3681 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
3684 sandybridge_pcode_write(dev_priv
,
3685 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
,
3686 ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
|
3687 ring_freq
<< GEN6_PCODE_FREQ_RING_RATIO_SHIFT
|
3692 int valleyview_rps_max_freq(struct drm_i915_private
*dev_priv
)
3696 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FREQ_FUSE
);
3698 rp0
= (val
& FB_GFX_MAX_FREQ_FUSE_MASK
) >> FB_GFX_MAX_FREQ_FUSE_SHIFT
;
3700 rp0
= min_t(u32
, rp0
, 0xea);
3705 static int valleyview_rps_rpe_freq(struct drm_i915_private
*dev_priv
)
3709 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FMAX_FUSE_LO
);
3710 rpe
= (val
& FB_FMAX_VMIN_FREQ_LO_MASK
) >> FB_FMAX_VMIN_FREQ_LO_SHIFT
;
3711 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FMAX_FUSE_HI
);
3712 rpe
|= (val
& FB_FMAX_VMIN_FREQ_HI_MASK
) << 5;
3717 int valleyview_rps_min_freq(struct drm_i915_private
*dev_priv
)
3719 return vlv_punit_read(dev_priv
, PUNIT_REG_GPU_LFM
) & 0xff;
3722 static void vlv_rps_timer_work(struct work_struct
*work
)
3724 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
3728 * Timer fired, we must be idle. Drop to min voltage state.
3729 * Note: we use RPe here since it should match the
3730 * Vmin we were shooting for. That should give us better
3731 * perf when we come back out of RC6 than if we used the
3732 * min freq available.
3734 mutex_lock(&dev_priv
->rps
.hw_lock
);
3735 if (dev_priv
->rps
.cur_delay
> dev_priv
->rps
.rpe_delay
)
3736 valleyview_set_rps(dev_priv
->dev
, dev_priv
->rps
.rpe_delay
);
3737 mutex_unlock(&dev_priv
->rps
.hw_lock
);
3740 static void valleyview_setup_pctx(struct drm_device
*dev
)
3742 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3743 struct drm_i915_gem_object
*pctx
;
3744 unsigned long pctx_paddr
;
3746 int pctx_size
= 24*1024;
3748 pcbr
= I915_READ(VLV_PCBR
);
3750 /* BIOS set it up already, grab the pre-alloc'd space */
3753 pcbr_offset
= (pcbr
& (~4095)) - dev_priv
->mm
.stolen_base
;
3754 pctx
= i915_gem_object_create_stolen_for_preallocated(dev_priv
->dev
,
3756 I915_GTT_OFFSET_NONE
,
3762 * From the Gunit register HAS:
3763 * The Gfx driver is expected to program this register and ensure
3764 * proper allocation within Gfx stolen memory. For example, this
3765 * register should be programmed such than the PCBR range does not
3766 * overlap with other ranges, such as the frame buffer, protected
3767 * memory, or any other relevant ranges.
3769 pctx
= i915_gem_object_create_stolen(dev
, pctx_size
);
3771 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3775 pctx_paddr
= dev_priv
->mm
.stolen_base
+ pctx
->stolen
->start
;
3776 I915_WRITE(VLV_PCBR
, pctx_paddr
);
3779 dev_priv
->vlv_pctx
= pctx
;
3782 static void valleyview_enable_rps(struct drm_device
*dev
)
3784 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3785 struct intel_ring_buffer
*ring
;
3789 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
3791 if ((gtfifodbg
= I915_READ(GTFIFODBG
))) {
3792 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg
);
3793 I915_WRITE(GTFIFODBG
, gtfifodbg
);
3796 valleyview_setup_pctx(dev
);
3798 gen6_gt_force_wake_get(dev_priv
);
3800 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 59400);
3801 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 245000);
3802 I915_WRITE(GEN6_RP_UP_EI
, 66000);
3803 I915_WRITE(GEN6_RP_DOWN_EI
, 350000);
3805 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
3807 I915_WRITE(GEN6_RP_CONTROL
,
3808 GEN6_RP_MEDIA_TURBO
|
3809 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
3810 GEN6_RP_MEDIA_IS_GFX
|
3812 GEN6_RP_UP_BUSY_AVG
|
3813 GEN6_RP_DOWN_IDLE_CONT
);
3815 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 0x00280000);
3816 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
3817 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
3819 for_each_ring(ring
, dev_priv
, i
)
3820 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
3822 I915_WRITE(GEN6_RC6_THRESHOLD
, 0xc350);
3824 /* allows RC6 residency counter to work */
3825 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3826 I915_WRITE(GEN6_RC_CONTROL
,
3827 GEN7_RC_CTL_TO_MODE
);
3829 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
3830 switch ((val
>> 6) & 3) {
3833 dev_priv
->mem_freq
= 800;
3836 dev_priv
->mem_freq
= 1066;
3839 dev_priv
->mem_freq
= 1333;
3842 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv
->mem_freq
);
3844 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val
& 0x10 ? "yes" : "no");
3845 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val
);
3847 dev_priv
->rps
.cur_delay
= (val
>> 8) & 0xff;
3848 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3849 vlv_gpu_freq(dev_priv
->mem_freq
,
3850 dev_priv
->rps
.cur_delay
),
3851 dev_priv
->rps
.cur_delay
);
3853 dev_priv
->rps
.max_delay
= valleyview_rps_max_freq(dev_priv
);
3854 dev_priv
->rps
.hw_max
= dev_priv
->rps
.max_delay
;
3855 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3856 vlv_gpu_freq(dev_priv
->mem_freq
,
3857 dev_priv
->rps
.max_delay
),
3858 dev_priv
->rps
.max_delay
);
3860 dev_priv
->rps
.rpe_delay
= valleyview_rps_rpe_freq(dev_priv
);
3861 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3862 vlv_gpu_freq(dev_priv
->mem_freq
,
3863 dev_priv
->rps
.rpe_delay
),
3864 dev_priv
->rps
.rpe_delay
);
3866 dev_priv
->rps
.min_delay
= valleyview_rps_min_freq(dev_priv
);
3867 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3868 vlv_gpu_freq(dev_priv
->mem_freq
,
3869 dev_priv
->rps
.min_delay
),
3870 dev_priv
->rps
.min_delay
);
3872 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3873 vlv_gpu_freq(dev_priv
->mem_freq
,
3874 dev_priv
->rps
.rpe_delay
),
3875 dev_priv
->rps
.rpe_delay
);
3877 valleyview_set_rps(dev_priv
->dev
, dev_priv
->rps
.rpe_delay
);
3879 gen6_enable_rps_interrupts(dev
);
3881 gen6_gt_force_wake_put(dev_priv
);
3884 void ironlake_teardown_rc6(struct drm_device
*dev
)
3886 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3888 if (dev_priv
->ips
.renderctx
) {
3889 i915_gem_object_unpin(dev_priv
->ips
.renderctx
);
3890 drm_gem_object_unreference(&dev_priv
->ips
.renderctx
->base
);
3891 dev_priv
->ips
.renderctx
= NULL
;
3894 if (dev_priv
->ips
.pwrctx
) {
3895 i915_gem_object_unpin(dev_priv
->ips
.pwrctx
);
3896 drm_gem_object_unreference(&dev_priv
->ips
.pwrctx
->base
);
3897 dev_priv
->ips
.pwrctx
= NULL
;
3901 static void ironlake_disable_rc6(struct drm_device
*dev
)
3903 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3905 if (I915_READ(PWRCTXA
)) {
3906 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3907 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) | RCX_SW_EXIT
);
3908 wait_for(((I915_READ(RSTDBYCTL
) & RSX_STATUS_MASK
) == RSX_STATUS_ON
),
3911 I915_WRITE(PWRCTXA
, 0);
3912 POSTING_READ(PWRCTXA
);
3914 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
3915 POSTING_READ(RSTDBYCTL
);
3919 static int ironlake_setup_rc6(struct drm_device
*dev
)
3921 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3923 if (dev_priv
->ips
.renderctx
== NULL
)
3924 dev_priv
->ips
.renderctx
= intel_alloc_context_page(dev
);
3925 if (!dev_priv
->ips
.renderctx
)
3928 if (dev_priv
->ips
.pwrctx
== NULL
)
3929 dev_priv
->ips
.pwrctx
= intel_alloc_context_page(dev
);
3930 if (!dev_priv
->ips
.pwrctx
) {
3931 ironlake_teardown_rc6(dev
);
3938 static void ironlake_enable_rc6(struct drm_device
*dev
)
3940 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3941 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[RCS
];
3942 bool was_interruptible
;
3945 /* rc6 disabled by default due to repeated reports of hanging during
3948 if (!intel_enable_rc6(dev
))
3951 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
3953 ret
= ironlake_setup_rc6(dev
);
3957 was_interruptible
= dev_priv
->mm
.interruptible
;
3958 dev_priv
->mm
.interruptible
= false;
3961 * GPU can automatically power down the render unit if given a page
3964 ret
= intel_ring_begin(ring
, 6);
3966 ironlake_teardown_rc6(dev
);
3967 dev_priv
->mm
.interruptible
= was_interruptible
;
3971 intel_ring_emit(ring
, MI_SUSPEND_FLUSH
| MI_SUSPEND_FLUSH_EN
);
3972 intel_ring_emit(ring
, MI_SET_CONTEXT
);
3973 intel_ring_emit(ring
, i915_gem_obj_ggtt_offset(dev_priv
->ips
.renderctx
) |
3975 MI_SAVE_EXT_STATE_EN
|
3976 MI_RESTORE_EXT_STATE_EN
|
3977 MI_RESTORE_INHIBIT
);
3978 intel_ring_emit(ring
, MI_SUSPEND_FLUSH
);
3979 intel_ring_emit(ring
, MI_NOOP
);
3980 intel_ring_emit(ring
, MI_FLUSH
);
3981 intel_ring_advance(ring
);
3984 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3985 * does an implicit flush, combined with MI_FLUSH above, it should be
3986 * safe to assume that renderctx is valid
3988 ret
= intel_ring_idle(ring
);
3989 dev_priv
->mm
.interruptible
= was_interruptible
;
3991 DRM_ERROR("failed to enable ironlake power savings\n");
3992 ironlake_teardown_rc6(dev
);
3996 I915_WRITE(PWRCTXA
, i915_gem_obj_ggtt_offset(dev_priv
->ips
.pwrctx
) | PWRCTX_EN
);
3997 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
4000 static unsigned long intel_pxfreq(u32 vidfreq
)
4003 int div
= (vidfreq
& 0x3f0000) >> 16;
4004 int post
= (vidfreq
& 0x3000) >> 12;
4005 int pre
= (vidfreq
& 0x7);
4010 freq
= ((div
* 133333) / ((1<<post
) * pre
));
4015 static const struct cparams
{
4021 { 1, 1333, 301, 28664 },
4022 { 1, 1066, 294, 24460 },
4023 { 1, 800, 294, 25192 },
4024 { 0, 1333, 276, 27605 },
4025 { 0, 1066, 276, 27605 },
4026 { 0, 800, 231, 23784 },
4029 static unsigned long __i915_chipset_val(struct drm_i915_private
*dev_priv
)
4031 u64 total_count
, diff
, ret
;
4032 u32 count1
, count2
, count3
, m
= 0, c
= 0;
4033 unsigned long now
= jiffies_to_msecs(jiffies
), diff1
;
4036 assert_spin_locked(&mchdev_lock
);
4038 diff1
= now
- dev_priv
->ips
.last_time1
;
4040 /* Prevent division-by-zero if we are asking too fast.
4041 * Also, we don't get interesting results if we are polling
4042 * faster than once in 10ms, so just return the saved value
4046 return dev_priv
->ips
.chipset_power
;
4048 count1
= I915_READ(DMIEC
);
4049 count2
= I915_READ(DDREC
);
4050 count3
= I915_READ(CSIEC
);
4052 total_count
= count1
+ count2
+ count3
;
4054 /* FIXME: handle per-counter overflow */
4055 if (total_count
< dev_priv
->ips
.last_count1
) {
4056 diff
= ~0UL - dev_priv
->ips
.last_count1
;
4057 diff
+= total_count
;
4059 diff
= total_count
- dev_priv
->ips
.last_count1
;
4062 for (i
= 0; i
< ARRAY_SIZE(cparams
); i
++) {
4063 if (cparams
[i
].i
== dev_priv
->ips
.c_m
&&
4064 cparams
[i
].t
== dev_priv
->ips
.r_t
) {
4071 diff
= div_u64(diff
, diff1
);
4072 ret
= ((m
* diff
) + c
);
4073 ret
= div_u64(ret
, 10);
4075 dev_priv
->ips
.last_count1
= total_count
;
4076 dev_priv
->ips
.last_time1
= now
;
4078 dev_priv
->ips
.chipset_power
= ret
;
4083 unsigned long i915_chipset_val(struct drm_i915_private
*dev_priv
)
4087 if (dev_priv
->info
->gen
!= 5)
4090 spin_lock_irq(&mchdev_lock
);
4092 val
= __i915_chipset_val(dev_priv
);
4094 spin_unlock_irq(&mchdev_lock
);
4099 unsigned long i915_mch_val(struct drm_i915_private
*dev_priv
)
4101 unsigned long m
, x
, b
;
4104 tsfs
= I915_READ(TSFS
);
4106 m
= ((tsfs
& TSFS_SLOPE_MASK
) >> TSFS_SLOPE_SHIFT
);
4107 x
= I915_READ8(TR1
);
4109 b
= tsfs
& TSFS_INTR_MASK
;
4111 return ((m
* x
) / 127) - b
;
4114 static u16
pvid_to_extvid(struct drm_i915_private
*dev_priv
, u8 pxvid
)
4116 static const struct v_table
{
4117 u16 vd
; /* in .1 mil */
4118 u16 vm
; /* in .1 mil */
4249 if (dev_priv
->info
->is_mobile
)
4250 return v_table
[pxvid
].vm
;
4252 return v_table
[pxvid
].vd
;
4255 static void __i915_update_gfx_val(struct drm_i915_private
*dev_priv
)
4257 struct timespec now
, diff1
;
4259 unsigned long diffms
;
4262 assert_spin_locked(&mchdev_lock
);
4264 getrawmonotonic(&now
);
4265 diff1
= timespec_sub(now
, dev_priv
->ips
.last_time2
);
4267 /* Don't divide by 0 */
4268 diffms
= diff1
.tv_sec
* 1000 + diff1
.tv_nsec
/ 1000000;
4272 count
= I915_READ(GFXEC
);
4274 if (count
< dev_priv
->ips
.last_count2
) {
4275 diff
= ~0UL - dev_priv
->ips
.last_count2
;
4278 diff
= count
- dev_priv
->ips
.last_count2
;
4281 dev_priv
->ips
.last_count2
= count
;
4282 dev_priv
->ips
.last_time2
= now
;
4284 /* More magic constants... */
4286 diff
= div_u64(diff
, diffms
* 10);
4287 dev_priv
->ips
.gfx_power
= diff
;
4290 void i915_update_gfx_val(struct drm_i915_private
*dev_priv
)
4292 if (dev_priv
->info
->gen
!= 5)
4295 spin_lock_irq(&mchdev_lock
);
4297 __i915_update_gfx_val(dev_priv
);
4299 spin_unlock_irq(&mchdev_lock
);
4302 static unsigned long __i915_gfx_val(struct drm_i915_private
*dev_priv
)
4304 unsigned long t
, corr
, state1
, corr2
, state2
;
4307 assert_spin_locked(&mchdev_lock
);
4309 pxvid
= I915_READ(PXVFREQ_BASE
+ (dev_priv
->rps
.cur_delay
* 4));
4310 pxvid
= (pxvid
>> 24) & 0x7f;
4311 ext_v
= pvid_to_extvid(dev_priv
, pxvid
);
4315 t
= i915_mch_val(dev_priv
);
4317 /* Revel in the empirically derived constants */
4319 /* Correction factor in 1/100000 units */
4321 corr
= ((t
* 2349) + 135940);
4323 corr
= ((t
* 964) + 29317);
4325 corr
= ((t
* 301) + 1004);
4327 corr
= corr
* ((150142 * state1
) / 10000 - 78642);
4329 corr2
= (corr
* dev_priv
->ips
.corr
);
4331 state2
= (corr2
* state1
) / 10000;
4332 state2
/= 100; /* convert to mW */
4334 __i915_update_gfx_val(dev_priv
);
4336 return dev_priv
->ips
.gfx_power
+ state2
;
4339 unsigned long i915_gfx_val(struct drm_i915_private
*dev_priv
)
4343 if (dev_priv
->info
->gen
!= 5)
4346 spin_lock_irq(&mchdev_lock
);
4348 val
= __i915_gfx_val(dev_priv
);
4350 spin_unlock_irq(&mchdev_lock
);
4356 * i915_read_mch_val - return value for IPS use
4358 * Calculate and return a value for the IPS driver to use when deciding whether
4359 * we have thermal and power headroom to increase CPU or GPU power budget.
4361 unsigned long i915_read_mch_val(void)
4363 struct drm_i915_private
*dev_priv
;
4364 unsigned long chipset_val
, graphics_val
, ret
= 0;
4366 spin_lock_irq(&mchdev_lock
);
4369 dev_priv
= i915_mch_dev
;
4371 chipset_val
= __i915_chipset_val(dev_priv
);
4372 graphics_val
= __i915_gfx_val(dev_priv
);
4374 ret
= chipset_val
+ graphics_val
;
4377 spin_unlock_irq(&mchdev_lock
);
4381 EXPORT_SYMBOL_GPL(i915_read_mch_val
);
4384 * i915_gpu_raise - raise GPU frequency limit
4386 * Raise the limit; IPS indicates we have thermal headroom.
4388 bool i915_gpu_raise(void)
4390 struct drm_i915_private
*dev_priv
;
4393 spin_lock_irq(&mchdev_lock
);
4394 if (!i915_mch_dev
) {
4398 dev_priv
= i915_mch_dev
;
4400 if (dev_priv
->ips
.max_delay
> dev_priv
->ips
.fmax
)
4401 dev_priv
->ips
.max_delay
--;
4404 spin_unlock_irq(&mchdev_lock
);
4408 EXPORT_SYMBOL_GPL(i915_gpu_raise
);
4411 * i915_gpu_lower - lower GPU frequency limit
4413 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4414 * frequency maximum.
4416 bool i915_gpu_lower(void)
4418 struct drm_i915_private
*dev_priv
;
4421 spin_lock_irq(&mchdev_lock
);
4422 if (!i915_mch_dev
) {
4426 dev_priv
= i915_mch_dev
;
4428 if (dev_priv
->ips
.max_delay
< dev_priv
->ips
.min_delay
)
4429 dev_priv
->ips
.max_delay
++;
4432 spin_unlock_irq(&mchdev_lock
);
4436 EXPORT_SYMBOL_GPL(i915_gpu_lower
);
4439 * i915_gpu_busy - indicate GPU business to IPS
4441 * Tell the IPS driver whether or not the GPU is busy.
4443 bool i915_gpu_busy(void)
4445 struct drm_i915_private
*dev_priv
;
4446 struct intel_ring_buffer
*ring
;
4450 spin_lock_irq(&mchdev_lock
);
4453 dev_priv
= i915_mch_dev
;
4455 for_each_ring(ring
, dev_priv
, i
)
4456 ret
|= !list_empty(&ring
->request_list
);
4459 spin_unlock_irq(&mchdev_lock
);
4463 EXPORT_SYMBOL_GPL(i915_gpu_busy
);
4466 * i915_gpu_turbo_disable - disable graphics turbo
4468 * Disable graphics turbo by resetting the max frequency and setting the
4469 * current frequency to the default.
4471 bool i915_gpu_turbo_disable(void)
4473 struct drm_i915_private
*dev_priv
;
4476 spin_lock_irq(&mchdev_lock
);
4477 if (!i915_mch_dev
) {
4481 dev_priv
= i915_mch_dev
;
4483 dev_priv
->ips
.max_delay
= dev_priv
->ips
.fstart
;
4485 if (!ironlake_set_drps(dev_priv
->dev
, dev_priv
->ips
.fstart
))
4489 spin_unlock_irq(&mchdev_lock
);
4493 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable
);
4496 * Tells the intel_ips driver that the i915 driver is now loaded, if
4497 * IPS got loaded first.
4499 * This awkward dance is so that neither module has to depend on the
4500 * other in order for IPS to do the appropriate communication of
4501 * GPU turbo limits to i915.
4504 ips_ping_for_i915_load(void)
4508 link
= symbol_get(ips_link_to_i915_driver
);
4511 symbol_put(ips_link_to_i915_driver
);
4515 void intel_gpu_ips_init(struct drm_i915_private
*dev_priv
)
4517 /* We only register the i915 ips part with intel-ips once everything is
4518 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4519 spin_lock_irq(&mchdev_lock
);
4520 i915_mch_dev
= dev_priv
;
4521 spin_unlock_irq(&mchdev_lock
);
4523 ips_ping_for_i915_load();
4526 void intel_gpu_ips_teardown(void)
4528 spin_lock_irq(&mchdev_lock
);
4529 i915_mch_dev
= NULL
;
4530 spin_unlock_irq(&mchdev_lock
);
4532 static void intel_init_emon(struct drm_device
*dev
)
4534 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4539 /* Disable to program */
4543 /* Program energy weights for various events */
4544 I915_WRITE(SDEW
, 0x15040d00);
4545 I915_WRITE(CSIEW0
, 0x007f0000);
4546 I915_WRITE(CSIEW1
, 0x1e220004);
4547 I915_WRITE(CSIEW2
, 0x04000004);
4549 for (i
= 0; i
< 5; i
++)
4550 I915_WRITE(PEW
+ (i
* 4), 0);
4551 for (i
= 0; i
< 3; i
++)
4552 I915_WRITE(DEW
+ (i
* 4), 0);
4554 /* Program P-state weights to account for frequency power adjustment */
4555 for (i
= 0; i
< 16; i
++) {
4556 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
4557 unsigned long freq
= intel_pxfreq(pxvidfreq
);
4558 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
4563 val
*= (freq
/ 1000);
4565 val
/= (127*127*900);
4567 DRM_ERROR("bad pxval: %ld\n", val
);
4570 /* Render standby states get 0 weight */
4574 for (i
= 0; i
< 4; i
++) {
4575 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
4576 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
4577 I915_WRITE(PXW
+ (i
* 4), val
);
4580 /* Adjust magic regs to magic values (more experimental results) */
4581 I915_WRITE(OGW0
, 0);
4582 I915_WRITE(OGW1
, 0);
4583 I915_WRITE(EG0
, 0x00007f00);
4584 I915_WRITE(EG1
, 0x0000000e);
4585 I915_WRITE(EG2
, 0x000e0000);
4586 I915_WRITE(EG3
, 0x68000300);
4587 I915_WRITE(EG4
, 0x42000000);
4588 I915_WRITE(EG5
, 0x00140031);
4592 for (i
= 0; i
< 8; i
++)
4593 I915_WRITE(PXWL
+ (i
* 4), 0);
4595 /* Enable PMON + select events */
4596 I915_WRITE(ECR
, 0x80000019);
4598 lcfuse
= I915_READ(LCFUSE02
);
4600 dev_priv
->ips
.corr
= (lcfuse
& LCFUSE_HIV_MASK
);
4603 void intel_disable_gt_powersave(struct drm_device
*dev
)
4605 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4607 /* Interrupts should be disabled already to avoid re-arming. */
4608 WARN_ON(dev
->irq_enabled
);
4610 if (IS_IRONLAKE_M(dev
)) {
4611 ironlake_disable_drps(dev
);
4612 ironlake_disable_rc6(dev
);
4613 } else if (INTEL_INFO(dev
)->gen
>= 6) {
4614 cancel_delayed_work_sync(&dev_priv
->rps
.delayed_resume_work
);
4615 cancel_work_sync(&dev_priv
->rps
.work
);
4616 if (IS_VALLEYVIEW(dev
))
4617 cancel_delayed_work_sync(&dev_priv
->rps
.vlv_work
);
4618 mutex_lock(&dev_priv
->rps
.hw_lock
);
4619 if (IS_VALLEYVIEW(dev
))
4620 valleyview_disable_rps(dev
);
4622 gen6_disable_rps(dev
);
4623 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4627 static void intel_gen6_powersave_work(struct work_struct
*work
)
4629 struct drm_i915_private
*dev_priv
=
4630 container_of(work
, struct drm_i915_private
,
4631 rps
.delayed_resume_work
.work
);
4632 struct drm_device
*dev
= dev_priv
->dev
;
4634 mutex_lock(&dev_priv
->rps
.hw_lock
);
4636 if (IS_VALLEYVIEW(dev
)) {
4637 valleyview_enable_rps(dev
);
4639 gen6_enable_rps(dev
);
4640 gen6_update_ring_freq(dev
);
4642 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4645 void intel_enable_gt_powersave(struct drm_device
*dev
)
4647 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4649 if (IS_IRONLAKE_M(dev
)) {
4650 ironlake_enable_drps(dev
);
4651 ironlake_enable_rc6(dev
);
4652 intel_init_emon(dev
);
4653 } else if (IS_GEN6(dev
) || IS_GEN7(dev
)) {
4655 * PCU communication is slow and this doesn't need to be
4656 * done at any specific time, so do this out of our fast path
4657 * to make resume and init faster.
4659 schedule_delayed_work(&dev_priv
->rps
.delayed_resume_work
,
4660 round_jiffies_up_relative(HZ
));
4664 static void ibx_init_clock_gating(struct drm_device
*dev
)
4666 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4669 * On Ibex Peak and Cougar Point, we need to disable clock
4670 * gating for the panel power sequencer or it will fail to
4671 * start up when no ports are active.
4673 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
4676 static void g4x_disable_trickle_feed(struct drm_device
*dev
)
4678 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4681 for_each_pipe(pipe
) {
4682 I915_WRITE(DSPCNTR(pipe
),
4683 I915_READ(DSPCNTR(pipe
)) |
4684 DISPPLANE_TRICKLE_FEED_DISABLE
);
4685 intel_flush_display_plane(dev_priv
, pipe
);
4689 static void ironlake_init_clock_gating(struct drm_device
*dev
)
4691 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4692 uint32_t dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
4696 * WaFbcDisableDpfcClockGating:ilk
4698 dspclk_gate
|= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE
|
4699 ILK_DPFCUNIT_CLOCK_GATE_DISABLE
|
4700 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
;
4702 I915_WRITE(PCH_3DCGDIS0
,
4703 MARIUNIT_CLOCK_GATE_DISABLE
|
4704 SVSMUNIT_CLOCK_GATE_DISABLE
);
4705 I915_WRITE(PCH_3DCGDIS1
,
4706 VFMUNIT_CLOCK_GATE_DISABLE
);
4709 * According to the spec the following bits should be set in
4710 * order to enable memory self-refresh
4711 * The bit 22/21 of 0x42004
4712 * The bit 5 of 0x42020
4713 * The bit 15 of 0x45000
4715 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
4716 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
4717 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
4718 dspclk_gate
|= ILK_DPARBUNIT_CLOCK_GATE_ENABLE
;
4719 I915_WRITE(DISP_ARB_CTL
,
4720 (I915_READ(DISP_ARB_CTL
) |
4722 I915_WRITE(WM3_LP_ILK
, 0);
4723 I915_WRITE(WM2_LP_ILK
, 0);
4724 I915_WRITE(WM1_LP_ILK
, 0);
4727 * Based on the document from hardware guys the following bits
4728 * should be set unconditionally in order to enable FBC.
4729 * The bit 22 of 0x42000
4730 * The bit 22 of 0x42004
4731 * The bit 7,8,9 of 0x42020.
4733 if (IS_IRONLAKE_M(dev
)) {
4734 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4735 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
4736 I915_READ(ILK_DISPLAY_CHICKEN1
) |
4738 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
4739 I915_READ(ILK_DISPLAY_CHICKEN2
) |
4743 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
4745 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
4746 I915_READ(ILK_DISPLAY_CHICKEN2
) |
4747 ILK_ELPIN_409_SELECT
);
4748 I915_WRITE(_3D_CHICKEN2
,
4749 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
4750 _3D_CHICKEN2_WM_READ_PIPELINED
);
4752 /* WaDisableRenderCachePipelinedFlush:ilk */
4753 I915_WRITE(CACHE_MODE_0
,
4754 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE
));
4756 g4x_disable_trickle_feed(dev
);
4758 ibx_init_clock_gating(dev
);
4761 static void cpt_init_clock_gating(struct drm_device
*dev
)
4763 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4768 * On Ibex Peak and Cougar Point, we need to disable clock
4769 * gating for the panel power sequencer or it will fail to
4770 * start up when no ports are active.
4772 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
|
4773 PCH_DPLUNIT_CLOCK_GATE_DISABLE
|
4774 PCH_CPUNIT_CLOCK_GATE_DISABLE
);
4775 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
4776 DPLS_EDP_PPS_FIX_DIS
);
4777 /* The below fixes the weird display corruption, a few pixels shifted
4778 * downward, on (only) LVDS of some HP laptops with IVY.
4780 for_each_pipe(pipe
) {
4781 val
= I915_READ(TRANS_CHICKEN2(pipe
));
4782 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
4783 val
&= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
4784 if (dev_priv
->vbt
.fdi_rx_polarity_inverted
)
4785 val
|= TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
4786 val
&= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK
;
4787 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER
;
4788 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH
;
4789 I915_WRITE(TRANS_CHICKEN2(pipe
), val
);
4791 /* WADP0ClockGatingDisable */
4792 for_each_pipe(pipe
) {
4793 I915_WRITE(TRANS_CHICKEN1(pipe
),
4794 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
4798 static void gen6_check_mch_setup(struct drm_device
*dev
)
4800 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4803 tmp
= I915_READ(MCH_SSKPD
);
4804 if ((tmp
& MCH_SSKPD_WM0_MASK
) != MCH_SSKPD_WM0_VAL
) {
4805 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp
);
4806 DRM_INFO("This can cause pipe underruns and display issues.\n");
4807 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4811 static void gen6_init_clock_gating(struct drm_device
*dev
)
4813 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4814 uint32_t dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
4816 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
4818 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
4819 I915_READ(ILK_DISPLAY_CHICKEN2
) |
4820 ILK_ELPIN_409_SELECT
);
4822 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4823 I915_WRITE(_3D_CHICKEN
,
4824 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB
));
4826 /* WaSetupGtModeTdRowDispatch:snb */
4827 if (IS_SNB_GT1(dev
))
4828 I915_WRITE(GEN6_GT_MODE
,
4829 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE
));
4831 I915_WRITE(WM3_LP_ILK
, 0);
4832 I915_WRITE(WM2_LP_ILK
, 0);
4833 I915_WRITE(WM1_LP_ILK
, 0);
4835 I915_WRITE(CACHE_MODE_0
,
4836 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
4838 I915_WRITE(GEN6_UCGCTL1
,
4839 I915_READ(GEN6_UCGCTL1
) |
4840 GEN6_BLBUNIT_CLOCK_GATE_DISABLE
|
4841 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
4843 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4844 * gating disable must be set. Failure to set it results in
4845 * flickering pixels due to Z write ordering failures after
4846 * some amount of runtime in the Mesa "fire" demo, and Unigine
4847 * Sanctuary and Tropics, and apparently anything else with
4848 * alpha test or pixel discard.
4850 * According to the spec, bit 11 (RCCUNIT) must also be set,
4851 * but we didn't debug actual testcases to find it out.
4853 * Also apply WaDisableVDSUnitClockGating:snb and
4854 * WaDisableRCPBUnitClockGating:snb.
4856 I915_WRITE(GEN6_UCGCTL2
,
4857 GEN7_VDSUNIT_CLOCK_GATE_DISABLE
|
4858 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
4859 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
4861 /* Bspec says we need to always set all mask bits. */
4862 I915_WRITE(_3D_CHICKEN3
, (0xFFFF << 16) |
4863 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL
);
4866 * According to the spec the following bits should be
4867 * set in order to enable memory self-refresh and fbc:
4868 * The bit21 and bit22 of 0x42000
4869 * The bit21 and bit22 of 0x42004
4870 * The bit5 and bit7 of 0x42020
4871 * The bit14 of 0x70180
4872 * The bit14 of 0x71180
4874 * WaFbcAsynchFlipDisableFbcQueue:snb
4876 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
4877 I915_READ(ILK_DISPLAY_CHICKEN1
) |
4878 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
4879 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
4880 I915_READ(ILK_DISPLAY_CHICKEN2
) |
4881 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
4882 I915_WRITE(ILK_DSPCLK_GATE_D
,
4883 I915_READ(ILK_DSPCLK_GATE_D
) |
4884 ILK_DPARBUNIT_CLOCK_GATE_ENABLE
|
4885 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
);
4887 g4x_disable_trickle_feed(dev
);
4889 /* The default value should be 0x200 according to docs, but the two
4890 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4891 I915_WRITE(GEN6_GT_MODE
, _MASKED_BIT_DISABLE(0xffff));
4892 I915_WRITE(GEN6_GT_MODE
, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI
));
4894 cpt_init_clock_gating(dev
);
4896 gen6_check_mch_setup(dev
);
4899 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private
*dev_priv
)
4901 uint32_t reg
= I915_READ(GEN7_FF_THREAD_MODE
);
4903 reg
&= ~GEN7_FF_SCHED_MASK
;
4904 reg
|= GEN7_FF_TS_SCHED_HW
;
4905 reg
|= GEN7_FF_VS_SCHED_HW
;
4906 reg
|= GEN7_FF_DS_SCHED_HW
;
4908 if (IS_HASWELL(dev_priv
->dev
))
4909 reg
&= ~GEN7_FF_VS_REF_CNT_FFME
;
4911 I915_WRITE(GEN7_FF_THREAD_MODE
, reg
);
4914 static void lpt_init_clock_gating(struct drm_device
*dev
)
4916 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4919 * TODO: this bit should only be enabled when really needed, then
4920 * disabled when not needed anymore in order to save power.
4922 if (dev_priv
->pch_id
== INTEL_PCH_LPT_LP_DEVICE_ID_TYPE
)
4923 I915_WRITE(SOUTH_DSPCLK_GATE_D
,
4924 I915_READ(SOUTH_DSPCLK_GATE_D
) |
4925 PCH_LP_PARTITION_LEVEL_DISABLE
);
4927 /* WADPOClockGatingDisable:hsw */
4928 I915_WRITE(_TRANSA_CHICKEN1
,
4929 I915_READ(_TRANSA_CHICKEN1
) |
4930 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
4933 static void lpt_suspend_hw(struct drm_device
*dev
)
4935 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4937 if (dev_priv
->pch_id
== INTEL_PCH_LPT_LP_DEVICE_ID_TYPE
) {
4938 uint32_t val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
4940 val
&= ~PCH_LP_PARTITION_LEVEL_DISABLE
;
4941 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
4945 static void haswell_init_clock_gating(struct drm_device
*dev
)
4947 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4949 I915_WRITE(WM3_LP_ILK
, 0);
4950 I915_WRITE(WM2_LP_ILK
, 0);
4951 I915_WRITE(WM1_LP_ILK
, 0);
4953 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4954 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4956 I915_WRITE(GEN6_UCGCTL2
, GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
4958 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4959 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1
,
4960 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC
);
4962 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4963 I915_WRITE(GEN7_L3CNTLREG1
,
4964 GEN7_WA_FOR_GEN7_L3_CONTROL
);
4965 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER
,
4966 GEN7_WA_L3_CHICKEN_MODE
);
4968 /* L3 caching of data atomics doesn't work -- disable it. */
4969 I915_WRITE(HSW_SCRATCH1
, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE
);
4970 I915_WRITE(HSW_ROW_CHICKEN3
,
4971 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE
));
4973 /* This is required by WaCatErrorRejectionIssue:hsw */
4974 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
4975 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
4976 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
4978 /* WaVSRefCountFullforceMissDisable:hsw */
4979 gen7_setup_fixed_func_scheduler(dev_priv
);
4981 /* WaDisable4x2SubspanOptimization:hsw */
4982 I915_WRITE(CACHE_MODE_1
,
4983 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
4985 /* WaSwitchSolVfFArbitrationPriority:hsw */
4986 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
4988 /* WaRsPkgCStateDisplayPMReq:hsw */
4989 I915_WRITE(CHICKEN_PAR1_1
,
4990 I915_READ(CHICKEN_PAR1_1
) | FORCE_ARB_IDLE_PLANES
);
4992 lpt_init_clock_gating(dev
);
4995 static void ivybridge_init_clock_gating(struct drm_device
*dev
)
4997 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5000 I915_WRITE(WM3_LP_ILK
, 0);
5001 I915_WRITE(WM2_LP_ILK
, 0);
5002 I915_WRITE(WM1_LP_ILK
, 0);
5004 I915_WRITE(ILK_DSPCLK_GATE_D
, ILK_VRHUNIT_CLOCK_GATE_DISABLE
);
5006 /* WaDisableEarlyCull:ivb */
5007 I915_WRITE(_3D_CHICKEN3
,
5008 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL
));
5010 /* WaDisableBackToBackFlipFix:ivb */
5011 I915_WRITE(IVB_CHICKEN3
,
5012 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
5013 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
5015 /* WaDisablePSDDualDispatchEnable:ivb */
5016 if (IS_IVB_GT1(dev
))
5017 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1
,
5018 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
5020 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2
,
5021 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
5023 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5024 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1
,
5025 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC
);
5027 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5028 I915_WRITE(GEN7_L3CNTLREG1
,
5029 GEN7_WA_FOR_GEN7_L3_CONTROL
);
5030 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER
,
5031 GEN7_WA_L3_CHICKEN_MODE
);
5032 if (IS_IVB_GT1(dev
))
5033 I915_WRITE(GEN7_ROW_CHICKEN2
,
5034 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
5036 I915_WRITE(GEN7_ROW_CHICKEN2_GT2
,
5037 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
5040 /* WaForceL3Serialization:ivb */
5041 I915_WRITE(GEN7_L3SQCREG4
, I915_READ(GEN7_L3SQCREG4
) &
5042 ~L3SQ_URB_READ_CAM_MATCH_DISABLE
);
5044 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5045 * gating disable must be set. Failure to set it results in
5046 * flickering pixels due to Z write ordering failures after
5047 * some amount of runtime in the Mesa "fire" demo, and Unigine
5048 * Sanctuary and Tropics, and apparently anything else with
5049 * alpha test or pixel discard.
5051 * According to the spec, bit 11 (RCCUNIT) must also be set,
5052 * but we didn't debug actual testcases to find it out.
5054 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5055 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5057 I915_WRITE(GEN6_UCGCTL2
,
5058 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
|
5059 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
5061 /* This is required by WaCatErrorRejectionIssue:ivb */
5062 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
5063 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
5064 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
5066 g4x_disable_trickle_feed(dev
);
5068 /* WaVSRefCountFullforceMissDisable:ivb */
5069 gen7_setup_fixed_func_scheduler(dev_priv
);
5071 /* WaDisable4x2SubspanOptimization:ivb */
5072 I915_WRITE(CACHE_MODE_1
,
5073 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
5075 snpcr
= I915_READ(GEN6_MBCUNIT_SNPCR
);
5076 snpcr
&= ~GEN6_MBC_SNPCR_MASK
;
5077 snpcr
|= GEN6_MBC_SNPCR_MED
;
5078 I915_WRITE(GEN6_MBCUNIT_SNPCR
, snpcr
);
5080 if (!HAS_PCH_NOP(dev
))
5081 cpt_init_clock_gating(dev
);
5083 gen6_check_mch_setup(dev
);
5086 static void valleyview_init_clock_gating(struct drm_device
*dev
)
5088 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5090 I915_WRITE(DSPCLK_GATE_D
, VRHUNIT_CLOCK_GATE_DISABLE
);
5092 /* WaDisableEarlyCull:vlv */
5093 I915_WRITE(_3D_CHICKEN3
,
5094 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL
));
5096 /* WaDisableBackToBackFlipFix:vlv */
5097 I915_WRITE(IVB_CHICKEN3
,
5098 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
5099 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
5101 /* WaDisablePSDDualDispatchEnable:vlv */
5102 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1
,
5103 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP
|
5104 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
5106 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5107 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1
,
5108 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC
);
5110 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5111 I915_WRITE(GEN7_L3CNTLREG1
, I915_READ(GEN7_L3CNTLREG1
) | GEN7_L3AGDIS
);
5112 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER
, GEN7_WA_L3_CHICKEN_MODE
);
5114 /* WaForceL3Serialization:vlv */
5115 I915_WRITE(GEN7_L3SQCREG4
, I915_READ(GEN7_L3SQCREG4
) &
5116 ~L3SQ_URB_READ_CAM_MATCH_DISABLE
);
5118 /* WaDisableDopClockGating:vlv */
5119 I915_WRITE(GEN7_ROW_CHICKEN2
,
5120 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
5122 /* This is required by WaCatErrorRejectionIssue:vlv */
5123 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
5124 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
5125 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
5127 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5128 * gating disable must be set. Failure to set it results in
5129 * flickering pixels due to Z write ordering failures after
5130 * some amount of runtime in the Mesa "fire" demo, and Unigine
5131 * Sanctuary and Tropics, and apparently anything else with
5132 * alpha test or pixel discard.
5134 * According to the spec, bit 11 (RCCUNIT) must also be set,
5135 * but we didn't debug actual testcases to find it out.
5137 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5138 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5140 * Also apply WaDisableVDSUnitClockGating:vlv and
5141 * WaDisableRCPBUnitClockGating:vlv.
5143 I915_WRITE(GEN6_UCGCTL2
,
5144 GEN7_VDSUNIT_CLOCK_GATE_DISABLE
|
5145 GEN7_TDLUNIT_CLOCK_GATE_DISABLE
|
5146 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
|
5147 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
5148 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
5150 I915_WRITE(GEN7_UCGCTL4
, GEN7_L3BANK2X_CLOCK_GATE_DISABLE
);
5152 I915_WRITE(MI_ARB_VLV
, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
);
5154 I915_WRITE(CACHE_MODE_1
,
5155 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
5158 * WaDisableVLVClockGating_VBIIssue:vlv
5159 * Disable clock gating on th GCFG unit to prevent a delay
5160 * in the reporting of vblank events.
5162 I915_WRITE(VLV_GUNIT_CLOCK_GATE
, 0xffffffff);
5164 /* Conservative clock gating settings for now */
5165 I915_WRITE(0x9400, 0xffffffff);
5166 I915_WRITE(0x9404, 0xffffffff);
5167 I915_WRITE(0x9408, 0xffffffff);
5168 I915_WRITE(0x940c, 0xffffffff);
5169 I915_WRITE(0x9410, 0xffffffff);
5170 I915_WRITE(0x9414, 0xffffffff);
5171 I915_WRITE(0x9418, 0xffffffff);
5174 static void g4x_init_clock_gating(struct drm_device
*dev
)
5176 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5177 uint32_t dspclk_gate
;
5179 I915_WRITE(RENCLK_GATE_D1
, 0);
5180 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
5181 GS_UNIT_CLOCK_GATE_DISABLE
|
5182 CL_UNIT_CLOCK_GATE_DISABLE
);
5183 I915_WRITE(RAMCLK_GATE_D
, 0);
5184 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
5185 OVRUNIT_CLOCK_GATE_DISABLE
|
5186 OVCUNIT_CLOCK_GATE_DISABLE
;
5188 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
5189 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
5191 /* WaDisableRenderCachePipelinedFlush */
5192 I915_WRITE(CACHE_MODE_0
,
5193 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE
));
5195 g4x_disable_trickle_feed(dev
);
5198 static void crestline_init_clock_gating(struct drm_device
*dev
)
5200 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5202 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
5203 I915_WRITE(RENCLK_GATE_D2
, 0);
5204 I915_WRITE(DSPCLK_GATE_D
, 0);
5205 I915_WRITE(RAMCLK_GATE_D
, 0);
5206 I915_WRITE16(DEUC
, 0);
5207 I915_WRITE(MI_ARB_STATE
,
5208 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
5211 static void broadwater_init_clock_gating(struct drm_device
*dev
)
5213 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5215 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
5216 I965_RCC_CLOCK_GATE_DISABLE
|
5217 I965_RCPB_CLOCK_GATE_DISABLE
|
5218 I965_ISC_CLOCK_GATE_DISABLE
|
5219 I965_FBC_CLOCK_GATE_DISABLE
);
5220 I915_WRITE(RENCLK_GATE_D2
, 0);
5221 I915_WRITE(MI_ARB_STATE
,
5222 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
5225 static void gen3_init_clock_gating(struct drm_device
*dev
)
5227 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5228 u32 dstate
= I915_READ(D_STATE
);
5230 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
5231 DSTATE_DOT_CLOCK_GATING
;
5232 I915_WRITE(D_STATE
, dstate
);
5234 if (IS_PINEVIEW(dev
))
5235 I915_WRITE(ECOSKPD
, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY
));
5237 /* IIR "flip pending" means done if this bit is set */
5238 I915_WRITE(ECOSKPD
, _MASKED_BIT_DISABLE(ECO_FLIP_DONE
));
5241 static void i85x_init_clock_gating(struct drm_device
*dev
)
5243 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5245 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
5248 static void i830_init_clock_gating(struct drm_device
*dev
)
5250 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5252 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
5255 void intel_init_clock_gating(struct drm_device
*dev
)
5257 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5259 dev_priv
->display
.init_clock_gating(dev
);
5262 void intel_suspend_hw(struct drm_device
*dev
)
5264 if (HAS_PCH_LPT(dev
))
5265 lpt_suspend_hw(dev
);
5269 * We should only use the power well if we explicitly asked the hardware to
5270 * enable it, so check if it's enabled and also check if we've requested it to
5273 bool intel_display_power_enabled(struct drm_device
*dev
,
5274 enum intel_display_power_domain domain
)
5276 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5278 if (!HAS_POWER_WELL(dev
))
5282 case POWER_DOMAIN_PIPE_A
:
5283 case POWER_DOMAIN_TRANSCODER_EDP
:
5285 case POWER_DOMAIN_PIPE_B
:
5286 case POWER_DOMAIN_PIPE_C
:
5287 case POWER_DOMAIN_PIPE_A_PANEL_FITTER
:
5288 case POWER_DOMAIN_PIPE_B_PANEL_FITTER
:
5289 case POWER_DOMAIN_PIPE_C_PANEL_FITTER
:
5290 case POWER_DOMAIN_TRANSCODER_A
:
5291 case POWER_DOMAIN_TRANSCODER_B
:
5292 case POWER_DOMAIN_TRANSCODER_C
:
5293 return I915_READ(HSW_PWR_WELL_DRIVER
) ==
5294 (HSW_PWR_WELL_ENABLE_REQUEST
| HSW_PWR_WELL_STATE_ENABLED
);
5300 static void __intel_set_power_well(struct drm_device
*dev
, bool enable
)
5302 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5303 bool is_enabled
, enable_requested
;
5306 tmp
= I915_READ(HSW_PWR_WELL_DRIVER
);
5307 is_enabled
= tmp
& HSW_PWR_WELL_STATE_ENABLED
;
5308 enable_requested
= tmp
& HSW_PWR_WELL_ENABLE_REQUEST
;
5311 if (!enable_requested
)
5312 I915_WRITE(HSW_PWR_WELL_DRIVER
,
5313 HSW_PWR_WELL_ENABLE_REQUEST
);
5316 DRM_DEBUG_KMS("Enabling power well\n");
5317 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER
) &
5318 HSW_PWR_WELL_STATE_ENABLED
), 20))
5319 DRM_ERROR("Timeout enabling power well\n");
5322 if (enable_requested
) {
5323 unsigned long irqflags
;
5326 I915_WRITE(HSW_PWR_WELL_DRIVER
, 0);
5327 POSTING_READ(HSW_PWR_WELL_DRIVER
);
5328 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5331 * After this, the registers on the pipes that are part
5332 * of the power well will become zero, so we have to
5333 * adjust our counters according to that.
5335 * FIXME: Should we do this in general in
5336 * drm_vblank_post_modeset?
5338 spin_lock_irqsave(&dev
->vbl_lock
, irqflags
);
5341 dev
->last_vblank
[p
] = 0;
5342 spin_unlock_irqrestore(&dev
->vbl_lock
, irqflags
);
5347 static struct i915_power_well
*hsw_pwr
;
5349 /* Display audio driver power well request */
5350 void i915_request_power_well(void)
5352 if (WARN_ON(!hsw_pwr
))
5355 spin_lock_irq(&hsw_pwr
->lock
);
5356 if (!hsw_pwr
->count
++ &&
5357 !hsw_pwr
->i915_request
)
5358 __intel_set_power_well(hsw_pwr
->device
, true);
5359 spin_unlock_irq(&hsw_pwr
->lock
);
5361 EXPORT_SYMBOL_GPL(i915_request_power_well
);
5363 /* Display audio driver power well release */
5364 void i915_release_power_well(void)
5366 if (WARN_ON(!hsw_pwr
))
5369 spin_lock_irq(&hsw_pwr
->lock
);
5370 WARN_ON(!hsw_pwr
->count
);
5371 if (!--hsw_pwr
->count
&&
5372 !hsw_pwr
->i915_request
)
5373 __intel_set_power_well(hsw_pwr
->device
, false);
5374 spin_unlock_irq(&hsw_pwr
->lock
);
5376 EXPORT_SYMBOL_GPL(i915_release_power_well
);
5378 int i915_init_power_well(struct drm_device
*dev
)
5380 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5382 hsw_pwr
= &dev_priv
->power_well
;
5384 hsw_pwr
->device
= dev
;
5385 spin_lock_init(&hsw_pwr
->lock
);
5391 void i915_remove_power_well(struct drm_device
*dev
)
5396 void intel_set_power_well(struct drm_device
*dev
, bool enable
)
5398 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5399 struct i915_power_well
*power_well
= &dev_priv
->power_well
;
5401 if (!HAS_POWER_WELL(dev
))
5404 if (!i915_disable_power_well
&& !enable
)
5407 spin_lock_irq(&power_well
->lock
);
5408 power_well
->i915_request
= enable
;
5410 /* only reject "disable" power well request */
5411 if (power_well
->count
&& !enable
) {
5412 spin_unlock_irq(&power_well
->lock
);
5416 __intel_set_power_well(dev
, enable
);
5417 spin_unlock_irq(&power_well
->lock
);
5421 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5422 * when not needed anymore. We have 4 registers that can request the power well
5423 * to be enabled, and it will only be disabled if none of the registers is
5424 * requesting it to be enabled.
5426 void intel_init_power_well(struct drm_device
*dev
)
5428 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5430 if (!HAS_POWER_WELL(dev
))
5433 /* For now, we need the power well to be always enabled. */
5434 intel_set_power_well(dev
, true);
5436 /* We're taking over the BIOS, so clear any requests made by it since
5437 * the driver is in charge now. */
5438 if (I915_READ(HSW_PWR_WELL_BIOS
) & HSW_PWR_WELL_ENABLE_REQUEST
)
5439 I915_WRITE(HSW_PWR_WELL_BIOS
, 0);
5442 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5443 void intel_aux_display_runtime_get(struct drm_i915_private
*dev_priv
)
5445 hsw_disable_package_c8(dev_priv
);
5448 void intel_aux_display_runtime_put(struct drm_i915_private
*dev_priv
)
5450 hsw_enable_package_c8(dev_priv
);
5453 /* Set up chip specific power management-related functions */
5454 void intel_init_pm(struct drm_device
*dev
)
5456 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5458 if (I915_HAS_FBC(dev
)) {
5459 if (HAS_PCH_SPLIT(dev
)) {
5460 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
5461 if (IS_IVYBRIDGE(dev
) || IS_HASWELL(dev
))
5462 dev_priv
->display
.enable_fbc
=
5465 dev_priv
->display
.enable_fbc
=
5466 ironlake_enable_fbc
;
5467 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
5468 } else if (IS_GM45(dev
)) {
5469 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
5470 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
5471 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
5472 } else if (IS_CRESTLINE(dev
)) {
5473 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
5474 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
5475 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
5477 /* 855GM needs testing */
5481 if (IS_PINEVIEW(dev
))
5482 i915_pineview_get_mem_freq(dev
);
5483 else if (IS_GEN5(dev
))
5484 i915_ironlake_get_mem_freq(dev
);
5486 /* For FIFO watermark updates */
5487 if (HAS_PCH_SPLIT(dev
)) {
5488 intel_setup_wm_latency(dev
);
5491 if (dev_priv
->wm
.pri_latency
[1] &&
5492 dev_priv
->wm
.spr_latency
[1] &&
5493 dev_priv
->wm
.cur_latency
[1])
5494 dev_priv
->display
.update_wm
= ironlake_update_wm
;
5496 DRM_DEBUG_KMS("Failed to get proper latency. "
5498 dev_priv
->display
.update_wm
= NULL
;
5500 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
5501 } else if (IS_GEN6(dev
)) {
5502 if (dev_priv
->wm
.pri_latency
[0] &&
5503 dev_priv
->wm
.spr_latency
[0] &&
5504 dev_priv
->wm
.cur_latency
[0]) {
5505 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
5506 dev_priv
->display
.update_sprite_wm
= sandybridge_update_sprite_wm
;
5508 DRM_DEBUG_KMS("Failed to read display plane latency. "
5510 dev_priv
->display
.update_wm
= NULL
;
5512 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
5513 } else if (IS_IVYBRIDGE(dev
)) {
5514 if (dev_priv
->wm
.pri_latency
[0] &&
5515 dev_priv
->wm
.spr_latency
[0] &&
5516 dev_priv
->wm
.cur_latency
[0]) {
5517 dev_priv
->display
.update_wm
= ivybridge_update_wm
;
5518 dev_priv
->display
.update_sprite_wm
= sandybridge_update_sprite_wm
;
5520 DRM_DEBUG_KMS("Failed to read display plane latency. "
5522 dev_priv
->display
.update_wm
= NULL
;
5524 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
5525 } else if (IS_HASWELL(dev
)) {
5526 if (dev_priv
->wm
.pri_latency
[0] &&
5527 dev_priv
->wm
.spr_latency
[0] &&
5528 dev_priv
->wm
.cur_latency
[0]) {
5529 dev_priv
->display
.update_wm
= haswell_update_wm
;
5530 dev_priv
->display
.update_sprite_wm
=
5531 haswell_update_sprite_wm
;
5533 DRM_DEBUG_KMS("Failed to read display plane latency. "
5535 dev_priv
->display
.update_wm
= NULL
;
5537 dev_priv
->display
.init_clock_gating
= haswell_init_clock_gating
;
5539 dev_priv
->display
.update_wm
= NULL
;
5540 } else if (IS_VALLEYVIEW(dev
)) {
5541 dev_priv
->display
.update_wm
= valleyview_update_wm
;
5542 dev_priv
->display
.init_clock_gating
=
5543 valleyview_init_clock_gating
;
5544 } else if (IS_PINEVIEW(dev
)) {
5545 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
5548 dev_priv
->mem_freq
)) {
5549 DRM_INFO("failed to find known CxSR latency "
5550 "(found ddr%s fsb freq %d, mem freq %d), "
5552 (dev_priv
->is_ddr3
== 1) ? "3" : "2",
5553 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
5554 /* Disable CxSR and never update its watermark again */
5555 pineview_disable_cxsr(dev
);
5556 dev_priv
->display
.update_wm
= NULL
;
5558 dev_priv
->display
.update_wm
= pineview_update_wm
;
5559 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
5560 } else if (IS_G4X(dev
)) {
5561 dev_priv
->display
.update_wm
= g4x_update_wm
;
5562 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
5563 } else if (IS_GEN4(dev
)) {
5564 dev_priv
->display
.update_wm
= i965_update_wm
;
5565 if (IS_CRESTLINE(dev
))
5566 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
5567 else if (IS_BROADWATER(dev
))
5568 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
5569 } else if (IS_GEN3(dev
)) {
5570 dev_priv
->display
.update_wm
= i9xx_update_wm
;
5571 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
5572 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
5573 } else if (IS_I865G(dev
)) {
5574 dev_priv
->display
.update_wm
= i830_update_wm
;
5575 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
5576 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
5577 } else if (IS_I85X(dev
)) {
5578 dev_priv
->display
.update_wm
= i9xx_update_wm
;
5579 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
5580 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
5582 dev_priv
->display
.update_wm
= i830_update_wm
;
5583 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
5585 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
5587 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
5591 int sandybridge_pcode_read(struct drm_i915_private
*dev_priv
, u8 mbox
, u32
*val
)
5593 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5595 if (I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) {
5596 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5600 I915_WRITE(GEN6_PCODE_DATA
, *val
);
5601 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
| mbox
);
5603 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
5605 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox
);
5609 *val
= I915_READ(GEN6_PCODE_DATA
);
5610 I915_WRITE(GEN6_PCODE_DATA
, 0);
5615 int sandybridge_pcode_write(struct drm_i915_private
*dev_priv
, u8 mbox
, u32 val
)
5617 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5619 if (I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) {
5620 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5624 I915_WRITE(GEN6_PCODE_DATA
, val
);
5625 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
| mbox
);
5627 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
5629 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox
);
5633 I915_WRITE(GEN6_PCODE_DATA
, 0);
5638 int vlv_gpu_freq(int ddr_freq
, int val
)
5659 return ((val
- 0xbd) * mult
) + base
;
5662 int vlv_freq_opcode(int ddr_freq
, int val
)
5693 void intel_pm_init(struct drm_device
*dev
)
5695 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5697 INIT_DELAYED_WORK(&dev_priv
->rps
.delayed_resume_work
,
5698 intel_gen6_powersave_work
);
5700 INIT_DELAYED_WORK(&dev_priv
->rps
.vlv_work
, vlv_rps_timer_work
);