x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
blob4834c463c38bdf04d02049f5ca324d152fb6f57d
1 /**************************************************************************
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include <drm/ttm/ttm_bo_driver.h>
32 #include <drm/ttm/ttm_placement.h>
33 #include <drm/drm_vma_manager.h>
34 #include <linux/io.h>
35 #include <linux/highmem.h>
36 #include <linux/wait.h>
37 #include <linux/slab.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
41 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
43 ttm_bo_mem_put(bo, &bo->mem);
46 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
47 bool evict,
48 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
50 struct ttm_tt *ttm = bo->ttm;
51 struct ttm_mem_reg *old_mem = &bo->mem;
52 int ret;
54 if (old_mem->mem_type != TTM_PL_SYSTEM) {
55 ttm_tt_unbind(ttm);
56 ttm_bo_free_old_node(bo);
57 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
58 TTM_PL_MASK_MEM);
59 old_mem->mem_type = TTM_PL_SYSTEM;
62 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
63 if (unlikely(ret != 0))
64 return ret;
66 if (new_mem->mem_type != TTM_PL_SYSTEM) {
67 ret = ttm_tt_bind(ttm, new_mem);
68 if (unlikely(ret != 0))
69 return ret;
72 *old_mem = *new_mem;
73 new_mem->mm_node = NULL;
75 return 0;
77 EXPORT_SYMBOL(ttm_bo_move_ttm);
79 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
81 if (likely(man->io_reserve_fastpath))
82 return 0;
84 if (interruptible)
85 return mutex_lock_interruptible(&man->io_reserve_mutex);
87 mutex_lock(&man->io_reserve_mutex);
88 return 0;
90 EXPORT_SYMBOL(ttm_mem_io_lock);
92 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
94 if (likely(man->io_reserve_fastpath))
95 return;
97 mutex_unlock(&man->io_reserve_mutex);
99 EXPORT_SYMBOL(ttm_mem_io_unlock);
101 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
103 struct ttm_buffer_object *bo;
105 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
106 return -EAGAIN;
108 bo = list_first_entry(&man->io_reserve_lru,
109 struct ttm_buffer_object,
110 io_reserve_lru);
111 list_del_init(&bo->io_reserve_lru);
112 ttm_bo_unmap_virtual_locked(bo);
114 return 0;
118 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
119 struct ttm_mem_reg *mem)
121 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
122 int ret = 0;
124 if (!bdev->driver->io_mem_reserve)
125 return 0;
126 if (likely(man->io_reserve_fastpath))
127 return bdev->driver->io_mem_reserve(bdev, mem);
129 if (bdev->driver->io_mem_reserve &&
130 mem->bus.io_reserved_count++ == 0) {
131 retry:
132 ret = bdev->driver->io_mem_reserve(bdev, mem);
133 if (ret == -EAGAIN) {
134 ret = ttm_mem_io_evict(man);
135 if (ret == 0)
136 goto retry;
139 return ret;
141 EXPORT_SYMBOL(ttm_mem_io_reserve);
143 void ttm_mem_io_free(struct ttm_bo_device *bdev,
144 struct ttm_mem_reg *mem)
146 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
148 if (likely(man->io_reserve_fastpath))
149 return;
151 if (bdev->driver->io_mem_reserve &&
152 --mem->bus.io_reserved_count == 0 &&
153 bdev->driver->io_mem_free)
154 bdev->driver->io_mem_free(bdev, mem);
157 EXPORT_SYMBOL(ttm_mem_io_free);
159 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
161 struct ttm_mem_reg *mem = &bo->mem;
162 int ret;
164 if (!mem->bus.io_reserved_vm) {
165 struct ttm_mem_type_manager *man =
166 &bo->bdev->man[mem->mem_type];
168 ret = ttm_mem_io_reserve(bo->bdev, mem);
169 if (unlikely(ret != 0))
170 return ret;
171 mem->bus.io_reserved_vm = true;
172 if (man->use_io_reserve_lru)
173 list_add_tail(&bo->io_reserve_lru,
174 &man->io_reserve_lru);
176 return 0;
179 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
181 struct ttm_mem_reg *mem = &bo->mem;
183 if (mem->bus.io_reserved_vm) {
184 mem->bus.io_reserved_vm = false;
185 list_del_init(&bo->io_reserve_lru);
186 ttm_mem_io_free(bo->bdev, mem);
190 int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
191 void **virtual)
193 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
194 int ret;
195 void *addr;
197 *virtual = NULL;
198 (void) ttm_mem_io_lock(man, false);
199 ret = ttm_mem_io_reserve(bdev, mem);
200 ttm_mem_io_unlock(man);
201 if (ret || !mem->bus.is_iomem)
202 return ret;
204 if (mem->bus.addr) {
205 addr = mem->bus.addr;
206 } else {
207 if (mem->placement & TTM_PL_FLAG_WC)
208 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
209 else
210 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
211 if (!addr) {
212 (void) ttm_mem_io_lock(man, false);
213 ttm_mem_io_free(bdev, mem);
214 ttm_mem_io_unlock(man);
215 return -ENOMEM;
218 *virtual = addr;
219 return 0;
222 void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
223 void *virtual)
225 struct ttm_mem_type_manager *man;
227 man = &bdev->man[mem->mem_type];
229 if (virtual && mem->bus.addr == NULL)
230 iounmap(virtual);
231 (void) ttm_mem_io_lock(man, false);
232 ttm_mem_io_free(bdev, mem);
233 ttm_mem_io_unlock(man);
236 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
238 uint32_t *dstP =
239 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
240 uint32_t *srcP =
241 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
243 int i;
244 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
245 iowrite32(ioread32(srcP++), dstP++);
246 return 0;
249 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
250 unsigned long page,
251 pgprot_t prot)
253 struct page *d = ttm->pages[page];
254 void *dst;
256 if (!d)
257 return -ENOMEM;
259 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
261 #ifdef CONFIG_X86
262 dst = kmap_atomic_prot(d, prot);
263 #else
264 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
265 dst = vmap(&d, 1, 0, prot);
266 else
267 dst = kmap(d);
268 #endif
269 if (!dst)
270 return -ENOMEM;
272 memcpy_fromio(dst, src, PAGE_SIZE);
274 #ifdef CONFIG_X86
275 kunmap_atomic(dst);
276 #else
277 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
278 vunmap(dst);
279 else
280 kunmap(d);
281 #endif
283 return 0;
286 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
287 unsigned long page,
288 pgprot_t prot)
290 struct page *s = ttm->pages[page];
291 void *src;
293 if (!s)
294 return -ENOMEM;
296 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
297 #ifdef CONFIG_X86
298 src = kmap_atomic_prot(s, prot);
299 #else
300 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
301 src = vmap(&s, 1, 0, prot);
302 else
303 src = kmap(s);
304 #endif
305 if (!src)
306 return -ENOMEM;
308 memcpy_toio(dst, src, PAGE_SIZE);
310 #ifdef CONFIG_X86
311 kunmap_atomic(src);
312 #else
313 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
314 vunmap(src);
315 else
316 kunmap(s);
317 #endif
319 return 0;
322 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
323 bool evict, bool no_wait_gpu,
324 struct ttm_mem_reg *new_mem)
326 struct ttm_bo_device *bdev = bo->bdev;
327 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
328 struct ttm_tt *ttm = bo->ttm;
329 struct ttm_mem_reg *old_mem = &bo->mem;
330 struct ttm_mem_reg old_copy = *old_mem;
331 void *old_iomap;
332 void *new_iomap;
333 int ret;
334 unsigned long i;
335 unsigned long page;
336 unsigned long add = 0;
337 int dir;
339 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
340 if (ret)
341 return ret;
342 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
343 if (ret)
344 goto out;
347 * Single TTM move. NOP.
349 if (old_iomap == NULL && new_iomap == NULL)
350 goto out2;
353 * Move nonexistent data. NOP.
355 if (old_iomap == NULL && ttm == NULL)
356 goto out2;
359 * TTM might be null for moves within the same region.
361 if (ttm && ttm->state == tt_unpopulated) {
362 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
363 if (ret)
364 goto out1;
367 add = 0;
368 dir = 1;
370 if ((old_mem->mem_type == new_mem->mem_type) &&
371 (new_mem->start < old_mem->start + old_mem->size)) {
372 dir = -1;
373 add = new_mem->num_pages - 1;
376 for (i = 0; i < new_mem->num_pages; ++i) {
377 page = i * dir + add;
378 if (old_iomap == NULL) {
379 pgprot_t prot = ttm_io_prot(old_mem->placement,
380 PAGE_KERNEL);
381 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
382 prot);
383 } else if (new_iomap == NULL) {
384 pgprot_t prot = ttm_io_prot(new_mem->placement,
385 PAGE_KERNEL);
386 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
387 prot);
388 } else
389 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
390 if (ret)
391 goto out1;
393 mb();
394 out2:
395 old_copy = *old_mem;
396 *old_mem = *new_mem;
397 new_mem->mm_node = NULL;
399 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
400 ttm_tt_unbind(ttm);
401 ttm_tt_destroy(ttm);
402 bo->ttm = NULL;
405 out1:
406 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
407 out:
408 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
411 * On error, keep the mm node!
413 if (!ret)
414 ttm_bo_mem_put(bo, &old_copy);
415 return ret;
417 EXPORT_SYMBOL(ttm_bo_move_memcpy);
419 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
421 kfree(bo);
425 * ttm_buffer_object_transfer
427 * @bo: A pointer to a struct ttm_buffer_object.
428 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
429 * holding the data of @bo with the old placement.
431 * This is a utility function that may be called after an accelerated move
432 * has been scheduled. A new buffer object is created as a placeholder for
433 * the old data while it's being copied. When that buffer object is idle,
434 * it can be destroyed, releasing the space of the old placement.
435 * Returns:
436 * !0: Failure.
439 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
440 struct ttm_buffer_object **new_obj)
442 struct ttm_buffer_object *fbo;
443 struct ttm_bo_device *bdev = bo->bdev;
444 struct ttm_bo_driver *driver = bdev->driver;
445 int ret;
447 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
448 if (!fbo)
449 return -ENOMEM;
451 *fbo = *bo;
454 * Fix up members that we shouldn't copy directly:
455 * TODO: Explicit member copy would probably be better here.
458 INIT_LIST_HEAD(&fbo->ddestroy);
459 INIT_LIST_HEAD(&fbo->lru);
460 INIT_LIST_HEAD(&fbo->swap);
461 INIT_LIST_HEAD(&fbo->io_reserve_lru);
462 drm_vma_node_reset(&fbo->vma_node);
463 atomic_set(&fbo->cpu_writers, 0);
465 spin_lock(&bdev->fence_lock);
466 if (bo->sync_obj)
467 fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj);
468 else
469 fbo->sync_obj = NULL;
470 spin_unlock(&bdev->fence_lock);
471 kref_init(&fbo->list_kref);
472 kref_init(&fbo->kref);
473 fbo->destroy = &ttm_transfered_destroy;
474 fbo->acc_size = 0;
475 fbo->resv = &fbo->ttm_resv;
476 reservation_object_init(fbo->resv);
477 ret = ww_mutex_trylock(&fbo->resv->lock);
478 WARN_ON(!ret);
480 *new_obj = fbo;
481 return 0;
484 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
486 #if defined(__i386__) || defined(__x86_64__)
487 if (caching_flags & TTM_PL_FLAG_WC)
488 tmp = pgprot_writecombine(tmp);
489 else if (boot_cpu_data.x86 > 3)
490 tmp = pgprot_noncached(tmp);
492 #elif defined(__powerpc__)
493 if (!(caching_flags & TTM_PL_FLAG_CACHED)) {
494 pgprot_val(tmp) |= _PAGE_NO_CACHE;
495 if (caching_flags & TTM_PL_FLAG_UNCACHED)
496 pgprot_val(tmp) |= _PAGE_GUARDED;
498 #endif
499 #if defined(__ia64__)
500 if (caching_flags & TTM_PL_FLAG_WC)
501 tmp = pgprot_writecombine(tmp);
502 else
503 tmp = pgprot_noncached(tmp);
504 #endif
505 #if defined(__sparc__) || defined(__mips__)
506 if (!(caching_flags & TTM_PL_FLAG_CACHED))
507 tmp = pgprot_noncached(tmp);
508 #endif
509 return tmp;
511 EXPORT_SYMBOL(ttm_io_prot);
513 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
514 unsigned long offset,
515 unsigned long size,
516 struct ttm_bo_kmap_obj *map)
518 struct ttm_mem_reg *mem = &bo->mem;
520 if (bo->mem.bus.addr) {
521 map->bo_kmap_type = ttm_bo_map_premapped;
522 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
523 } else {
524 map->bo_kmap_type = ttm_bo_map_iomap;
525 if (mem->placement & TTM_PL_FLAG_WC)
526 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
527 size);
528 else
529 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
530 size);
532 return (!map->virtual) ? -ENOMEM : 0;
535 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
536 unsigned long start_page,
537 unsigned long num_pages,
538 struct ttm_bo_kmap_obj *map)
540 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
541 struct ttm_tt *ttm = bo->ttm;
542 int ret;
544 BUG_ON(!ttm);
546 if (ttm->state == tt_unpopulated) {
547 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
548 if (ret)
549 return ret;
552 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
554 * We're mapping a single page, and the desired
555 * page protection is consistent with the bo.
558 map->bo_kmap_type = ttm_bo_map_kmap;
559 map->page = ttm->pages[start_page];
560 map->virtual = kmap(map->page);
561 } else {
563 * We need to use vmap to get the desired page protection
564 * or to make the buffer object look contiguous.
566 prot = (mem->placement & TTM_PL_FLAG_CACHED) ?
567 PAGE_KERNEL :
568 ttm_io_prot(mem->placement, PAGE_KERNEL);
569 map->bo_kmap_type = ttm_bo_map_vmap;
570 map->virtual = vmap(ttm->pages + start_page, num_pages,
571 0, prot);
573 return (!map->virtual) ? -ENOMEM : 0;
576 int ttm_bo_kmap(struct ttm_buffer_object *bo,
577 unsigned long start_page, unsigned long num_pages,
578 struct ttm_bo_kmap_obj *map)
580 struct ttm_mem_type_manager *man =
581 &bo->bdev->man[bo->mem.mem_type];
582 unsigned long offset, size;
583 int ret;
585 BUG_ON(!list_empty(&bo->swap));
586 map->virtual = NULL;
587 map->bo = bo;
588 if (num_pages > bo->num_pages)
589 return -EINVAL;
590 if (start_page > bo->num_pages)
591 return -EINVAL;
592 #if 0
593 if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC))
594 return -EPERM;
595 #endif
596 (void) ttm_mem_io_lock(man, false);
597 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
598 ttm_mem_io_unlock(man);
599 if (ret)
600 return ret;
601 if (!bo->mem.bus.is_iomem) {
602 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
603 } else {
604 offset = start_page << PAGE_SHIFT;
605 size = num_pages << PAGE_SHIFT;
606 return ttm_bo_ioremap(bo, offset, size, map);
609 EXPORT_SYMBOL(ttm_bo_kmap);
611 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
613 struct ttm_buffer_object *bo = map->bo;
614 struct ttm_mem_type_manager *man =
615 &bo->bdev->man[bo->mem.mem_type];
617 if (!map->virtual)
618 return;
619 switch (map->bo_kmap_type) {
620 case ttm_bo_map_iomap:
621 iounmap(map->virtual);
622 break;
623 case ttm_bo_map_vmap:
624 vunmap(map->virtual);
625 break;
626 case ttm_bo_map_kmap:
627 kunmap(map->page);
628 break;
629 case ttm_bo_map_premapped:
630 break;
631 default:
632 BUG();
634 (void) ttm_mem_io_lock(man, false);
635 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
636 ttm_mem_io_unlock(man);
637 map->virtual = NULL;
638 map->page = NULL;
640 EXPORT_SYMBOL(ttm_bo_kunmap);
642 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
643 void *sync_obj,
644 bool evict,
645 bool no_wait_gpu,
646 struct ttm_mem_reg *new_mem)
648 struct ttm_bo_device *bdev = bo->bdev;
649 struct ttm_bo_driver *driver = bdev->driver;
650 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
651 struct ttm_mem_reg *old_mem = &bo->mem;
652 int ret;
653 struct ttm_buffer_object *ghost_obj;
654 void *tmp_obj = NULL;
656 spin_lock(&bdev->fence_lock);
657 if (bo->sync_obj) {
658 tmp_obj = bo->sync_obj;
659 bo->sync_obj = NULL;
661 bo->sync_obj = driver->sync_obj_ref(sync_obj);
662 if (evict) {
663 ret = ttm_bo_wait(bo, false, false, false);
664 spin_unlock(&bdev->fence_lock);
665 if (tmp_obj)
666 driver->sync_obj_unref(&tmp_obj);
667 if (ret)
668 return ret;
670 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
671 (bo->ttm != NULL)) {
672 ttm_tt_unbind(bo->ttm);
673 ttm_tt_destroy(bo->ttm);
674 bo->ttm = NULL;
676 ttm_bo_free_old_node(bo);
677 } else {
679 * This should help pipeline ordinary buffer moves.
681 * Hang old buffer memory on a new buffer object,
682 * and leave it to be released when the GPU
683 * operation has completed.
686 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
687 spin_unlock(&bdev->fence_lock);
688 if (tmp_obj)
689 driver->sync_obj_unref(&tmp_obj);
691 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
692 if (ret)
693 return ret;
696 * If we're not moving to fixed memory, the TTM object
697 * needs to stay alive. Otherwhise hang it on the ghost
698 * bo to be unbound and destroyed.
701 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
702 ghost_obj->ttm = NULL;
703 else
704 bo->ttm = NULL;
706 ttm_bo_unreserve(ghost_obj);
707 ttm_bo_unref(&ghost_obj);
710 *old_mem = *new_mem;
711 new_mem->mm_node = NULL;
713 return 0;
715 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);